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• Tropical NFIs are increasing and mostly
one-time efforts; however plans for conti-
nuity exists for many countries.

• There is higher agreement between FRA
and space-based forest biomass estimates
in countries with recent NFIs.

• NFI design characteristics (i.e. sampling
design, plot size/shape, plot distances)
vary across the countries.

• No “one size fits all approach” suits the in-
tegration of NFI and space-based biomass
data: various (statistical) approaches
needed.

• Super-site NFI plots are an opportunity for
better integration with space-based data
and collaboration with global community.
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FI characteristics relating to integration with space-based forest biomass data - temporality of the most recent NFIs
(a), intercomparison of national forest biomass estimates for the year 2018 from FRA and space-based CCI biomass
data (b), and NFI plot designs e.g., distances between primary sampling units (cluster and single plots), distances
between plots in the clusters and plot sizes (c).
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National forest inventories (NFIs) are a reliable source for national forestmeasurements. However, they are usually not
developed for linkingwith remotely sensed (RS) biomass information. There are increasing needs and opportunities to
facilitate this link towards better global and national biomass estimation. Thus, it is important to study and understand
NFI characteristics relating to their integration with space-based products; in particular for the tropics where NFIs are
quite recent, less frequent, and partially incomplete in several countries. Here, we (1) assessed NFIs in terms of their
availability, temporal distribution, and extent in 236 countries from FAO's Global Forest Resources Assessment
(FRA) 2020; (2) compared national forest biomass estimates in 2018 fromFRA and global space-based Climate Change
Initiative (CCI) product in 182 countries considering NFI availability and temporality; and (3) analyzed the latest NFI
design characteristics in 46 tropical countries relating to their integration with space-based biomass datasets. We ob-
served significant NFI availability globally and multiple NFIs were mostly found in temperate and boreal countries
while most of the single NFI countries (94 %) were in the tropics. The latest NFIs were more recent in the tropics
and many countries (35) implemented NFIs from 2016 onwards. The increasing availability and update of NFIs create
new opportunities for integration with space-based data at the national level. This is supported by the agreement we
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found between country biomass estimates for 2018 from FRA and CCI product, with a significantly higher correlation
in countries with recent NFIs. We observed that NFI designs varied greatly in tropical countries. For example, the size
of the plots ranged from 0.01 to 1 ha andmore than three-quarters of the countries had smaller plots of≤0.25 ha. The
existing NFI designs could pose specific challenges for statistical integrationwith RS data in the tropics. Future NFI and
space-based efforts should aim towards a more integrated approach taking advantage of both data streams to improve
national estimates and help future data harmonization efforts. Regular NFI efforts can be expanded with the inclusion
of some super-site plots to enhance data integrationwith currently available space-based applications. Issues related to
cost implications versus improvements in the accuracy, timeliness, and sustainability of national forest biomass estima-
tion should be further explored.
1. Introduction

Forests harbor most of the world's terrestrial biodiversity and provide
vital ecosystem services and resources that are critical to upholding the sus-
tainability of the environment and humankind. To maintain and enhance
forest biodiversity and services, informed forest management decision-
making at the national and international levels needs consistent and up-
to-date forest information. Traditionally,many countries use national forest
inventories (NFIs) as the main sources of forest information for meeting
(inter)national needs (Tomppo et al., 2010). Forest inventories dated back
to the end of the Middle Ages and until the mid-1970, the primary focus
of NFIs was on timber resources (Davis et al., 2001; Tomppo et al., 2010).
Over time, the information needs have expanded to the ecological,
economic, and social roles of forests (Davis et al., 2001; Tomppo et al.,
2010). This has broadened the scope of NFIs and consequently, included
new NFI variables to meet increasing information needs (Tomppo et al.,
2010). Now, NFIs are multifunctional and provide information on many
important ecosystem services and biodiversity variables (Mononen et al.,
2016). In addition, remote sensing (RS) techniques have been deployed in
recent decades for producing consistent forest information on a national
to global scale (Pekkarinen et al., 2009; Saatchi et al., 2011a, 2011b;
Hansen et al., 2013).

Forest information on aboveground biomass (AGB) is central for forest
management and policy processes at local, national, and global levels for
many reasons. Apart from being the direct sources of food, fiber, and fuel-
wood, AGB has a critical role in the functioning of terrestrial ecosystems
and thus, the earth system as a whole (Houghton et al., 2009; Patel and
Majumdar, 2011; Reichstein et al., 2019). Particularly, being an important
source and sink in the terrestrial carbon cycle, AGB has a crucial role in
maintaining the global climate balance (Houghton, 2005; Houghton
et al., 2009). For this critical role, the Global Climate Observing System
(GCOS) in 2003 included AGB in the list of Terrestrial Essential Climate
Variables (ECVs) (Bojinski et al., 2014). Being an ECV, AGB is a key input
to the United Nations Reducing Emissions from Deforestation and Forest
Degradation (REDD+) and is crucial to model the Earth system (Herold
et al., 2019). Inspired by ECV, AGB was further included in the measure-
ments of Essential Biodiversity Variables (EBV), particularly ecosystem
vertical profile, live cover fraction, and primary productivity by the
Group on Earth Observations Biodiversity Observation Network tomonitor
ecosystem structure and ecosystem functioning (Pereira et al., 2013; GEO
BON, 2022).

The most accurate forest AGB information is obtained from the field
measurements (Saatchi et al., 2007; Guitet et al., 2015). Field AGBmeasure-
ments could be obtained from several sources such as research plots, conces-
sion or commercial plots, management plots, and NFI plots. NFI plots are a
systematic and reliable source of accurate field AGB measurements at the
subnational and national levels (Fang et al., 2014; Guitet et al., 2015).
Therefore, NFI-basedAGB estimates are used as the official data for national
forest planning and management, and international reporting to the Food
and Agriculture Organization of the United Nations (FAO), United Nations
Framework Convention on Climate Change (UNFCCC), and United Nations
Economic Commission for Europe (Herold et al., 2019).

Although NFI field plots provide the most accurate AGB measure-
ments, they are sometimes impractical and often cost-inefficient for
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frequent (e.g. bi-annual) and wall-to-wall spatially explicit (sub)national
AGB reporting. Such information is increasingly required for national
and international climate actions in the context of the UNFCCC Global
Stocktake, Paris Agreement, and REDD+ implementation programme
(Herold et al., 2019). A recent study by Nesha et al. (2021) found that
globally, remeasurement cycles of NFIs vary from 5 to 10 years in most of
the countries having multi-date NFIs. Field plot measurements are labor-
intensive, expensive, and time-demanding (Gollob et al., 2021; Liang
et al., 2018; Wittke et al., 2019) and this explains why NFIs are not fre-
quently available.Moreover, NFI plot data are aggregated to derive average
estimates for a region or thewhole country (Tomppo et al., 2010), and thus,
do not provide spatially-detailed AGB information.

Alternatively, earth observation (EO) techniques can help overcome the
abovementioned problems related to spatial and temporal detail with in-
situ AGB measurements. RS community has produced several AGB maps
at regional to global scales using either stand-alone or a combination of
optical, radar, or LiDAR data in the recent decade (Gallaun et al., 2010;
Santoro et al., 2021; Saatchi et al., 2011a, 2011b; Baccini et al., 2012;
Huang et al., 2013; Thurner et al., 2014; Avitabile et al., 2016; Hu et al.,
2016; Avitabile and Camia, 2018). Currently, there are targeted biomass
missions that produce the next generation of regional and global AGB
maps with improved accuracy. One of them is the European Space Agency's
(ESA) Climate Change Initiative (CCI) BIOMASS mission which has pro-
duced 100 m global AGB maps for 2010, 2017, and 2018 by integrating
optical, LiDAR, and Synthetic Aperture Radar (SAR) data for the first time
(Quegan and Lucas, 2021). While boreal forest AGB estimation with
NASA's Ice, Cloud, and Land Elevation Satellite-2 has been made available
in 2021 (Duncanson et al., 2021a, 2021b), 1 km gridded AGB data for trop-
ical and temperate forests are available in the year 2021 from NASA Global
Ecosystem Dynamics Investigation (GEDI) mission (Dubayah et al., 2020).
Upon completion of the GEDI mission in 2021, Japan Aerospace Explora-
tion Agency's (JAXA) forthcoming Multi-footprint Observation Lidar and
Imager will continue to provide the gridded AGB data (Daisuke et al.,
2020). Moreover, the upcoming NASA-ISRO SAR mission in 2023 will pro-
vide global biomass datasets using L-band SAR at the temporal resolution
twice every twelve days (NASA, 2021). Further, ESA plans to launch a
new BIOMASS mission in 2023 using the first space-based P-band SAR
that will produce more accurate global biomass maps (ESA, 2021).

Current EO technologies do not provide direct AGB estimation from
space (Woodhouse et al., 2012). Space-based AGB products profoundly
hinge on models that convert RS observations to AGB estimates (Santoro
et al., 2021). Furthermore, RS signals saturate at high AGB areas resulting
in underestimation beyond the saturation level (Rodríguez-Veiga et al.,
2019). Likewise, AGB overestimation occurs in low forest cover areas be-
cause open surfaces and non-woody vegetation contribute to RS signals
(Avitabile et al., 2012; Avitabile and Camia, 2018). Therefore, space-based
AGB maps need to be calibrated and validated by adequate AGB reference
datasets from field measurements (Chave et al., 2019). Nonetheless, global
or regional AGB product validation is challenging as there are no represen-
tative reference datasets at these levels (Duncanson et al., 2019). Validation
is further hindered by the lack of well-tested methods flexible to the spatial
extent and spatial resolution of the AGB products (Duncanson et al., 2019).
Such validation challenges limit the application of existing global space-
based AGB products for national estimation and reporting.



Table 1
Dataset used in the analysis of NFI availability and characteristics across the countries.

Dataset description Purpose of use Data sources

Total number of
NFIs per country

NFI availability analysis FRA 2020 country
reports, section 2c

Extent of the latest
NFIs

Analysis of NFI characteristics in terms
of NFI country coverage

FRA 2020 country
reports, section 2c

Years of the latest
NFIs

Analysis of NFI characteristics in terms
of NFI temporal distribution

FRA 2020 country
reports, section 2c
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As recommended by the CCI BIOMASS, biomass harmonization team,
and Global Stocktake, a potential way forward to make use of global
space-based AGB products in national estimation involves the integration
of NFI field AGB measurements with global products at the national level
(Herold et al., 2019; Herold et al., 2021; Santoro et al., 2021). This is pri-
marily because NFI plot measurements are sources of independent refer-
ence data for calibration and validation of global products at the national
level. The validated space-based AGB product at the (sub)national level
could make a dedicated contribution to detailed spatially explicit data
needs for the UNFCCC Global Stocktake, Paris Agreement, and UN-REDD
+ Programme (Herold et al., 2019). Furthermore, if NFI has missing sam-
ples in certain regions, e.g., inaccessible and undersampled areas, or if
NFI is incomplete/partial, space-based data could be used to add sampling
plots in those regions and thereby, complement the NFI (Herold et al.,
2019). Further, a combination of the space-based and NFI data could be
used to improve the precision of biomass estimation at the sub-national
or local level (Næsset et al., 2020). In case NFI is older, space-based data
could be used to update NFI and improve the comparability of global
space-based and national datasets which is useful for UNFCCC Global
Stocktake (Herold et al., 2019). The space-based data could also be used
to add detailed spatial information to NFI biomass estimates which could
be interesting for different policy purposes (Herold et al., 2019). In Nordic
countries, e.g., Sweden and Finland, national biomass mapping has been
done using a combination of NFI and RS data (Kangas et al., 2018). In
this way, the integration of RS data can help in the harmonization process
of NFIs. This would also help understand if global AGBmap products aggre-
gated at the national level can be used to meet more frequent international
reporting needs (annual/biennial).

However, the integration of NFIs and space-based data is challenging
since the availability and characteristics of NFIs differ by country. Out of
150 countries with NFI in FRA 2020, 41 countries reported nationwide
regular, multi-date NFIs while others have not regularly updated them or
not updated them at all (Nesha et al., 2021). Also, several countries (86)
have noNFI to date (Nesha et al., 2021). Further, NFI years refer to different
periods across the countries, and the latest NFIs were relatively old (i.e.
implemented before 2010) in 56 countries (Nesha et al., 2021). This raises
questions about how varying NFI availability and temporality influence the
integration of NFI estimates with the global space-based AGB products at
the national level.

When an NFI is available, there are technical challenges for integration
linked to varying NFI design characteristics across the countries. The most
relevant NFI design characteristics pertaining to integration are plot size,
and distance between plots when cluster plots are used as sampling units.
The smaller field plots, even when the ratio between field plots and RS
pixels is the same, can produce large sampling errors due to local AGB var-
iability and spatial mismatches between the field plots and RS footprints
leading to high uncertainty in AGB maps (Réjou-Méchain et al., 2014).
Noticeably, spatial AGB variations at the local scale tend to be high in the
tropics (Wagner et al., 2010; Réjou-Méchain et al., 2014; Guitet et al.,
2015). Therefore, field plots smaller than RS pixels in the tropics could
cause considerable sampling errors resulting in dilution biases, i.e. system-
atic underestimation of calibration slopes (Réjou-Méchain et al., 2014).
Dilution bias has been reported on average by 54 % with 0.1 ha plots and
by 37 % with 0.25 ha plots (Réjou-Méchain et al., 2014). Further, small
plots are linked to edge effects that can cause a mismatch in tree represen-
tation between RS footprints and field plots (Mascaro et al., 2011). More-
over, the distance between plots in the cluster influences the integration
of NFI plot data with space-based biomass products, and this is linked to
spatial autocorrelation (Zhang et al., 2008, 2009; Réjou-Méchain et al.,
2014; Yim et al., 2015). Also, other design characteristics such as plot
shape (i.e., more border trees appear in square/rectangular plots) and
distance between clusters (interpolation effects) could pose challenges for
the integration of NFI data with space-based biomass datasets (Kershaw
et al., 2016; Hajj et al., 2017; Picard et al., 2018).

A fundamental reason why NFI characteristics have major implications
on integration is that NFIs are designed on a sample basis for data collection
3

purposes other than integrationwith space-based biomass products (Næsset
et al., 2020; Araza et al., 2022). Hence, it is essential to understand the NFI
characteristics and the potential implications for their integration with
space-based products at the national level. Until now, NFI characteristics
and related implications have not yet been systematically studied across
the countries globally. This gap is even more pronounced in the tropics as
countries have mostly started to implement NFIs in the last decade (Nesha
et al., 2021). There are significant improvements in NFI availability in the
tropics where the good to very good use of NFIs increased from 21 countries
in FRA 2005 to 57 countries in FRA 2020 (Nesha et al., 2021). However,
little is known about NFI designs in the tropics. Despite the improvements
in NFI availability, several tropical countries struggle to complete or update
their NFIs on a regular basis (Nesha et al., 2021). It is particularly important
to explore the use of space-based products with the existing NFI field data
for complementing national estimation and reporting in these countries.

In this paper, we systematically assess the global availability and char-
acteristics of the most recent NFIs in the context of their integration with
space-based forest AGB data. This includes the first global analysis of NFI
characteristics in relation to their temporal distribution and extent. In addi-
tion, we analyze the recent NFI plot designs first-ever in the (sub)tropics
(henceforth referred to as tropical countries) pertaining to their integration
with space-based forest AGB data. Here, our aim is not to investigate how
NFI plot designs affect national AGB estimation. Rather, we build on earlier
research on the integration implications of NFI plot designs and evaluations
of the relationships between plot design characteristics and RS-based AGB
estimations (e.g., Réjou-Méchain et al., 2014; Picard et al., 2018). More
specifically, we:

1. Assess the characteristics of the latest NFIs globally in 236 countries and
territories from FRA 2020 in terms of their availability, temporal distri-
bution, and extent.

2. Compare national forest biomass data for 2018 between FRA estimates
and a recent global space-based ESA CCI biomass product taking into
account the NFI availability and temporal characteristics.

3. Analyze the latest NFI plot design characteristics in tropical countries
relating to integration with space-based biomass datasets.

2. Methods

2.1. NFI availability, temporal and extent characteristics

We assessed the availability and characteristics of NFIs globally in 236
countries and territories (hereafter referred to as countries). We evaluated
NFI availability based on the total number of NFIs in a country. We ana-
lyzed NFI characteristics in a country in terms of their extent and temporal
distribution. The latest NFI was included in the analysis of NFI characteris-
tics. The data on NFI availability, temporal and extent characteristics were
compiled from FRA 2020 country reports (Table 1). The FRA 2020 country
reports are publicly available on the FAO website (https://www.fao.org/
forest-resources-assessment/fra-2020/country-reports/en/).

For assessment of NFI availability, we classified the countries into the
following groups based on the number of existing NFIs per country.

• countries with no NFI
• countries with a single NFI
• countries with multiple NFIs

https://www.fao.org/forest-resources-assessment/fra-2020/country-reports/en/
https://www.fao.org/forest-resources-assessment/fra-2020/country-reports/en/
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Here, a single NFI means only one NFI measurement and multiple NFIs
imply at least two ormore measurements. We further categorized the coun-
tries with multiple NFIs into the following classes:

• countries with 2–3 NFIs
• countries with 4–5 NFIs
• countries with >5 NFIs

For evaluating NFI extent over a country, we categorized the NFI into
partial or full NFI. If an NFI was implemented nationwide, it was catego-
rized as a full NFI. Similarly, if NFI covered only parts of the country, it
was classified as partial NFI. To assess the temporal characteristics of
NFIs, we defined the year 2010 as the threshold year to distinguishwhether
the NFIs are recent or old. Accordingly, if the latest NFIs were implemented
in countries from 2010 onwards, they were considered recent NFIs.
Conversely, the latest NFIs implemented in countries before 2010 were
considered old NFIs. The years used in the analysis of NFI temporal charac-
teristics usually referred to the years of data collection (see FRA 2020
guidelines and specifications).

2.2. Intercomparison of national forest AGB estimates from a global space-based
biomass product and FRA 2020

The integration of NFI field estimates with space-based global biomass
products is essential for using the products at the national level. A key
step towards this process is the intercomparison of the global AGB products
at the national level with NFI field AGB estimates (Herold et al., 2021).
Intercomparison is crucial to assess the usefulness of space-based global
AGB products at the national level as it shows the agreement of space-
based products with the field reference datasets and identifies the areas
with underestimation and overestimation (Herold et al., 2021). We
performed an intercomparison analysis between two national forest AGB
estimates for the year 2018 – one estimate from a space-based global bio-
mass product and another from FRA AGB estimates. We performed this
analysis for both country mean (tons/ha) and country total (Gigaton
i.e., Gt) forest biomass estimates. We applied linear regression between
these two datasets for intercomparison.

We compiled FRA forest AGB estimates for the year 2018 for individual
countries from section 2c, FRA 2020 country reports. FRA forest AGB
estimates are generally derived from NFI field data in countries with NFI
(see FRA 2020 country reports, section 2c). AGB estimates in FRA reporting
vary among the countries due to a wide array of country reporting circum-
stances and limitations. We used the country biomass data from FRA
reporting because FRA is the only worldwide database constituting a
benchmark for comparison with RS data on forest resources due to its
scale and comprehensiveness (Santoro et al., 2021). Although discrepancies
between FRA and RS-based AGB estimates have been highlighted earlier
(Hill et al., 2013), there is a large fraction of the current literature establish-
ing these comparisons where FRA estimates are used as a benchmark for
comparison (Hill et al., 2013; Mitchard et al., 2013; Santoro et al., 2021;
Araza et al., 2022).

We used the latest ESA CCI global biomass product 2018 version 3.0
(v3.0) (see Santoro and Cartus, 2021) to obtain the space-based national
forest AGB estimates. A brief overview of datasets used in this analysis is
given in Table 2. We performed this analysis globally in 182 countries.
We excluded 54 countries from the analysis as forest AGB data from FRA
Table 2
Datasets used in the intercomparison analysis of national forest AGB estimates between

Dataset used Dataset description Purpose of u

ESA CCI biomass product
2018 version3.0

The latest global space-based biomass dataset for
the year 2018 at 100 m resolution

Obtained sp

Global tree cover dataset
2018 version3.0.1

Global space-based tree cover dataset for the
year 2018 at 100 m resolution

Created a fo
ESA CCI bio

Country forest AGB dataset
2018 from FRA 2020

Country forest AGB from FRA 2020– total and
mean statistics for the year 2018

Obtained NF
forest AGB e
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2020 or CCI biomass product was not available. The ESA CCI global
biomass product provides space-based AGB estimates for all types of vege-
tation covers (ESA, 2021). Therefore, we extracted forest AGB from the CCI
biomass product using a forest mask and then calculated the forest AGB
statistics per country. The forest mask was created following FAO's forest
definition i.e. tree cover >10 % (FAO, 2018). For this purpose, we used
the space-based global tree cover dataset for 2018 from the Copernicus
Global Land Service (Buchhorn et al., 2020). The spatial resolution of the
CCI global biomass product and global tree cover dataset was 100 m.

Noticeably, the availability and temporal distribution of NFIs vary
across the countries. An earlier study showed that globally 150 countries
had NFI and out of them, 94 countries implemented their latest NFI in the
2010s (Nesha et al., 2021). Out of 182 countries included in the intercom-
parison analysis, NFIs were data sources for national forest AGB estimates
in 137 countries in FRA 2020. NFIs have not yet been implemented in
other countries included in the analysis. In the absence of NFI, FRA AGB
estimates mainly relied on forest area data derived from RS observations
(see FRA 2020 country reports).

The availability and varying temporal characteristics of the NFIs could
influence the national AGB estimates, and thus, their integration with the
space-based biomass product. Considering this, we performed an intercom-
parison analysis taking into account the NFI availability and temporal
characteristics. This involved intercomparison analysis in three groups of
countries viz. countries with NFI since 2010, countries with NFI before
2010, and countries with no NFI. This would provide a clear overview of
how intercomparison results vary with the NFI availability and temporal
characteristics, and thus, a better understanding of the potential link of
the corresponding agreement and disagreement between the two national
forest AGB estimates. This is also important to identify the areas for
improvement on both national estimates. Thus, the findings of this analysis
have great significance in the context of integration of NFI-based AGB
estimates with the global space-based AGB estimates at the national level.

2.3. NFI plot design characteristics in the tropics

We analyzed the design characteristics of the most recent NFIs in 46
tropical countries (Fig. 1). The countries were chosen based on data avail-
ability. The data were compiled from the country NFI field manual and
NFI report. In this study, we analyzed the key NFI design characteristics
related to sampling and plot designs (see Appendix 1 for the variables
list). We investigated the NFI design characteristics that have significant
implications on NFI integration with space-based biomass datasets.

3. Results

3.1. NFI availability, temporal and extent characteristics

Globally, 150 countries reported partial or full NFIs in FRA 2020
(Fig. 2a), with 120 countries reporting full NFIs (Fig. 2b). Partial NFIs
mainly occurred in tropical countries (Fig. 2c). Almost half of the countries
(~46 %) with either partial or full NFIs reported only a single NFI in FRA
2020. Notably, most of these single NFI countries (94 %) were found in
tropical nations, particularly in South America, Africa, and Asia. On the
other hand, most of the temperate and boreal countries had 4 to 5 full
NFIs with Russia, Canada, Denmark, and the US implementing >5 full
NFIs. The multiple and full NFIs were also implemented in some tropical
global space-based CCI biomass product and FRA 2020.

se Data sources

ace-based AGB estimates for 182 countries ESA CCI BIOMASS Mission
(Santoro and Cartus, 2021)

rest mask layer to extract space-based forest AGB from
mass product for 182 countries

Copernicus Global Land Service
(Buchhorn et al., 2020)

I-based (and from other sources in the absence of NFI)
stimates by country from FRA 2020

FRA 2020 country reports,
section 2c



Fig. 1. Tropical countries (46) for the analysis of the latest NFI design characteristics. The years of the latest NFI by country are shown in green colors. Years were compiled
from the latest country NFI design manual or NFI report (both ongoing and completed NFI). The years generally refer to the last years of data collection. No data means that
either some countries didn't implement NFI yet, or data sources i.e. NFI design manuals/NFI reports were not available in others.
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nations but the number of NFIsmostly ranged between 2 and 3. The highest
number of full NFIs accounted for 4 to 5 in a few tropical countries includ-
ing India, Ghana, Panama, and Viet Nam.

The latest NFIs were more recent in the tropics compared to temperate
and boreal countries (Fig. 2d, e & f). In many tropical countries (35), NFIs
were implemented in the last five years starting from 2016. Among them,
more than half of the countries implemented full NFIs in the year
2018–2019 for the first time, including DRC and Brazil. The NFIs imple-
mented since 2016 were nationwide (i.e., full) in 86% of the tropical coun-
tries. Partial NFIs in tropical countries were mostly implemented before
2000. The temperate and boreal countries, on the other hand, implemented
Fig. 2. The total number of NFIs and the extent and temporality of the latest NFIs in 236
number of full and partial NFIs; (2b) the number of full NFIs only; (2c) the number of part
only; and (2f) most recent NFIs – partial only. No data means that countries didn't impl
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their latest NFIs largely between 2011 and 2017. While the US and Canada
implemented their last NFI in 2016–2017, most of the European countries
had their latest NFIs between 2011 and 2015.

3.2. Intercomparison of national forest AGB estimates from global space-based
CCI biomass product 2018 and FRA 2020

Overall, national forest AGB estimates from the CCI product and FRA
2020 had a strong positive relationship at the country level, however, coun-
try mean AGB estimates (tons/ha) showed a weaker agreement than coun-
try total AGB estimates (Gt) (Fig. 3). For country total AGB statistics, the
countries and territories in FRA 2020 (both ongoing and completed NFI). (2a) the
ial NFIs only; (2d)most recent NFIs - both full and partial; (2e)most recent NFIs - full
ement any NFI up to the FRA 2020 report.



Fig. 3.An intercomparison of national forest AGB estimates in the year 2018 from global space-based CCI biomass product and FRA 2020. The intercomparison is performed
considering NFI availability and temporal characteristics across the countries. Intercomparison in countries with NFI since 2010 – total AGB in Gt (MSE: 7.7, bias: 6.17,
variance: 1.60) (a), mean AGB in tons/ha (MSE: 2341.34, bias: 2253.98, variance: 87.36) (b). Intercomparison in countries with NFI before 2010 – total AGB in Gt (MSE:
0.28, bias: 0.26, variance: 0.02) (c), mean AGB in tons/ha (MSE: 5675.28, bias: 5476.03, variance: 199.25) (d). Intercomparison in countries without NFI - total AGB in
Gt (MSE: 0.038, bias: 0.036, variance: 0.002) (e), mean AGB in tons/ha (MSE: 3870.03, bias: 3714.93, variance: 155.10) (f). The black dotted line is a 1:1 line. Grey
bands depict 95 % confidence interval. The range of the x and y values are highly different in three groups of countries i.e., countries with NFI since 2010 (e.g., <1 to
100 Gt), countries with NFI before 2010 (e.g., <1 to 8 Gt), and countries with no NFI (e.g., <1 to 2 Gt). Therefore, the MSE values are not comparable between the groups.
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two datasets matched very well (Radj
2 = 0.96) in countries with recent NFIs

(Fig. 3a). The agreement was relatively lower (Radj
2 = 0.92) in countries

with old NFIs (Fig. 3c) and it was much lower (Radj
2 = 0.79) in countries

without NFI (Fig. 3e). The stronger relationships for total estimates can
be expected since they are related to the size and the forest area of the coun-
try. We also observed much higher agreement (Radj

2 = 0.63) between FRA
and space-based mean AGB estimates in countries with recent NFIs com-
pared to countries with old NFIs (Radj

2 = 0.29) and it was poorest (Radj
2 =

0.16) in countries without NFI (Fig. 3b, d & f). Although there was still a
fair amount of scattering in graph 3b, the relationship was along the 1:1
line, while FRA AGB estimates tended to be higher in low biomass ranges
in countries with old or no NFIs (Fig. 3d & f).

3.3. NFI design characteristics in tropical countries

Our findings on the most recent NFI design characteristics in 46 tropical
countries revealed that all countries except two implemented NFIs nation-
wide i.e. full NFIs. Further, 61 % of the countries included both forests
and trees outside forests in their NFIs while others included only forests.
All countries implemented sample-based NFIs, mainly using three types of
sampling designs, namely systematic, stratified systematic, and stratified
random (Fig. 4a). About half of the countries used systematic sampling
designs. Among the other half, the majority of the countries (18) used a
stratified systematic sampling design. In stratified sampling, ecozones
(i.e., ecological zones) were the most common sampling strata used in
both stratified systematic (n = 9) and stratified random design (n = 2).
Other sampling strata were forest types, vegetation types, and integrated
land use assessment (ILUA).
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Overall, two types of sampling units were established across the coun-
tries for NFI field data collection: primary sampling unit (PSU) and second-
ary sampling unit (SSU). Forty-two countries established PSU as clusters
while four countries used single plots. The clusters consisted of multiple
SSU or plots (hereafter cluster plots and single plots are referred to as
plots if not specified otherwise). Within the clusters, the number of plots
varied between 3 and 10 across the countries. A large number of countries
(48%) had clusters with 4 plots, followed by 3 plots in 21%of the countries
and 5 plots in 19 % of the countries.

The shape of the PSU (clusters) varied by country and most of the
countries (43 %) implemented square shape clusters, followed by L-shape
at 24 % of the countries (Fig. 4b). Regarding PSU single plots and SSU
plots, most countries (54 %) had circular plots, followed by rectangular
plots in several countries (43 %), and square plots in others (13 %)
(Fig. 4c). Some examples of these different clusters and plot shapes are
shown in Fig. 5. All countries employed the fixed-area SSU plots and PSU
single plots with a concentric or nested design. A nested plot consisted of
multiple smaller subplots for measuring trees of different sizes or other
elements in the multipurpose NFI. Around 44 % of countries measured
trees in the largest outer subplot with a minimum DBH≥20 cm, followed
by 36 % with ≥10 cm, 10 % with ≥30 cm, 5 % with ≥40 cm, and 5 %
with ≥5 cm. Trees with smaller DBH in the respective countries were
measured in the inner nested subplots. In many countries (43 %), smaller
trees measured in the inner subplot were ≤10 cm in DBH, followed by
trees with ≤5 cm DBH in 17 % of countries. Some countries measured
trees as small as 0.5 cm DBH in the inner subplots. The smallest subplots
were used for measuring regeneration trees, seedlings, samplings, litter,
and soil samples.



Fig. 4. NFI sampling design in tropical countries. (a) Three types of sampling designs were employed in NFIs in 46 countries-systematic, stratified systematic, and stratified
random. Stratification includes pre-stratification in some countries while post-stratification in others. The sampling intensity differs in stratified sampling among the strata in
a country. Five types of strata were used with stratified sampling. (b) The shape of the primary sampling unit (cluster) in 42 countries. The total number of responses for this
variablewas 43 as Kenya used two types of cluster shapes in different strata. (c) The shape of the secondary sampling unit (SSU plots) and PSU single plots in 46 countries. The
total number of responses for this variable was 51 as 5 countries (Mozambique, Nigeria, Mexico, Peru, and Ecuador) used multiple plot shapes in different strata.

Fig. 5. The different shapes of clusters and plots used the latest NFIs in some tropical countries. a) L-shape cluster – Peru on the left and Tanzania on the right. b) Cross shape
cluster – Brazil. c) Rectangular shape cluster - Angola, Ethiopia, Gambia, and Nicaragua on the left and Timor Leste on the right. d) Circular shape cluster – India. e) Square
shape cluster – DRC. The figures are taken from country NFI manuals. A list of the available manuals consulted in this study is provided in Appendix 2.
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In countries with systematic and stratified systematic sampling, the dis-
tance between PSUs (clusters and single plots) variedwidely and the largest
distance was >70 km (in one stratumwith arid and semi-arid shrublands in
Ethiopia) (Fig. 6a). Some countries (10) established PSU within a distance
of 5 kmwhich is considered a reasonably high sampling intensity in NFI de-
sign.Most countries (67%) established PSU at distances above 5 kmand up
to 20 km. The distances between PSUweremuch greater (>20 km) in some
countries.

Similarly, the distances between SSU plots (i.e. plots within clusters)
across the countries varied largely ranging from 10 m to 500 m (Fig. 6b).
Most countries (50 %) established plots at relatively short distances
(≤100 m). Also, a large number of countries (40 %) established plots at
comparatively large distances between 200 and 300 m. These countries in-
clude the Philippines, DRC, Republic of Congo, Tanzania, Kenya, Gambia,
Ethiopia, and Nicaragua among others. Indonesia maintained the largest
distance (500 m) between the plots.

Further, the size of the plots (SSU plots and PSU single plots) varied
greatly extending from 0.01 to 1 ha (Fig. 6c). More than three-quarters
(78 %) of the countries had smaller plots of ≤0.25 ha. These countries
included Bangladesh, Brazil, India, Malaysia, Gabon, Kenya, Myanmar,
Mexico, and Peru, among others. Several countries (9) had relatively
large plots of around 0.5 ha. Among others, these countries included
Cameroon, Republic of Congo, and DRC mostly covering the Congo basin
forests. Indonesia had the largest plots of 1 ha.

A large number of countries (37) established continuous NFI by using
permanent sample plots for periodic measurements of the same sampling
units. Several countries (~57 %) implemented only permanent plots
while other countries implemented both permanent and temporary plots
within a sampling unit. Information on permanent or temporary sample
plots was not available for 9 countries. Among 37 countries with continu-
ous NFI, the information on remeasurement cycles was available for 16
countries. The remeasurement cycles varied between 5 and 10 years and
most of the countries (11) used a 5-year remeasurement cycle. Few coun-
tries such as India, Sri Lanka, the Philippines, Vietnam, Peru, Honduras,
and Mexico implemented a 5-year NFI cycle in a panel system where
20 % of the plots were sampled each year.

4. Discussion

4.1. NFI availability, temporal and extent characteristics

The findings on the NFI availability show that 94 % of the single NFI
countries are in the tropics. This is not surprising given the fact that NFIs
are fairly recent in the tropics where several countries have established
NFIs in the year 2018–2019 for the first time. This is a positive development
given that many tropical countries have now better data underpinning the
Fig. 6. The design characteristics of the PSU and SSU in tropical countries. (a) The distan
total number of responses for this variable was 52 as 10 countries used multiple PSU dist
countries. The total number of responses for this variable was 49 as 7 countries used mu
plots in hectare (ha) in 46 countries. The total number of responses for this variable wa
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national and international monitoring and reporting obligations. Also, hav-
ing recent NFI data provides an important opportunity to better link NFI
field plots and space-based global biomass products together, and explore
complementary aspects of both data sources. The one-time nature of most
tropical NFIs, however, limits the countries' ability to systematically track
biomass changes using field plot remeasurements. Field remeasurements
through permanent sample plots are also needed for the validation of
space-based products for estimating detailed spatially explicit forest biomass
distribution and their changes over time (Avitabile et al., 2016). Notably,
many tropical countries have established permanent sample plots in their
NFIs with 5–10 years' remeasurement plans. This means that NFIs in the tro-
pics would be updated in the future using the same field plots in 5–10 year
windows. In theory, tropical countries could make use of the space-based
biomass estimates for regular annual/biennial and more rapid updating of
the estimates in the coming years and expand biomass estimation towards
the sub-national levels. Even though tropical countries have a 5–10 year
remeasurement plan, there could be practical hurdles with remeasuring
NFI regularly in some countries, and evidence is found in some countries
where the completion of the first NFI cycle is already delayed. Further, the
use of NFI field plots for integration with space-based global products is
still a challenge in 86 countries as they have no NFI to date and most of
these countries are in the tropics. In these cases, space-based biomass
estimates are the only up-to-date data sources at the national level.

For countries with multiple full NFIs, several countries only have 2 to 3
NFIs as they do not update them regularly. NFIs in about 45 % of the
European countries were last updated in the period 2011–2015. The timely
and regular update of NFIs is also an issue in several tropical countries with
repeated NFIs. In ~50 % of those tropical countries in Asia, Africa and
South America, the NFIs were last updated before 2015. In such cases, the
need for up-to-date field data for integration with the current space-based
datasets can underpin a more timely update of the NFI field data.

4.2. Intercomparison of national forest AGB estimates from global space-based
CCI biomass product 2018 and FRA 2020

Our findings reveal the importance of availability and timely updates of
NFIs for better integration of NFI plot data with the recent space-based
global AGB estimates at the national level. The intercomparison results
showed that FRA AGB estimates and space-based CCI biomass products
had a better agreement in countries with NFIs and the agreement was
much higher in countries with recent NFIs (i.e., NFI since 2010). This
highlights the need to synchronize both NFI field AGB estimates and
space-based global biomass data to optimize their common use at the
national level. Such understanding helps to develop strategies to use both
data sources together for improving estimations at national and sub-
national levels. Having an NFI, in the first place, allows for independent
ces between PSU (clusters and single plots) in 30 countries with available data. The
ances in different strata.(5b) The distances between SSU plots (within clusters) in 42
ltiple plot distances in different strata. (5c) The size of the SSU plots and PSU single
s 53 as 7 countries used multiple plot sizes in different strata.
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comparison and validation, calibration, and integration with space-based
biomass maps. Furthermore, timely updates of NFIs allow countries to
reduce temporal mismatches of NFI data with contemporary space-based
biomass data and thus, provide opportunities for better integration of the
two datasets at the national level.

It is important to note that countries without NFI commonly use RS data
for their national AGB estimations. This involves the use of RS data for
forest area estimation that are combinedwith the average biomass (default)
factor in the FRA biomass calculator (see FRA 2020 country reports and
Nesha et al., 2021). In some cases, FRA estimates are combined from differ-
ent sources including expert opinion. We found that this tends to produce
higher average FRA biomass estimates compared to the space-based CCI
biomass product in countries without NFIs. This is an encouragement for
countries without NFI to refine their national biomass estimates and ex-
plore opportunities to eventually enhance the current approach of using
biomass default factors combining available space-based biomass data.

We understand the limitations behind the FRA estimates and have been
careful to use them to qualitatively contrast with RS-based estimates based
on different conditions. Our aim was not to directly assess the quality or
reliability of FRA data sources or look into FRA data to estimate possible
biases in RS-derived AGB estimates. We used the country biomass data
behind FRA reporting as they are established and recognized national
reference AGB estimates for comparison.

4.3. NFI design characteristics in the tropics

Our findings on the latest NFI designs in 46 tropical countries show
that most of the countries (57 %) had comparatively small field plots of
≤0.1 ha.When such small field plots are used, spatial mismatches between
the field plots and RS footprints can occur even after maintaining the same
ratio between field/RS footprints (Réjou-Méchain et al., 2014). About two-
thirds of these small plots (≤0.1 ha) were circular and others were rectan-
gular or square. Spatial mismatches could even be higher from circular
small plots resulting from plot circles vs pixel squares (Réjou-Méchain
et al., 2014). Furthermore, edge effects i.e., mismatches between circular
plots vs. square RS footprints could lead to considerable calibration and val-
idation errors (Réjou-Méchain et al., 2014). The edge effects and spatial
mismatches betweenfield plots and RS footprints might cause bias in forest
AGB and its change estimation using NFI plots and space-based measure-
ments (Réjou-Méchain et al., 2015). In addition, the integration can be
affected by dilution bias in the tropics, because countries mostly had NFI
field plots much smaller than the resolution of the current space-based
global products. For example, currently, ESA CCI provides biomass prod-
ucts with 1-ha pixels (ESA, 2021; Santoro et al., 2021). The use of biomass
estimates at cluster level instead of individual plot level is one way to
reduce this effect. However, very large clusters can capture data fromdiffer-
ent land uses that could affect the forest biomass estimation. We suggest
that future NFI plot designs or RS-based product approaches should
consider the issues mentioned above to better integrate these two data
sources as complementary rather than independent streams. This has also
been recommended in the FAO's Voluntary Guidelines on National Forest
Monitoring System (FAO, 2017).

One proposed option is to include some “super-site” plots using LIDAR
that are larger and provide more detailed forest measurements to better
integrate the information. Related concepts have been proposed by the
GEO-TREES initiative and CEOS Forest Biomass Reference System in coun-
try NFI efforts (Chave et al., 2021; Duncanson et al., 2021a, 2021b). The use
of supersites (i.e., larger plots) in combination with traditional NFI plots
could help derive the biomass estimation while reducing bias as supersites
have been previously shown to more closely depict “reality” in regards to
AGB. Such super-site plots are prioritized in the tropics and optimized for
use in EO applications following the CEOS LPV biomass protocol that
particularly includes larger plots (1 ha) for accurate calibration and valida-
tion of space-based products (Chave et al., 2021). Therefore, nesting super-
site plots within traditional NFI plots design would benefit plot data
integration with currently available space-based applications, and help
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improve space-based estimations at global and national levels to better
meet the data needs for reporting to the UNFCCC, the FRA, and for
climate-smart and sustainable forest and land-use management. While
there are examples of incorporating super-site monitoring concepts in
NFIs (i.e., in Europe or the USA), implementing super-site measurements
requires additional resources. The number of such plots, the related efforts,
and costs needs to be investigated in the context of their benefits for in-situ/
space-based biomass data integration towards enhancing accuracy, timeli-
ness, and sustainability of national and sub-national biomass estimation.

Most tropical countries (50 %) established NFI field plots within 100 m
distances in the cluster. Plots within such distances could be affected by
spatial autocorrelation (Réjou-Méchain et al., 2014; Yim et al., 2015). The
use of field-based estimates from spatially autocorrelated plots could
cause uncertainties and spatial overfitting to model calibration and valida-
tion of RS observations (Zhang et al., 2008, 2009; Parmentier et al., 2011;
Réjou-Méchain et al., 2014; Roberts et al., 2017; Meyer et al., 2018,
2019). Several studies recommended the use of recently developed spatial
validation methods to address spatial overfitting in RS-based model valida-
tions (Roberts et al., 2017; Meyer et al., 2018, 2019). However, a recent
study opposed spatial cross-validation methods for assessing map accuracy
and suggested the use of probability sampling and design-based inference
since this method does not need to account for spatial autocorrelation
(Wadoux et al., 2021). All tropical countries used probability sampling in
their latest NFIs which allows countries to choose either method for AGB
estimation using field and RS observations.

In many countries, PSUs including clusters and single plots were estab-
lished at large distances. AGB estimations from PSUs in large distances
could induce bias even when the sampling designs exclusively deal with
the forest as population targets (Fisher et al., 2008; Guitet et al., 2015;
Hajj et al., 2017). We found that the distances between PSUs are consider-
ably larger in some particular forest types (e.g., in mangroves and open
forest or shrubland). Countries having PSUs separated by large distances
could consider increasing NFI sampling intensity to improve the precision
of AGB estimates. However, increasing sampling intensity implies a signif-
icant increase in cost and time to complete an NFI whichmight not be prac-
tical in many countries.

Most tropical countries took around 5 years to complete an NFI cycle
which means that NFI data representation for a single year spans over the
entire NFI cycle of 5 years. This could result in an error in field biomass
estimation due to processes associated with tree recruitment, re/growth,
and mortality over that period (Poorter et al., 2016). There are also evolving
demands for increasing reporting cycles e.g., biennial transparency reporting
for the UNFCCC Paris Agreement (Herold et al., 2019). The issues of the
temporal gap in NFI data could be addressed by applying predictive models
of biomass changes over time (Chazdon et al., 2006) or by integrating
more timely data streams. Some countries such as India, Sri Lanka, the
Philippines, and Viet Nam have a panel design where about 20 % of the
field plots are updated every year to complete a 5-year NFI cycle. Combining
yearly NFI plot measurements from the panel system with RS data can offer
an effective way to address the temporal gap between the field and space-
based biomass data at the national level that could helpmeet annual/biennial
reporting needs as required by the UNFCCC. Further, using annual data from
the panel systemwithRS data also leverages the power of anNFI to be used to
assess forest disturbances at the (sub)national level, and forest managers may
be able to respond rapidly (Vogeler et al., 2020). Such approaches for com-
bined usage of annual NFI panel data with RS including their practicalities,
related efforts, and cost considerations should be investigated in the context
of a specific country's circumstances.

Tropical countries used forest definitions in their NFIs with canopy cover
varying from 10 to 30 % which can be an issue for integration with space-
based global biomass data. Earlier studies showed that total national forest
biomass varied by 31–44 % when different forest definitions were applied
(Cartus et al., 2014; Rodríguez-Veiga et al., 2016; Mermoz et al., 2018).
Careful consideration of the national forest definition is essential when
comparing the national forest AGB estimates from NFI and space-based
biomass data across the countries. Themost recent NFIs in tropical countries
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are mostly full NFIs. This allows validation of space-based biomass data for
all forest extent in a country. Further, a large number of tropical countries
include both forests and trees outside forests in their NFIs. Therefore,
there are opportunities to integrate space-based biomass products in areas
outside forests in those tropical countries. A couple of tropical countries
e.g., Sri Lanka and Costa Rica, where NFIs currently only include forests,
have a plan to include trees outside forests in future NFIs. In addition,
tropical countries included smaller trees by establishing concentric/nested
plots in NFIs. This indicates that NFI-based biomass estimates may not be
potentially affected by underestimation and bias which have been reported
from the exclusion of smaller trees in NFIs (Searle and Chen, 2017).

The large variations in the tropical NFI designs observed in our study
highlight some of the limits in the international comparability for large-
area forestmonitoring and reporting. Therefore, efforts aiming at the harmo-
nization of the NFI-based estimates to improve the comparability of tropical
NFIs could be one objective for future activities. The use of space-based data
could help to overcome gaps and incompatibilities and support any future
harmonization process of NFIs in the tropics. Also, processes of harmoniza-
tion followed in the European NFI Network (ENFIN) could provide examples
on how harmonization of NFIs can be performed in other biomes (Tomppo
et al., 2010; Bosela et al., 2016; Gschwantner et al., 2016, 2019, 2022).
FAO and ENFIN already provide direct support for the harmonization of
NFIs in Latin America and the Caribbean (Ramírez et al., 2022). At the
same time, cost and other related considerations should be investigated in
the context of harmonization efforts in the tropical region as many countries
still depend on external resources to implement NFIs.

5. Conclusions

Our study shows that most of the single NFI countries (~94 %) were in
the tropical nations. The latest NFIs were more recent in the tropics, mostly
implemented from 2016 onwards. While, the temperate and boreal coun-
tries implemented their latest NFIs largely between 2011 and 2017. The
intercomparison results for the year 2018 showed that recent NFI data
availability had a positive effect on the relationship between country AGB
estimates from a space-based CCI biomass product versus FRA data. This
highlights the importance of having a recent NFI to better link field data
and space-based biomass products at the national level.

Our findings in 46 tropical countries revealed that different NFI designs
are persisting in the tropics. For instance, about half of the countries used
systematic sampling designs to establish field plots. The size of the plots var-
ied between 0.01 and 1 ha, and more than three-quarters of the countries
had smaller plots of ≤0.25 ha. Further, the distances between plots in the
cluster varied largely from 10 to 500 m and most of the countries (50 %)
had plots within 100 m distances. These varying NFI plot designs suggest
that no “one size fits all approach”wouldwork for the statistical integration
of NFI plot data with space-based biomass estimates. Rather, different ap-
proaches and inferencemethods are required.We suggest that issues related
to small plots such as dilution biases, edge effects, and spatial mismatches
between the field plots and RS footprints need to be taken into account
for better integration of NFI data with space-based biomass products.

Future NFI plot designs and RS-based estimation approaches should
aim to better integrate these two data sources at the national level.
Complementing NFI efforts and super-site plots (as proposed by GEO-
TREES, CEOS) would benefit plot data integration with currently available
space-based applications, help improve biomass estimations at the global
and national levels to better meet the data needs for reporting to the
UNFCCC, FRA, and for climate-smart and sustainable forest and land-use
management. Super-site designs have been developed but their implemen-
tation requires additional resources. There is an urgent need to assess the
related efforts and costs needed in the context of the benefits for combining
in-situ/space-based biomass data towards enhancing the accuracy and
timeliness of national and sub-national biomass estimation.

One key motivation for developing in-situ and satellite data streams for
biomass estimation is to support sustainability and reduce temporal gaps in
monitoring systems. Many tropical countries have recent NFIs but some
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have data gaps and some struggles to complete the current cycle and/or
to secure the cyclic NFI updates where space-based data can serve as an
additional, complementary data stream if well integrated. The integration
of space-based data can also help in processes of NFI harmonization and in-
ternational comparability. Many countries established NFIs with a 5-year
remeasurement plan using permanent sample plots; few through a panel
system where 20 % of the plots are measured every year in some tropical
countries. Using the yearly plot measurements from a panel system with
(sub)annual remote sensing data can offer an effective way to address the
temporal differences between the field and space-based data at the national
level towards annual/biennial updates as required for the reporting to the
UNFCCC and other applications.
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Appendix 1
List of key variables for analysis of NFI design characteristics related to NFI sampling and plot designs in 46 tropical countries. PSU refers to Primary Sampling Unit. Plot shape
and plot size include both plots in cluster and single plots. Sampling strata ‘uniform’ means no strata.

Country NFI
extent

NFI component Sampling
stratification

Sampling design PSU
unit

PSU distance
in km

Cluster
shape

Plot shape Cluster plot
distance in m

Plot size
in ha

Angola Full Forests and trees
outside forests

Ecological zones Stratified systematic
sampling

Cluster 37 Square Rectangular 250 0.5

50
Argentina Full Forests Uniform Systematic sampling Single

plot
10 Circular 0.1

Bangladesh Full Forests and trees
outside forests

Ecological zones Stratified systematic
sampling

Cluster 5.9 Circular Circular 38 0.11

10.4
Bhutan Full Forests and trees

outside forests
Uniform Systematic sampling Cluster 4 L-shape Circular 50 0.05

Brazil Full Forests and trees
outside forests

Uniform Systematic sampling Cluster 20 Cross Rectangular 50 0.2

0.1
Cambodia Full Forests Forest types Stratified systematic

sampling
Cluster 6 Square Circular 100 0.13

4
3

Cameroon Full Forests and trees
outside forests

Ecological zones Stratified systematic
sampling

Cluster 25 Square Rectangular 250 0.5

50
Colombia Full Forests Uniform Systematic sampling Cluster Cross Circular 80 0.07
Comoros Full Forests and trees

outside forests
Uniform Systematic sampling Cluster Square Rectangular 100 0.2

Costa Rica Full Forests Vegetation types Stratified systematic
sampling

Single
plot

23 Rectangular 0.1

15
5

11
2

Dominican
Republic

Full Forests Forest types Stratified systematic
sampling

Single
plot

7 Rectangular 0.1

6
5
2

DRC Full Forests and trees
outside forests

Uniform Systematic sampling Cluster Square Square 250 0.56

Ecuador Full Forests Forest types Stratified random
sampling

Cluster L-shape Square 250 0.36

Rectangular 0.24
EL Salvador Full Forests Vegetation types Stratified systematic

sampling
Single
plot

Rectangular 0.1

Ethiopia Full Forests and trees
outside forests

Ecological zones Stratified systematic
sampling

Cluster 28 Square Rectangular 250 0.5

56
72

Gabon Full Forests Forest types Stratified systematic
sampling

Cluster Cross Circular 100 0.1

Gambia Full Forests and trees
outside forests

Uniform Systematic sampling Cluster 9 Square Rectangular 250 0.5

Guatemala Full Forests and trees
outside forests

Uniform Systematic sampling Cluster Rectangular Circular 40 0.07

Hondurus Full Forests and trees
outside forests

Uniform Systematic sampling Cluster Rectangular Circular 50 0.07

India Full Forests and trees
outside forests

Uniform Systematic sampling Cluster 5 Circular Circular 40 0.02

Indonesia Full Forests Uniform Systematic sampling Cluster 10 Square Square 500 1.0
Kenya Full Forests and trees

outside forests
Ecological zones Stratified systematic

sampling
Cluster Rectangular Circular 250 0.13

Square 150 0.07
Lao PDR Full Forests and trees

outside forests
ILUA Stratified random

sampling
Cluster L-shape Circular 200 0.2

Lebanon Full Forests and trees
outside forests

Uniform Systematic sampling Cluster 7.4 Square Rectangular 250 0.5

Liberia Full Forests and trees
outside forests

Uniform Systematic sampling Cluster 19.9 L-shape Circular 60 0.1

Malawi Full Forests Forest types Stratified random
sampling

Cluster T-shape Circular 100 0.13

50
Malaysia Full Forests Forest types Stratified random

sampling
Cluster Square Circular 100 0.01

(continued on next page)
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(continued)

Country NFI
extent

NFI component Sampling
stratification

Sampling design PSU
unit

PSU distance
in km

Cluster
shape

Plot shape Cluster plot
distance in m

Plot size
in ha

0.04
Mexico Full Forests and trees

outside forests
Vegetation types Stratified systematic

sampling
Cluster 5 Y-shape Circular 45.14 0.04

10 Rectangular
20

Mozambique Full Forests Ecological zones Stratified random
sampling

Cluster Square Rectangular 50 0.1

Circular
Myanmar Full Forests and trees

outside forests
Ecological zones Stratified systematic

sampling
Cluster 12 L-shape Circular 100 0.1

3 50
Nepal Full Forests and trees

outside forests
Ecological zones Stratified systematic

sampling
Cluster Square Circular 300 0.13

150
Nicaragua Full Forests and trees

outside forests
Uniform Systematic sampling Cluster 18 Square Rectangular 250 0.5

Nigeria Full Forests Ecological zones Stratified random
sampling

Cluster L-shape Square 100 0.12

Rectangular 10 0.02
Pakistan Full Forests Ecological zones Stratified systematic

sampling
Cluster 16 Square Circular 200 0.1

Paraguay Full Forests Forest types Stratified systematic
sampling

Cluster L-shape Square 250 0.36

0.16
Peru Full Forests Ecological zones Stratified systematic

sampling
Cluster 19 L-shape Circular 30 0.05

8
31
20
34
24 Rectangular 75 0.1

Philippines Full Forests and trees
outside forests

Uniform Systematic sampling Cluster 27.75 Square Rectangular 250 0.5

Republic of
Congo

Full Forests and trees
outside forests

Uniform Systematic sampling Cluster 25 Square Rectangular 250 0.5

Sri Lanka Full Forests Uniform Systematic sampling Cluster 2 Circular Circular 40 0.03
Suriname Partial Forests and trees

outside forests
Uniform Systematic sampling Cluster 20 Cross Rectangular 50 0.2

100
Tanzania Full Forests and trees

outside forests
ILUA Stratified systematic

sampling
Cluster 10 L-shape Circular 250 0.07

Thailand Full Forests Uniform Systematic sampling Cluster 20 Circular Circular 50 0.1
Timor-Leste Partial Forests and trees

outside forests
Uniform Systematic sampling Cluster 4 Rectangular Circular 408 0.1

Uganda Full Forests and trees
outside forests

Uniform Systematic sampling Cluster 5 Cross Square 300 0.25

Viet Nam Full Forests and trees
outside forests

Uniform Systematic sampling Cluster 8 L-shape Circular 150 0.1

Zambia Full Forests and trees
outside forests

ILUA Stratified systematic
sampling

Cluster 10 Square Rectangular 450 0.1
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Appendix 2
A list of the available NFI field manuals/NFI reports consulted in the analysis of NFI plot design characteristics in 46 tropical countries.

Country References/citations of the NFI manuals and reports

Angola FAO & IDF 2009. Inventário Florestal Nacional Guia de campo para recolha de dados. Monitorização e Avaliação de Recursos Florestais Nacionais
de Angola – Guia para recolha de dados. National Forest Monitoring and Assessment Working Paper NFMA XX/P. Rome.

Argentina Secretaría de Gobierno de Ambiente y Desarrollo Sustentable de la Nación. (2019). Segundo Inventario Nacional de Bosques Nativos: manual de
campo. Buenos Aires: Secretaría de Gobierno de Ambiente y Desarrollo Sustentable de la Nación, Argentina.

Bangladesh BFD (2016). Field Instructions for the Bangladesh Forest Inventory. Bangladesh Forest Department and Food and Agricultural Organization of the
United Nations. Dhaka, Bangladesh.
GoB (2019). Tree and forest resources of Bangladesh: Report on the Bangladesh Forest Inventory. Forest Department, Ministry of Environment,
Forest and Climate Change, Government of the People's Republic of Bangladesh, Dhaka, Bangladesh.
BFD 2016.The Bangladesh Forest Inventory Design. Dhaka, Bangladesh

Bhutan Department of Forests and Park Services (DoFPS) 2012. National Forest Inventory Field Manual. Forest Resources Management Division (FRMD),
DoFPS, Royal Government of Bhutan.
DoFPS 2016. National Forest Inventory Report. Forest Resources Management Division (FRMD), DoFPS, Royal Government of Bhutan

Brazil Serviço Florestal Brasileiro 2020. Manual de campo: Procedimentos Para Coleta De Dados Biofísicos E Socioambientais. Serviço Florestal
Brasileiro, Ministério Do Meio Ambiente, Brasília.

Cambodia MAFF 2015. National Forest Monitoring System of Cambodia. Ministry of Agriculture, Forestry and Fisheries (MAFF), The Royal Government of Cambodia.
Cameroon FAO 2005. National Forest Assessment. Manual for Data Processing and Analysis. Forest Resources Assessment Programme Working Paper. Rome.

FAO 2004. National Forest Inventory Field Manual. Forest Resources Assessment Programme Working Paper. Rome.
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(continued)

Country References/citations of the NFI manuals and reports

Colombia Barbosa P, Herrera F., Goeking S., Nieto V., Peña M., Ortiz S. 2014. Manual de Control de Calidad del Inventario Forestal Nacional (IFN). IDEAM.
Bogotá D.C., Colombia.

Comoros FAO 2009. Appui au Programme forestier national projet. Rome.
Costa Rica Sistema Nacional de Áreas de Conservación (Sinac) – Programa REDD-CCAD-GIZ, 2014. Manual de campo para el inventario forestal nacional de

Costa Rica: Diseño de parcela y medición de variables de sitio y dasométricas. Preparado por Jorge Fallas – consultor para el Programa Reducción
de Emisiones por Deforestación y Degradación Forestal en Centroamérica y la República Dominicana (REDD/CCAD/GIZ). San José, Costa Rica.

Dominic Republic REDD/CCAD-GIZ 2014. Inventario Nacional Forestal Multipropósito de República Dominicana 2014–2015. Elementos de Planificación y Protocolo
para las Operaciones de Medición. Integrando Esfuerzos Para Un Buen Manejo De Los Bosques Programa Regional. REDD/CCAD-GIZ. Ministerio de
Ambiente, Republica Dominicana.

DRC MEDD & FAO 2019. Manuel de terrain de l'Inventaire Forestier National de la République Démocratique du Congo. Ministère de l'Environnement
et Développement Durable (MEDD), DRC.

El Salvador MARN 2018. Inventario Nacional de Bosques de El Salvador (IBN) 2018. Ministerio de Medio Ambiente y Recursos Naturales (MARN),
Centroamérica, El Salvador.

Ethiopia Moges Y (2014). Ethiopia's National Forest Monitoring System (NFMS). Ministry of Environment, Forest and Climate Change Commission, Ethiopia.
FREL (2016). Ethiopia's Forest Reference Level Submission to the UNFCCC. Ministry of Environment, Forest and Climate Change, Ethiopia.

Ecuador Segura, D., Jiménez, D., Chinchero, M., Iglesias, J., & Sola, A. (2015). Evaluación Nacional Forestal Del Ecuador, Un Proceso En Contruccion Hacia
El Monitoreo De Los Bosques Y La Biodiversidad.
Segura, D., Digner, J., Iglesias, J., Augusto, S., Miguel, C., Casanoves, F., Mario, C., Cifuentes, M., & Rodrigo, T. (2016). The Ecuadorian National
Forest Inventory (pp. 347–367).

Gabon République Gabonaise (2018). Rapport Final du Projet de Développement d'un Système d'Inventaire des Ressources Forestières Nationales
contribuant à la Gestion Durable des Forêts en République Gabonaise. Ministére de la Forêt, de la Mer et de I'Environment & Association Japonese
de Technologie Forestière.

Gambia DoF 2010. National Forest Assessment 2008–2010. Government of The Gambia – Ministry of Forestry and the Environment (MoFEN) & Food and
Agriculture Organization of the United Nation (FAO).

Guatemala Instituto Nacional de Bosques y Consejo Nacional de Áreas Protegidas. 2020. Manual de campo para el Inventario Forestal Nacional 2020, Grupo
Interinstitucional de Monitoreo de Bosques y Uso de la Tierra. Guatemala.

Hondurus ICF 2017. Manual Para La Colecta De Datos De Campo Para El Inventario Nacional Forestal De Honduras. Instituto Nacional de Conservación y
Desarrollo Forestal, Áreas Protegidas y Vida Silvestre (ICF). Honduras.

India FSI (2019). State of forest report. Forest Survey of India, Ministry of Environment Forest & Climate Change, Government of India.
FSI (2021). National Forest Inventory of India. Ministry of Environment Forest & Climate Change, Government of India.
https://fsi.nic.in/about-forest-inventory

Indonesia MoF Indonesia 2014. Indonesia's National Forest Monitoring System. Forestry Planning & Forestry Resources Inventory and Monitoring, Ministry
of Forestry (MoF). Jakarta, Indonesia.

Kenya Kenya Forest Service (KFS) 2016. Field Manual for Biophysical Forest Resources Assessment in Kenya. The Project Improving Capacity in Forest
Resources Assessment in Kenya (IC-FRA) implemented 2013–2015.
Kenya Forest Service (KFS) 2016. Proposal for National Forest Resources Assessment in Kenya (NFRA). The Project Improving Capacity in Forest
Resources Assessment in Kenya (IC-FRA) implemented 2013–2015.

Lao People's Democratic Republic
(Lao PDR)

DoF 2016, The Capacity Development Project for Establishing National Forest Information System for Sustainable Forest Management and REDD+
(Phase II) Completion Report. Department of Forestry(DoF), Ministry of Agriculture and Forestry. Lao People's Democratic Republic.

Lebanon FAO 2004. National Forest Inventory Field Manual. FAO Forestry Department, Rome.
MOA/FAO 2005. National Forest and Tree Assessment and Inventory Final Report. FAO, Rome/Ministry of Agriculture (MOA), Republic of Lebanon.

Liberia Forestry Development Authority (FDA) 2019. National Forest Inventory 2018. The Forestry Development Authority (FDA), Liberia and the
National REDD+ Implementation Unit, Liberia.

Malawi Government of Malawi 2018. National Forest Inventory Analysis Report. The Ministry of Natural Resources, Energy and Mining, Republic of Malawi.
Malaysia PSM 2012. Inventori Hutan Nasional Kelima (IHN-5) 2011–2012. Perhutanan Semenanjung Malaysia (PSM), Malaysia.
Mexico SEMARNAT & CONAFOR 2009. Inventario Nacional Forestal y de Suelos. Manual y procedimientos para el muestreo de campo. Secretaría de

Medio Ambiente y Recursos Naturales (SEMARNAT) and Comisión Nacional Forestal (CONAFOR), Mexico.
Mozambique Republic of Mozambique 2018. The Project for the Establishment of Sustainable Forest Resource Information Platform for Monitoring Redd+.

Ministry of Land, Environment and Rural Development, Republic of Mozambique.
Republic of Mozambique 2018. Mozambique's Forest Reference Emission Level for Reducing Emissions from Deforestation in Natural Forests.
Ministry of Land, Environment and Rural Development, Republic of Mozambique.

Myanmar FD & FAO 2021. National Forest Inventory Field Manual. Forest Department (FD), Ministry of Agriculture and Forests, Rangoon, Myanmar.
Nepal FRTC, 2019. Forest Resource Assessment Field Manual, 2019 (Remeasurement of Permanent Sample Plot), Forest Resource Assessment (FRA),

Forest Research & Training Center (FRTC), Nepal.
Nicaragua INAFOR & FAO 2008. Inventario Nacional Forestal de Nicaragua 2007–2008 Manual de Campo. Instituto Nacional Forestal (INAFOR). Gobierno

de Unidad y Reconciliación Nacional. Nicaragua.
Nigeria FAO 2020. Nigeria – National Forest (Carbon) Inventory Field Manual. Abuja. https://doi.org/10.4060/cb2087en
Pakistan Arbonaut Oy/WWF-Pakistan (2018). National Forest Monitoring System - Measurement, Reporting and Verification (MRV) System for Pakistan.

MoCC/National REDD+ Office.
Arbonaut Oy/WWF-Pakistan (2017). National Forest Inventory and Field Surveying Manual. MoCC/National REDD+ Office, Pakistan.

Paraguay INFONA 2014. Manual de Campo: Procedimientos para la planificación, medición y registro de información del Inventario Forestal Nacional del
Paraguay. Instituto Forestal Nacional (INFONA), Paraguay.
INFONA & ONU-REDD 2015. Inventario Forestal Nacional (IFN). Dirección De Sistema Nacional De Información Forestal. Instituto Forestal
Nacional (INFONA), Paraguay.

Peru SERFOR 2016. Inventario Nacional Forestal - INF. Servicio Nacional Forestal y de Fauna Silvestre SERFOR. Rinconada Baja, La Molina, Lima, Perú
Philippines FAO 2002. National Forest Inventory Field Manual. FAO Forestry Department, Rome, Italy.
Republic of Congo MDLF 2020. Inventaire forestier national multiressource de la République du Congo 2009–2014. Tome 1: Méthodologie et mise en oeuvre,

Ministère De L'economie Forestière (MDLF), Brazzaville, République du Congo.
Sri Lanka FSI 2017. Methodology Document for National Forest Inventory of Sri Lanka. Forest Survey of India (FSI), Ministry of Environment, Forest and

Climate Change, India.
Suriname SBB and ANRICA 2014. National Forest Inventory Field Manual. Stichting Bosbeheer en Bostoezicht (SBB) Suriname.
Tanzania Ministry of Natural Resources & Tourism 2010. National Forestry Resources Monitoring and Assessment of Tanzania (NAFORMA) - Field Manual

and Biophysical Survey. Forestry and Beekeeping Division, Ministry of Natural Resources and Tourism, The United Republic of Tanzania.
Thailand FAO 2007. Brief on National Forest Inventory. Forestry Department, FAO, Rome, Italy.

Trisurat Y,Eiadthong W, Khunrattanasiri W, Saengnin S,Chitechote A, Maneerat S (2020). Systematic forest inventory plots and their contribution

(continued on next page)
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(continued)

Country References/citations of the NFI manuals and reports

to plant distribution and climate change impact studies in Thailand. Ecological Research. 35:724–732. https://doi.
org/:10.1111/1440-1703.12105

Timor Leste Carlos Pacheco Marques (et al.) 2010. First forest inventory of Timor-Leste: districts of Bobonaro and Covalima: 2008–2009. Vila Real,
Universidade de Trás-os-Montes e Alto Douro, Portugal.

Uganda Elungat Odeke David 2004. Forest inventories in National Forestry Authority. Forest Department, Uganda.
Vietnam FAO 2013. Overview of Improved NFIMAP Methodology - Support to National Assessment and Long Term Monitoring of The Forest and Tree

Resources in Vietnam. Forestry Department, FAO, Rome, Italy.
MARD 2015. Viet Nam's Submission on Reference Levels for REDD+ Results Based Payments. Ministry of Agriculture and Rural Development (MA
& RD), Vietnam.
Paul Silfverberg et al. 2015. Development of Management Information System for the Forestry Sector in Vietnam – Phase II (FORMIS) Final Report.
FCG International Ltd. Presented to the Ministry for Foreign Affairs of Finland

Zambia Forestry Department 2014. Integrated Land Use Assessment Phase II Zambia, Biophysical Field Manual. Forestry Department, Ministry of Lands,
Natural Resources and Environmental Protection, Government of Zambia.
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