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Abstract

We apply a transdimensional, hierarchical Markov chain Monte Carlo sampling algorithm

(McMC) for 2-D cross-hole travel-time tomography in  transversely  isotropic media with

vertical  symmetry  axis.  The  McMC  approach  has  several  advantages  compared  to

classical inversion approaches: It is a global search, the high number of tested models

allows the statistical  analysis  including the calculation of a reference model  as well  as

uncertainty  estimation,  no  initial  models  or  regularization  parameters  are  needed,  the

amount of data noise is automatically determined, and the model parametrization is data

dependent  and  self-adjusting.  For  the  forward  solution  a  FD  Fast  Marching  method

utilizing second-order Godunov schemes is used. The performance of the approach is first

tested on synthetic datasets to evaluate the potential and possible limitation to recover

anisotropic  models.  We  have  shown  that  the  recovery  of  models  described  by  2

anisotropic  parameters  (Thomsen parameters)  and  the  vertical  velocity  is  possible  for

observation scenarios with good distribution of sources and receivers. For more realistic

observational geometries (i.e. cross-hole experiments), the recovery of the 3 parameters is

limited, but still possible for example for the elliptical anisotropic case (ε=δ) or regarding

the horizontal velocity. Finally we applied the McMC approach to a well-studied real cross-
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hole data set from the MALLIK 2002 research program and compared the results with

previous conventional inversions. 

Keywords:  Markov  chain,  Monte  Carlo,  cross-hole,  tomography,  seismic,  anisotropy,

transversal isotropy, gas hydrates, Finite Differences

1. Introduction

Since many years Monte Carlo (MC) sampling approaches are successfully applied to

solve inverse problems (e.g.,  Mosegaard & Tarantola,  1995;  Mosegaard & Sambridge,

2002).  Instead of  solving a set of  linear equations (e.g.,  damped least squares matrix

inversion), the stochastic approaches sample the solution space in a more or less random

way and determine the models best explaining the measured data. The approaches differ

(among others) in the way they sample the model space or whether they can escape from

local minima. Popular approaches are genetic algorithms (e.g., Goldberg, 1889), simulated

annealing (e.g., Kirkpatrick et al., 1983), or Markov chain Monte Carlo sampling (McMC;

Metropolis  et  al.,  1953).  MC  sampling,  especially  McMC,  has  several  important

advantages, i.e., compared to formal inversions (e.g., damped least squares inversion): 1)

the model space is thoroughly sampled (it is considered a global search). 2) The resulting

suite  of  well  fitting  models  can  be  statistically  analyzed  by  calculating  e.g.

average/reference models, estimates of uncertainties, etc. In formal inversions usually only

one best fitting model is calculated. 3) Depending on the specific inversion problem, no

linearization of the problem or assumptions on regularization or damping are required. 4)

Only minimal prior assumptions are needed, for example no initial models or pre-defined

parametrization are required (data-driven inversion). Finally, 5) the methods are well suited

to simultaneously search for different (physical) parameters. 
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Recently, further modifications boosted the geophysical applications of the McMC methods

(e.g.,  Bodin  and  Sambridge,  2009;  Bodin  et  al.,  2012a,b).  In  the  so-called

transdimensional McMC inversion, the model parametrization (i.e. the number of model

parameters) is automatically adjusted depending on data distribution, quality and quantity

(e.g., Bodin et al., 2012b). In the hierarchical McMC inversion the noise of the data, which

is often not well  known, is automatically estimated by the algorithm (e.g., Bodin et al.,

2012a).  McMC  methods  are  typically  computationally  expensive,  however,  today‘s

computer power allows to solve even larger inversion problems with McMC methods.

McMC is now successfully applied to a number of geophysical problems such as surface

wave or  ambient  noise  tomography (Shapiro  &  Ritzwoller,  2002;  Galetti  et  al.,  2016),

geoacoustic inversion (Dosso et al., 2014), local earthquake location (Gesret et al., 2015;

Ryberg  &  Haberland,  2019),  local  earthquake  tomography  (Agostinetti  et  al.,  2015),

controlled source refraction seismic tomography (Ryberg & Haberland, 2018), geoelectric

sounding (Schott et al.,  1999), electromagnetic data (Mandolesi et al.,  2018), reflection

seismic data (Sen & Biswas, 2017) or gravity (Titus et al., 2017). Further discussion is

given for example by Sambridge & Mosegaard (2002).

In this paper we present an implementation of the transdimensional, hierarchical McMC

search to derive the anisotropic seismic velocity structure of the subsurface for a cross-

hole  acquisition  geometry,  specifically  for  transversely  isotropic  media  with  a  vertical

symmetry axis (i.e., vertical transverse isotropy – VTI), to benefit from the advantages of

this method listed above.

Cross-hole tomography is an imaging method for the subsurface, originally developed for

reservoir  investigations  (Bois  et  al.,  1971,  1972).  The  method  uses  well-to-well

measurements, which means, that seismic sources situated in one borehole are observed

by recorders distributed in the other borehole. Sources and/or receivers at the surface can

also be included.  If  large numbers of  sources and receivers with a wide aperture are
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available, the volume between the boreholes is well covered with criss-crossing rays which

form the basis for the successful tomographic reconstruction of the velocity structure (2-D).

For traveltime cross-hole tomography the arrival times of the waves emanating from the

sources are determined (manually or automatically) and then inverted, often using damped

least squares inversion (Bois et al., 1972, Bregman et al., 1989), algebraic reconstruction

techniques (McMechan, 1983, Peterson et al., 1985), genetic algorithms (Bichkar et al.,

1998) or MC methods (Mewes et al., 2010). The determination of the traveltimes for the

forward calculation is an essential step, and straight rays (McMechan, 1983) or curved

rays were used (Bois et al., 1971, McMechan et al., 1987, Bregman et al., 1989). Later,

also the inversion for attenuation (Bregman et al., 1989; Fehler & Pearson, 1984) as well

as for anisotropy (Chapman & Pratt, 1992; Pratt & Chapman, 1992; Carrion et al., 1992;

Williamson et al., 1993; Pratt et al., 1993; Mewes et al., 2010) in the cross-hole scenario

have been included. Since a number of years the whole wavefield is used in diffraction

tomography (Pratt and Worthington, 1988) and in full waveform tomography (e.g., Pratt,

1990; Reiter & Rodi, 1996, Pratt, 1999).

In  cross-hole  scenarios  it  is  very  important  to  consider  the  anisotropic  case,  since

sediments  often  show  a  pronounced  anisotropy  due  to  sub-horizontal  bedding  (often

termed macroscopic or structural anisotropy), cracks, or lattice preferred orientation (e.g.,

Crampin et al., 1984; Valcke et al., 2006). This is true for the ultrasonic frequency range

used in lab experiments and logging as well as for larger wavelengths usually predominant

in  field  experiments  such as  reflection  seismics  or  cross-hole  measurements).  Also  in

crystalline  settings  anisotropy  is  regularly  encountered.  Not  accounting  for  anisotropic

effects can introduce large artifacts in the derived models and wrong (isotropic) velocities.

However, accounting for anisotropy means a large number of additional free parameters in

the  tomographic  inversion,  and  a  careful  estimation  of  the  resolution  of  the  different

parameters is therefore essential. Even in the isotropic case artifacts in the tomographic
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images  can  be  introduced  due  to  the  limited  aperture  of  the  typical  cross-hole

measurements  and  the  predominance  of  sub-parallel  raypaths  (e.g.,  Bregman  et  al.,

1989b). This is why we apply here a McMC search to estimate the velocity structure and

the uncertainties of the parameters in the anisotropic cross-hole scenario.

2. Method

The McMC anisotropic cross-hole tomography has two main components: 1) the actual

McMC sampling procedure and 2) the calculation of the forward problem (including the

parametrization  of  the  model).  We  mainly  follow  the  procedure  outlined  in  Ryberg  &

Haberland (2018), in which we applied a McMC sampling to surface-based refraction type

experiments.  For  this  study,  we  extended  the  parameter  space  for  the  anisotropic

conditions  and  replaced  the  isotropic  forward  modeling  (following  Podvin  &  Lecomte,

1991) by an anisotropic finite difference (FD) traveltime calculation (Riedel, 2016).

We restrict ourselves to the case of transversely isotropic media with a vertical symmetry

axis (VTI) which we – to the first order – expect for sub-horizontally layered sediments.

Generally, anisotropic seismic wave propagation is related to the elastic properties of the

medium which are described by the stiffness tensor (e.g., Babuska & Cara, 1991). The

anisotropy  can  have  different  symmetry,  and  a  varying  number  of  coefficients  of  the

stiffness tensor is necessary to describe the anisotropy. In its simplest case, a rotational

symmetry around a single symmetry axis, which is also referred to as hexagonal symmetry

or  transverse  isotropy,  5  coefficients  are  required.  For  a  more  convenient  usage  in

geophysical  applications,  Thomsen  (1986)  introduced  three  new  dimensionless

parameters ,  δ  and γ,  which  –  in  combination with  the isotropic  (i.e.  parallel  to  theƐ

symmetry axis; 0°) phase velocities vp0 and vs0 – describe the anisotropic behaviour for the

case of rotational symmetry (i.e. transverse isotropy). The parameters can be calculated

from  the  coefficients  of  the  stiffness  tensor  (see  e.g.  Thomsen,  1986)  and  are
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characteristic of the respective rock types (or more generally, the seismic medium). For

(quasi-) P-waves only  and δ are relevant.Ɛ

In particular, ε is defined as (Thomsen, 1986)

ϵ=
v p90−v p0
v p0

with vp90 being the horizontal phase velocity. Hence, ε characterizes the ratio of horizontal

to vertical velocity while δ is more influential for steeper dipping raypaths as it describes

higher-order  azimuthal  variations  of  the  qP-wavefronts.  Thus,  δ  is  more  important  for

example  for  the  move-out  of  reflected  phases  in  reflection  seismics  with  near-vertical

raypaths. In the special case of elliptical qP-wavefronts (elliptical anisotropy), it holds that

ϵ=δ.

2.1 Model parametrization and forward solution

The model is defined by a set of unstructured points p i = (xi, zi, vi, εi, δi) with xi, zi being the

spatial coordinates (i.e., distance and depth) of Voronoi cells, and v i, εi and δi representing

the vertical P-wave velocity (i.e. parallel to the symmetry axis) and two of the Thomsen

parameters (assumed to be constant within a cell),  respectively. The number of model

points varies between 0<i<=N. For the traveltime calculation we generate a fine regular

grid comprising all  model points  as well as all  sources and receivers) by  sampling the

Voronoi model cells. This means that each  point of the regular grid is assigned to the set

of values of the nearest model point. In this way three grids are created (see Figure 1).

Instead of calculating rays and to derive the associated traveltimes we use these grids in

an  efficient  FD-solution  of  the  Eikonal  equation  to  calculate  the  first-arrival  (qP-wave)

traveltimes for all points of the grid for each source.

Our  FD  solution  involves  the  Fast  Marching  method  using  second-order  Godunov

schemes (Sethian, 1996; Sethian & Popovici, 1999) which was extended for anisotropic

media by  Riedel  (2016).  The method uses a  so-called  pseudo-acoustic  approximation

135

140

145

150

155



(Alkhalifah,  1998,  2000)  which is suitable for  P-waves and accurate even for  stronger

degrees  of  anisotropy.  The  finite  difference  approximations  work  accurately  for  VTI

symmetry,  and  the  implemented  Eikonal  schemes  seems  to  be  more  accurate  than

anisotropic  ray tracing approaches,  since they do not  require  an approximation of  the

group velocity.  However,  the anisotropic  Godunov methods require  considerably  larger

runtime for the VTI implementations compared to their isotropic counterparts because they

suffer significantly from the increased algebraic complexity of the anisotropic formulations.

So  far,  the  FD  solution  has  successfully  been  applied  for  anisotropic  prestack-depth

migration. For detailed description of the method see Riedel (2016).

Eventually, the root-mean-square (rms) value of the differences between the measured

and  calculated  traveltime  values  of  a  particular  model  for  all  source-receiver  pairs  is

estimated which is used in the McMC sampling routine as misfit function.

2.2 Transdimensional, hierarchical McMC method

Instead  of  using  conventional,  regularization-based  inversion  methods,  we  use  a

probabilistic (statistical) approach to invert for an anisotropic model. In the search of the

model space, randomly created models are tested and their capability to explain the data

(or misfit, respectively) is evaluated. The models are accepted or rejected according to

certain  acceptance  criteria.  Subsequently,  new  models  are  then  randomly  created  by

perturbation of  the previous model,  and the evaluation and acceptance process starts

again. After the development of a so-called “chain” (Markov chain) of a large number of

tested models, the well-fitting models are explored in a statistical way. The application of

the method includes issues of model parametrization, solving the forward problem and

calculation of a misfit function, the details of the search procedure and – eventually - the

statistical analysis of a larger suite of well-fitting models.
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We use the transdimensional and hierarchical version of the McMC method, i.e. we do not

fix the model dimension (i.e. model complexity or number of cells) a priori, but let it be

determined by the data instead. The hierarchical version attempts to invert for data noise

as well, i.e. it automatically partitions the traveltime data into a signal component, which

can be explained by the model and a noise component, eventually leading to an auto-

regularization  of  the inversion,  with  the  model  complexity  (i.e.,  number of  cells)  being

automatically controlled by the data noise level. Since no prior knowledge of the number of

cells, starting models and data noise level is needed, the McMC inversion technique will

be almost completely data-driven.

To  investigate  the  model  space  we  employ  a  hierarchical,  transdimensional  McMC

algorithm with a Metropolis-Hastings sampler (Metropolis et al., 1953), following closely

the procedures outlined in Bodin et al. (2012a, b). Starting from a randomly chosen model

m0 which is basically an arbitrary number of randomly distributed Voronoi cells, a new

model m1 is drawn from a proposal distribution which depends on the current model. Data

are predicted for the new model m1 and its misfit is calculated (see above). If the misfit of

model m1 is smaller than the one for model m0, it will be accepted. If the new model has a

higher misfit, the model is rejected with a high probability and a new model is generated

(see below), however, there is a non-zero probability that a model with larger misfit is still

accepted. This procedure allows for the escape from local minima and makes the McMC

method a global search method. The whole sequence is repeated until  convergence is

reached, so that the density of samples converges to the posterior probability distribution,

for details see for instance Bodin et al. (2012a).

To  derive  a  new  model  m1,  several  model  perturbations  are  considered:  moving  the

nucleus of a randomly selected cell, changing the velocity and anisotropic coefficients of a

cell, adding/removing a cell and changing the data noise parameters. The amount of the

respective perturbations is controlled by the proposal probability distribution. For velocity
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and  anisotropic  coefficient  pertubation  proposals,  as  well  as  noise  and  cell  move

parameters, we choose a Gaussian distribution with zero-mean and standard deviation s

for the proposal probability.

Successive models along a Markov chain will not be independent, so we thinned the chain

by retaining only  every  20th sample  of  the chain.  Before  convergence is  achieved,  all

models had been excluded from further analysis. During this burn-in phase   the data misfit

is still large. This phase is followed by a stationary sampling of the model space (small

misfits) in which a large set of models, that fit the data well, will be generated. Statistical

properties  (mean,  standard  deviation,  modes,  etc.)  of  those  models  will  be  used  to

calculate the final anisotropic velocity models.

We started the individual chains with minimum prior knowledge following the idea of a non-

informative or Jeffreys prior to avoid any potential  dependence of our final model from

those assumptions or potentially uncertain prior information.  Each chain was started with

a model consisting of a random number of cells (drawn from a gaussian distribution with a

mean of 50 and standard deviation of 10), each cell a velocity randomly drawn from a

gaussian  distribution  (mean=2.7  km/s,  standard  deviation  of  0.5  km/s)  was  assigned.

Thomson parameters  ε and  δ  were  set  to  0  (isotropic  starting  models).  To  follow the

concept of non-informative priors we chose a potentially wide range for velocity (between

0.1 and 5.0 km/s) and Thomson parameters (between -0.5 and 0.5) in each Voronoi cell

during the evolution of the Markov chain to allow comprehensive sampling of  the model

space.

For the evolution of the Markov chains one needs to chose a pertubation or  proposal

probability distribution with standard deviations (“step size”) for the cell properties (velocity

and Thomson parameters) and cell moves (births/death).  This choice of these standard

deviation  controls  the speed of  chain  convergence,  by empirical  testing we determine

optimal values which finally gave acceptance rates between 30 and 40%.
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To accelerate the thorough sampling of the model space, we simultaneously started 200

separate Markov chains consisting of 10,000 models each, and combined their output after

the burn-in phase (8,000) for further statistical analysis. Finally 20,000 models, all of them

fitting  the  data  very  well,  had  been  used  to  derive  statistical  model  properties:  the

anisotropic velocity distribution, which is the so-called reference model, and the data noise

level. Mean values and standard deviation (uncertainty or errors) for velocity and Thomson

parameters had been calculated at every grid point of the reference model.

3. Synthetic tests

We firstly tested the implementation of the algorithm for a simple model consisting of a

circular  anisotropic  anomaly  superimposed  over  a  homogeneous  model.  We  used  20

sources and receivers with coinciding locations, distributed regularly around the anomaly.

We  consider  this  an  almost  ideal  observation  geometry.  We  calculated  synthetic

traveltimes and added gaussian distributed noise with RMS=0.075 ms. For the forward

calculations and inversion we used a 100x100 grid with 1 m spacing. This data set was

inverted for v, ε and δ (for parameter definitions see chapter 2) and data noise. Figure 2A

and B shows the evolution of the Markov chains, in particular the data misfit and number of

Voronoi cells. The input and recovered models are shown in Figure 2C, D, E and F, G, H,

respectively. The difference between the recovered and input models (Figure 2 I, J, K)

shows that  the  recovery  was successful,  with  the  strongest  differences directly  at  the

boundary of the anomaly, an effect we have expected. It is a well-known effect that at

sharp velocity  boundaries the uncertainty of  that velocity  is increased which had been

described as “loops of uncertainty” (see Galetti et al., 2015). It might be interesting that the

recovery of a circular anomaly is still possible with sufficient accuracy when using Voronoi

cells, somewhat contradicting the intuition of describing a circular shaped object by a finite

number of  polygonal  Voronoi  cells.  As illustrated  by the  good recovery  of  the circular
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anomaly  the  superposition of  a  large number of  well-fitting  models  allows for  imaging

structures and shapes at a much smaller scale than the individual coarse Voronoi models

where resolved, a phenomenon called super-resolution. We conducted several synthetic

tests with this “ideal” geometry with different values for ε and δ (positive and negative) and

found similar good recovery. In addition to the model reconstruction, we could successful

recover the level of noise which was added to the synthetic travel times.

In a second test we investigated the capability of the McMC approach of recovering still

simple anomalies, but this time, using a more realistic source and receiver distribution

taken from a real cross-hole seismic experiment (48 source and 454 receiver positions).

Figure 3A, B and C show the synthetic model for v, ε and δ, consisting of isotropic and

anisotropic horizontal layers embedded in a homogeneous isotropic background. With the

given sources and receivers on opposite sides in the model, the expected ray coverage

(for simplicity straight rays) is show in Figure 3D. Compared to the first test (Figure 2) the

azimuthal  coverage  is  not  significantly  exceeding  90o.  Again,  for  this  model  synthetic

traveltimes are calculated, noise was added and a McMC inversion was performed (same

values for starting model choice and proposal distributions as in example before). Instead

of  showing  the  differences  between  the  recovered  and  input  models  (Figure  2),  we

analyzed the posterior distribution of v, ε and δ at 4 exemplary locations, marked as D, E, F

and G in Figure 4. Figure 4 D, E, F and G shows the posterior distribution and the input

values  (green  line).  At  location  F  and  G  the  recovery  of  the  properties  is  in  good

agreement with the input model. The recovery of the isotropic layer (D) shows a small, but

systematic shifted towards apparent weak anisotropy. Also the horizontal velocity is well

recovered, however, a significant deviation is observed in the anisotropic layer at location

E:  there  the  recovery  of  the  model  fails:  v  is  overestimated,  δ  is  significantly

underestimated and significant heterogeneity in the middle anisotropic layer (in particular

the δ parameter) is introduced. However, the horizontal velocity is quite well recovered.
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We think that the failure to unambiguously recover all 3 parameters (i.e., vertical velocity v

and 2 Thomsen parameters ε and δ) is related to the limited azimuthal coverage due to the

experiment geometry which is mainly given by the distribution of sources and receivers.

We suspect that placing sources and/or receivers at the Earth’s surface might potentially

reduce these imaging limitations. Nevertheless, we would like to emphasize that despite

the trade-offs between v, δ and ε, the horizontal velocity is well resolved.

In  a next  step we further  reduced the model  complexity  by using only  1  instead of  2

independent  Thomsen parameters,  resulting – together with the vertical  velocity -  in 3

independent model parameters. In this test we assumed elliptical anisotropy with ε=δ for

the same general model as in Figure 3. We analyzed the posterior distribution of v and ε

(=δ) at the same locations as in Figure 4. Figure 5 shows the recovered model. In the

elliptical case, the recovery of the input model is significantly improved, with only minor

deviations of the inverted model from the input one (e.g. Figure 5 C, ε (=δ)). In the elliptical

case  with  the  present  observational  geometry  the  recovery  of  v  and  ε  (=  δ)  seems

appropriate to be applied to real observational data.

4. Application to real data

We apply the McMC cross-hole tomography approach to an intensively analyzed dataset

from the MALLIK 2002 Production Research Well Program (Takahashi et al., 2005). Within

this program, three holes each around 1150 m deep, were drilled through gas-hydrate

layers in the Mackenzie delta (Northwest Territories, Canada). Between holes 3L-38 and

4L-38, 85 m apart, cross-hole seismic measurements were performed in a depth range

between 800 and 1150 m. As source, a high-power, piezo-ceramic swept frequency source

was used, recorded by a hydrophone recording string. After cross-correlation of the raw

data with the sweep signal, data were filtered in the frequency-wavenumber domain to

reduce the influence of tube waves, and the first arrival times of the P-body waves were
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determined (picking). More information on the experiment and the data can be found in

Bauer et al. (2005a, b).

For our study we use a decimated data set consisting of 10510 arrival times recorded from

48 sources at 454 receiver positions. We assumed elliptical anisotropy (i.e., v and ε=δ)

when inverting the traveltime data. For the forward calculations in the inversion we used a

52x190 grid with 2 m spacing. Figure 6 shows the evolution of the data misfit (RMS) and

model  complexity which is given by the cell  numbers of the models for 200 individual

Markov chains. After model  number 8000 we assumed that the sampling process was

stationary, thus the burn-in phase was reached. From the models beyond that point we

constructed a reference model (for v and ε=δ) by locally averaging the parameters in each

point in the model (Figure 7A and C) and calculating their uncertainties (Figure 7B and D).

The velocity model is characterized by several layer-like units with increased velocities (Vp

up to 3.4 km/s), interlaced with layers of lower velocities (around 2.2 km/s). In the high-

velocity layers we observe elevated values for the anisotropy (up to ε=δ=0.2), however,

also in the depth range of 1000 to 1050 m which is actually characterized by low seismic

velocities, we recovered increased anisotropy. In general, the distribution of the anisotropy

(ε=δ) is not as sharp as their expressions in v. The uncertainties estimated from the 1σ of

the well-fitting models (see e.g., Figure 7) for v are in the order of up to 0.2 km/s and for ε

(=δ) in the range of 0.05. Predominant purple and bluish colors in Figure 7B indicate a

relatively evenly distributed small uncertainty and therefore good resolution in most of the

model except for a small zone of triangular shape at 1120 – 1160 m depth (greenish colors

in Figure 7B indicating increased uncertainties up to 0.5 km/s) probably related to the

limited ray coverage. Furthermore, similar to the “loops of uncertainty” (see section 3 and

Figure 2 I, J, K, see also Galetti et al., 2015) sub-horizontal bands/strings of greenish color

in  Figure  7B  indicating  elevated  uncertainties,  which  could  be  termed  “strings  of

uncertainty”,  suggest  relatively  sharp boundaries between the different  anomalies.  The
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algorithm needs approximately 60 to 100 model nodes (Voronoi cells) to fit the data well.

Running the inversion accounting for VTI media yielded a final RMS value of 0.430 ms,

which is significantly smaller compared to the purely isotropic case which yielded a final

RMS value of 0.524 ms (see Figure 8). Also, less pronounced coherent patches of larger

residuals in the anisotropic case (Figure 8) indicate that anisotropy is needed to explain

the data.

5. Discussion and Conclusions

A transdimensional, hierarchical McMC utilizing an anisotropic FD forward simulation has

been successfully  applied  for  the  inversion  of  cross-hole  seismic  traveltime  data.  The

advantage  of  using  a  hierarchical,  transdimensional  McMC  approach  to  invert  for

anisotropic  structures  from  travel  time  data  relates  to  the  fact  that  almost  no  prior

assumptions are needed, i.e. starting models, number of cells to be inverted, noise level of

the  data,  etc.  Classical  inversion  techniques  typically  require  such  prior  information,

leading  consequentially  to  a  potential  dependence  of  the  final  model  from  those

assumptions. The McMC technique with its global search capabilities, significantly reduces

the  risk  to  “fall”  into  a  local  misfit  minimum,  again  overcoming  a  potential  thread  of

classical inversion approaches. Another advantage of the McMC inversion consists of the

recovery not only of the velocity and anisotropic parameters but also their uncertainties. 

The VTI-FD forward calculation (Riedel, 2016) proved to be very well suited although the

computation  time  compared  to  the  isotropic  FD  forward  calculation  (e.g.  Podvin  &

Lecomte, 1991) is significantly larger.

Our  synthetic  test  with  perfect  observation  geometries  showed  that  the  anisotropic

parameters v (vertical velocity) and the two Thomsen parameters ε and δ could be very

well  recovered.  The synthetic  tests  using typical  subsurface conditions and cross-hole

observation geometries showed limitations to recover all three parameters to describe the
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anisotropy. Although the horizontal velocity could be well recovered, there are some trade-

offs  between the  three parameters,  and  ε,  δ  and  the  vertical  velocity  v  could  not  be

unambiguously recovered throughout all parts of the model. We attribute this to the much

larger number of  free parameters to be inverted for compared to the isotropic case in

concert with the limited aperture  of the measurements. It seems that the limited aperture

hampers  capturing  of  the  subtle  azimuthal  traveltime  variations  (i.e.  the  azimuthal

anisotropy),  and  v,  ε  and  δ  can  hardly  be  independently  resolved.  This  problem has

already been noted e.g. by Williamson et al.  (1993) who found a high degree of non-

uniqueness and ambiguities in cross-hole inversion scenarios in the case of three free and

independent parameters (v, ε and δ) which significantly limits the imaging quality. With a

reduced  number  of  parameters  the  situation  seems  much  more  relaxed  (less  free

parameters lead to less ambiguities) and in the elliptically anisotropic case, the parameters

could be much better  resolved. However,  the assumption of  elliptical  anisotropy (ε=δ),

although algebraically simple, is somewhat arbitrary. Thomsen (1986) has pointed out that

in real rocks ε and δ are not well-correlated and that the assumption of elliptical anisotropy

is physically not well justified. We also ran synthetic test with a fixed δ=0 and found a

similarly good recovery as in the case of elliptical anisotropy. However, the way to reduce

the number of  parameters to be inverted for (ε=δ; δ=const.;  etc.)  in order to keep the

inversion stable should be carefully selected in each individual case. In any case, travel

time observations covering a wider azimuth range would be very beneficial  and could

potentially  allow  for  the  inversion  for  all  three  parameters  v,  ε  and  δ.  This  could  be

achieved by an aperture as large as possible  as well  as sources/receivers distributed

along the boreholes, at the surface or at other positions at depth.

The real data inversions from the MALLIK cross-hole experiment showed that significantly

better  data  fits  were  achieved  when  accounting  for  anisotropic  conditions  instead  of

assuming  isotropic  conditions.  We  take  this  as  strong  evidence  that  our  general
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anisotropic  approach for  the inversion of  our  real  data is  justified and necessary.  The

McMC inversion of the real data set revealed very similar results as the inversion with a

earlier anisotropic inversion (Bauer et al., 2005a, b; 2008, Figure 9) utilizing the solution by

Chapman & Pratt (1992) and Pratt & Chapman (1992). Similar results were also recovered

by Giroux & Gloaguen (2012) using a geostatistical approach for elliptical anisotropy. The

derived velocity distribution is very similar, also the magnitude of anisotropy is in the same

range (ε between 0.1 and 0.2) throughout the model. It has to be noted that Bauer et al.

(2005a,b)  inverted  also  for  the  orientation  of  the  symmetry  axis,  and  a  quantitative

comparison  of  the  two  models  is  therefore  limited.  However,  their  results  indicate  a

subvertical symmetry axis in most parts of the model (see Figure 9 E). 

The results show a pronounced sub-horizontal layering of the subsurface. Distinct “strings

of uncertainty” (Figure 7B) indicate rather clearly bounded anomalies. The high-velocity

anomalies have been related to gas-hydrate bearing layers. They are also consistent with

borehole logging. The inversions of the MALLIK data show anisotropy in layers with and

without gas-hydrates, and it  had been proposed that the anisotropy in the gas-hydrate

bearing layers is caused by a partial alignment of clay particles (Pecher et al., 2009). In all

sediments, disregarding they are gas-hydrate bearing or not, anisotropy could be expected

for instance due to macroscopic layering or preferred mineral orientation (e.g. Babuska &

Cara, 1991).
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Figures:

Figure 1:  Schematic display of the model. The black dots represent the unstructured points p i at spatial
positions xi and yi to which vi, εi and δi values are associated to. For the forward calculation three regular fine
grids (for v, ε and δ) are used which are calculated from the Voronoi cells (points p i).
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Figure 2: Recovery test of synthetic model with ideal source/receiver distribution. Evolution of misfit along
Markov chains. Shown is the histogram distribution of the data misfit (A) and model dimension (number of
cells, B) during the evolution along 200 Markov chains using a heat map color scale. The black line at 8000
shows the end of the burn-in phase, following models are used to derive the final model. Relative histogram
plots of the distribution of data misfit (A) and model dimension (B) are added at the right sides, respectively.
C, D and E show the synthetic models: v, ε and δ. Red/black dots show the location of the 20 sources &
receivers (coinciding). F, G and H show the recovered models. The differences (F vs. C, etc.) are shown in I,
J and K. 
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Figure 3: Recovery test of synthetic model with realistic source/receiver distribution for a cross-hole scenario
with sources (red dots) and receivers (black dots) positioned on opposite sides of the model. A, B and C
show the distribution of v, ε and δ of layered anomalies superimposed over a homogeneous background
model. Red and black dots indicate the locations of sources and receivers, respectively. D shows a subset
(decimated) of the ray coverage (for simplicity straight rays). 
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Figure 4:  Recovery of the model from Fig. 2. A, B and C show the distribution of the recovered vertical
velocity v, ε and δ parameters. Annotated crosses (D, E, F and G) show the locations where the posterior
distribution of velocities (vertical green, horizontal red histograms), ε and δ (black histograms) are shown in
the panels D, E, F and G. The black and green vertical lines in the histogram panels (D, E, F, G) show the
input values for velocities, ε and δ, respectively. See text for more details.
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Figure 5:  Recovery of the model from Fig. 2 but for the case ε=δ. A and B show the distribution of the
recovered velocity and ε (=δ) parameter. Annotated crosses (C, D, E and F) show the locations where the
posterior distribution of velocities (vertical green, horizontal red histograms) and ε (=δ) is shown in panels C,
D, E and F. The black (green) lines in the left (right) set of histograms (panels C, D, E, F) show the input
values for velocities and ε (=δ), respectively. 
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Figure 6:  Evolution of misfit along Markov chains for the real data example for inversion of velocity and ε
(=δ) assuming elliptical  anisotropy.  Shown is the histogram distribution of the data misfit  (A) and model
dimension (number of cells, B) during the evolution along 200 Markov chains using a heat map color scale.
The black line at 8000 shows the end of the burn-in phase, following models are used to derive the final
model. Relative histogram plots of the post burn-in distribution of data misfit (A) and model dimension (B) are
added at the right sides, respectively.
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Figure 7: Results of the real data inversion: A shows the recovered velocity, B shows its uncertainty. At sharp
velocity contrasts, the uncertainty is increased. C and D show the distribution of ε=δ and its uncertainty. The
ε (=δ) model is dominated by positive (red) regions with less well-defined boundaries (no sharp increase of
ε(=δ) uncertainty).
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Figure 8: Distribution of traveltime residuals: left - isotropic inversion result, right – elliptical case, above 
RMS misfts
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Figure 9: Comparison of models: A shows the velocity distribution assuming an isotropic wave propagation.
This model is characterized by strong velocity contrast and has a relatively high data misfit (not shown). B
and C show the vertical velocity and ε (=δ) distributions (see Fig. 6), with lower velocity contrasts and lower
data misfit, compared to A. D and E are the inversion results from Bauer et al., 2006a,b (black lines in E
represent the symmetry axis).
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