
1.  Introduction
The mid-to-late Holocene transition with the 4.2 ka event as the chronological divider (Walker et  al.,  2018) 
witnessed severe climate deteriorations all over the world, but in particular the tropical and subtropical areas 
(Bini et  al.,  2019; Cullen et  al.,  2000; Dixit et  al.,  2014; Renssen,  2022). Those climatic changes have been 
linked to the demise of ancient civilizations in ancient Egypt, Mesopotamia and the Indus Valley (Weiss, 2016). 
In China, this transition also coincides with the transformation of major agriculture-based Neolithic cultures (F. 
Liu & Feng, 2012; Sun et al., 2019). However, the climate anomaly associated with shifts in the hydrological 
regime during this critical transition in the East Asian summer monsoon (EASM) regions of China has not been 
fully understood, in part due to apparently conflicting results over space and lacking records from key regions. 
Hydrological records from North China generally show a distinct drought (F. Chen et al., 2015), while mount-
ing evidence from the middle and lower reaches of the Yangtze River suggests a wet interval (Zhang, Cheng, 
et al., 2018; Innes et al., 2014; Xie et al., 2013). On the southeast coast of China, the hydrological expression 
remains unclear due to a paucity of independent hydrological records (X. Wang & Huang, 2019). This region 
is in the frontal zone of the EASM and thus is particularly sensitive to the hydroclimate changes related to the 
EASM (Zhang, Jiang, et al., 2021). Besides, it is a key point in the dispersal route of agriculture to Southeast Asia 
during the mid-late Holocene (Ma et al., 2020). To fill this gap, it is essential to explore hydrological changes on 
the southeast coast of China during the mid-to-late Holocene transition and further assess its driving mechanisms 
and the potential impact this change had on agriculture development.

Abstract  It is becoming increasingly clear that China experienced significant hydrological changes during 
the mid-to-late Holocene transition—a period characterized by societal changes. However, the nature of the 
hydroclimate anomaly as well as the direct consequences on societies in Southeast China remains unclear. Here, 
we present a leaf wax record from the Shuizhuyang peat deposit in Southeast China spanning the Holocene. 
The δD values of C29 n-alkane (δDC29) showed a large positive shift up to 24‰ from 4.7 to 3.8 ka, which 
changed independent of vegetation proxies and could not be solely explained by precipitation δD variations. It 
is thus most likely to reflect abrupt drying, which is probably shaped by a more El Niño-like mean state in the 
tropical Pacific Ocean. We hypothesize that such a significant change in hydroclimate might have promoted the 
development of mixed rice and millet farming on the southeast coast of China.

Plain Language Summary  The mid-to-late Holocene transition with significant changes in 
climate and agriculture-based civilization affords a valuable insight into abrupt climate changes and human 
adaption. Increasing studies have shown large shifts in hydrological regime in China during this critical 
transition. However, the hydrological expression and its potential impact on the agriculture practice in 
Southeast China remains unclear. In this study, we utilize the hydrogen isotope compositions (δD) of leaf 
waxes from the Shuizhuyang peat deposit on the southeast coast of China to reconstruct hydrological changes 
during the mid-to-late Holocene transition. We find that the mid-to-late Holocene transition on the southeast 
coast of China is characterized by an abrupt drying, which is primarily modulated by a more El Niño-like 
mean state over the tropical Pacific Ocean. Such a significant change in hydroclimate might have promoted 
the development of mixed rice and millet farming on the southeast coast of China coeval to the mid-to-late 
Holocene hydrological shift.
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The Shuizhuyang peat deposit is located in Fujian Province on the southeast coast of China. According to previ-
ous studies, its successive sedimentation covers the entire Holocene, which enables continuous record of climate 
changes (X. Wang & Huang,  2019; Yue et  al.,  2012). Prior studies based on pollen and bacterial branched 
glycerol dialkyl glycerol tetraethers from the Shuizhuyang peat deposit have revealed Holocene vegetation and 
temperature history, which point to a major climate reorganization during the mid-to-late Holocene transition (M. 
Wang et al., 2017; Yue et al., 2012). Our previous work has reconstructed hydrological changes over the Holocene 
based mainly on microbial hopanoids from the Shuizhuyang peat deposit, but with a relatively coarse resolution 
during the mid-to-late Holocene (X. Wang & Huang, 2019).

Terrestrial plant leaf wax n-alkane δD values have been emerging as particularly useful tracers for precipitation 
as they are tightly correlated with the δD values of precipitation (δDp) (e.g., Feakins et  al.,  2016; McFarlin 
et al., 2019; Sachse et al., 2012). In this study, we derive a new leaf wax biomarker record over the Holocene 
from the Shuizhuyang peat deposit. The δD values of leaf wax are utilized to reconstruct hydrological changes. 
Further, climatological drivers and the repercussions of the hydroclimate changes on the agricultural practice of 
the region are explored.

2.  Materials and Methods
2.1.  Materials

The Shuizhuyang peat deposit lies near the border of Pingnan and Gutian County in the northeastern Fujian 
province. This area is characterized by a subtropical monsoon climate. The EASM generally begins in mid-May 
and withdraws in September (Ding & Chan, 2005). At the adjacent Pingnan meteorological station, the annual 
mean temperature and precipitation is 15°C and ∼1,800 mm, respectively. In May 2018, a 2.73-m-long peat core 
(abbr. SZY18; 26°46′27″N and 119°2′41″E; 990 m above sea level; Figure 1 and Figure S1 in Supporting Infor-
mation S1) was collected from the Shuizhuyang peat deposit and sliced at 1 cm interval in the field. The lithology 
of the SZY18 core is as below: 0–30 cm: cultivated soil; 30–195 cm: brown-black peat with visible plant debris; 
195–200 cm: gray black peat; 200–220 cm: light brown black peat; and 220–273 cm: brown-black to gray-black 
peat (Figure S1 in Supporting Information S1).

Figure 1.  Locations of the Shuizhuyang peat deposit and other key sites mentioned in the text. 1: Dajiuhu peatland (Xie 
et al., 2013); 2: Hongyuan peatland (Seki et al., 2011); 3: Shennong Cave (Zhang, Cheng, et al., 2018); 4: Dongge Cave 
(Dykoski et al., 2005); 5: Toushe Basin (Z. Huang et al., 2020), and 6: Shuizhuyang peat deposit (this study).
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2.2.  Methods

The chronology of the SZY18 core is well constrained by 12 radiocar-
bon dating points (Table S1 in Supporting Information  S1). Recognizable 
plant residues from 12 peat layers in the SZY18 core were sent to Beta 
Analytic Radiocarbon Dating Laboratory for AMS 14C dating.  14C dates were 
converted to calendar years before the present using the INTCAL20 calibra-
tion database (Reimer et al., 2020). The age model was built using a Bayesian 
approach (Blaauw & Christen, 2011).

Lipid extraction and separation were achieved by using ultrasonic extraction 
and silica gel column chromatography, with procedures identical to Wang and 
Huang (2019), in the State Key Laboratory of Biogeology and Environmen-
tal Geology, China University of Geosciences at Wuhan. n-Alkane measure-
ments were conducted in the Organic Surface Geochemistry Laboratory of 
GFZ-German Research Centre for Geosciences, followed Rach et al. (2020). 
n-Alkane identification and quantification were performed on an Agilent 
7890 gas chromatograph (GC) coupled to a flame ionization detector and 
Agilent 5975 mass selective detector. Compound-specific hydrogen isotope 
measurements of n-alkanes were performed on a Trace GC 1310 connected 
to Delta V plus isotope ratio mass spectrometer (Thermo Fisher Scientific). 
The δD results were transferred to the VSMOW scale (Text S2 in Support-
ing Information S1). Reproducibility for specific compounds was better than 
5‰, based on at least duplicate analyses.

A new time series of stalagmite δ 18O from Shennong Cave (28°42′N and 
117°150′E; 383 m a.s.l.; Figure 1; Zhang, Zhang, et al., 2021) was obtained 
by the cubic spline interpolation with Matlab R2016a software (The Math-
Works Inc., USA), to facilitate correlation analysis with the same time vector 
as SZY18 δD record. Correlation analysis was performed with SPSS 20.0 
software (International Business Machines Co., USA).

3.  Results
The age-depth model shows the SZY18 core was dated back to ∼12.9 ka and 
the upper 237–40 cm peat layer for biomarker analysis covered the interval 
of 11.5–1.6 ka (Table S1 and Figure S1 in Supporting Information S1). The 
chronology of SZY18 core is broadly consistent with the age frame of previ-

ous peat cores retrieved from the same peat deposit (X. Wang & Huang, 2019; Yue et al., 2012). The average 
sedimentation rate fluctuated between 0.12 and 0.16 mm/a from 11.5 to 9.4 ka, and remained at very low values 
between 0.02 and 0.07 mm/a from 9.4 to 5.2 ka. After that, the average sedimentation rate increased significantly 
and varied between 0.20 and 0.76 mm/a.

n-Alkanes in peat samples distributed from C21 to C35 and peaked at C25 and C29 (Figure S2 in Supporting Infor-
mation S1). The ratio of C23 to C29 n-alkanes (C23/C29) fluctuated between 0.04 and 0.41 from 11.5 to 3.1 ka 
before rising to 1.23 at 2.6 ka. C23/C29 varied significantly between 0.43 and 1.16 afterward (Figure 2). The δD 
values of C25 and C29 n-alkanes (δDC25 and δDC29) ranged from −211‰ to −180‰ and shared a similar pattern 
(r = 0.64, p < 0.01) (Table S3 and Text S3 in Supporting Information S1). On the whole, the δD values gradu-
ally declined during the early Holocene and stayed at more negative values during the mid-Holocene. Then they 
increased rapidly from 4.7 ka to 3.8 ka with the excursion amplitudes between 24‰ and 26‰, followed by a drop 
until 2.5 ka. The δD values tended to level off afterward (Figure S3 in Supporting Information S1).

Figure 2.  Comparisons of SZY18 records and paleoclimate records from 
monsoonal China. (a) Stalagmite δ 18O records from Shennong Cave over 
the Holocene (left y-axis, Zhang, Zhang, et al., 2021) and during 5.3 and 3.5 
ka (right y-axis, Zhang, Cheng, et al., 2021); (b) SZY18 δDC29; (c) SZY18 
C23/C29; (d) hopanoid flux from the Shuizhuyang peat deposit (X. Wang & 
Huang, 2019); and (e) arbor pollen percentage from the Toushe Basin in 
central Taiwan (Z. Huang et al., 2020). Age control points of the SZY18 core 
are shown along the x-axis. The gray shade indicates the transitional period.
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4.  Discussion
4.1.  Hydrological Reconstruction

In the SZY18 core, n-alkane distributions are characterized by a dominance of C25 and C29 over the range of C21 
to C35. A dominance of C25 and C29 n-alkanes has been reported previously in peats (e.g., Andersson et al., 2011; 
X. Huang et al., 2016). Typically, C29 n-alkane is derived from vascular plants, while C23 and C25 n-alkanes possi-
bly originate from Sphagnum or other plants in peatland settings (Nichols et al., 2006; Zhao et al., 2018). As C29 
n-alkane has a clear source (Zhao et al., 2018), it is selected as the focus of this study for the following discussion.

In peatlands, peat-forming vascular plants mainly utilize soil water as H source for photosynthesis (Huang & 
Meyers, 2019). The δD values of their leaf wax n-alkanes are primarily controlled by δDp, plant life-form types 
and evapotranspiration (Huang & Meyers, 2019; J. Liu & An, 2018; Sachse et al., 2012).

In Southeast China, δDp could be influenced by the D-depleted typhoon rains (Xu et al., 2019). However, it is 
unlikely that typhoon rains have exerted an important influence on SZY18 δDC29 during the mid-to-late Holocene 
transition. First, no layers of silty peat indicative of floods resulting from tropical cyclones have been observed 
in the SZY18 peat core (Figure S1 in Supporting Information S1). Second, a paleo-typhoon record from north-
eastern Taiwan showed a quite low frequency of typhoon activities during the mid-to-late Holocene transition 
(H. F. Chen et al., 2012). Third, the impact of tropical cyclone events generally lasts only for a couple of days 
(Xu et al., 2019), contrasting with the sample resolution (ca. 50 years) in the SZY18 core. Thus, the footprint of 
tropical cyclone events is not necessarily captured by the SZY18 δDC29 signal.

To further assess the influence of δDp variations, the SZY18 δDC29 record is compared to the stalagmite δ 18O 
results from Shennong Cave (∼280 km northwest to the Shuizhuyang peat deposit; Zhang, Cheng, et al., 2021; 
Zhang, Zhang, et al., 2021; Figure 1). In the monsoon regions of China, stalagmite δ 18O records are primarily 
a signal of precipitation δ 18O, which is largely controlled by the large-scale atmospheric circulation (X. Liu 
et al., 2020; Tan, 2014). This is well supported by the similar overall trends among stalagmite δ 18O records across 
the monsoon regions of China (X. Liu et al., 2020). In this sense, it is reasonable to assume the speleothem δ 18O 
data from Shennong Cave could represent the general trend of precipitation δ 18O in the region on the centennial 
and millennial timescales. On the whole, SZY18 δDC29 and Shennong stalagmite δ 18O exhibited similar trends 
over the Holocene (r = 0.52, p < 0.01), which supports a major control of δDp on the SZY18 δDC29 values on the 
millennial timescales (Zhang, Zhang, et al., 2021; Figure 2 and Figure S4 in Supporting Information S1). Despite 
the overall similarity, there are apparent differences in the amplitudes. When the SZY18 δDC29 showed a large 
positive shift up to 24‰ from 4.7 to 3.8 ka (Figure 2), Shennong stalagmite δ 18O only oscillated within a narrow 
range of 1.4‰ (Zhang, Cheng, et al., 2021; Figure 2), consistent with the stalagmite δ 18O record from Dongge 
Cave (Dykoski et al., 2005) and Jiulong Cave (Zhang, Cheng, et al., 2021) in South China. Such variations are 
obviously smaller compared to SZY18 δD variations, given the regional meteoric water line from the nearby 
Fuzhou GNIP station (δD = 8.52 × δ 18O + 13.30). Together, although SZY18 δDC29 inherited the δDp signal over 
the Holocene, it was significantly modified by other factors during 4.7 to 3.8 ka.

Changes in vegetation composition do not appear to be mainly responsible for the large shift in the SZY18 
δDC29 record during the mid-to-late Holocene transition. Plant macrofossil data from the nearby Shuizhuyang 
core show a consistently overwhelming dominance (>95%) of Cyperaceae (mostly Carex spp.) during 4.7 to 3.8 
ka, indicative of no prominent shift in vegetation assemblages (Table S2, Figure S5 and Text S1 in Supporting 
Information S1). Relatively high and stable percentages of Cyperaceae during this interval are also supported by 
the pollen record from the Shuizhuyang peat deposit (Yue et al., 2012). Consistent with the plant macrofossil 
and pollen results, the C23/C29 ratio, depicting the relative proportions of different vegetation groups in peatland 
settings (Nichols et al., 2006; X. Huang et al., 2018), displays subtle changes during this period (Figure 2).

Accordingly, lower relative humidity with enhanced evapotranspiration (Kahmen, Hoffmann, et  al.,  2013; 
Kahmen, Schefuß, & Sachse, 2013) is the most likely factor primarily responsible for increasing δDC29 values 
from 4.7 to 3.8 ka. This assertion fits well with the amplified variations observed in the SZY18 δDC29 record 
compared to the Shennong stalagmite δ 18O record, as stalagmite δ 18O values are less or not affected by evapo-
transpiration. δD values of peat pore water in the upper peat layers of peatlands can be significantly enriched, 
as evidenced in the Dajiuhu peatland where the deeper layers were depleted up to ∼20‰, indicative of appar-
ent evaporation on the surface (Huang & Meyers, 2019). Marked evapotranspirative enrichment has also been 
shown for the leaf wax δD records from Dajiuhu and Hongyuan peatlands in the monsoon regions of China 
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during the Holocene (Seki et al., 2011; X. Huang et al., 2018). In addition, 
leaf water evaporative D-enrichment above source water was predicted to be 
up to 20–30‰ during the growing season on the southeast coast of China 
(Kahmen, Hoffmann, et al., 2013).

A drying trend from 4.7 to 3.8 ka is consistent with the hopanoid flux and 
pollen records from the Shuizhuyang peat deposit (X. Wang & Huang, 2019; 
Yue et al., 2012; Figure 2). The quite low average sedimentation rate in the 
SZY18 peat core during the stage before the transition might be partly due 
to enhanced decay under drier conditions during 4.7 to 3.8 ka (Fenner & 
Freeman, 2011). It is also in line with climate inference from a compilation 
of peat initiation records in Fujian (Lei et al., 2017). Moreover, a shift to drier 
conditions during the mid-to-late Holocene transition has also been suggested 
by paleoclimate records in Toushe Basin and Retreat Lake from Taiwan, 
Southeast China (Selvaraj et al., 2007; Z. Huang et al., 2020; Figure 2). The 
differences in the timing among the records might arise from different sensi-
tivity of various proxies as well as differences in record resolution and dating 
uncertainty. Collectively, we conclude the SZY18 δDC29 record reveals an 
abrupt drying during the mid-to-late Holocene transition from 4.7 to 3.8 ka, 
which is a feature of the southeast coast of China.

4.2.  Possible Driving Mechanisms

The abrupt drying during the mid-to-late Holocene transition on the southeast 
coast of China was likely modulated by the ENSO state in the tropical Pacific 
Ocean. During the mid-to-late Holocene transition, the Intertropical Conver-
gence Zone migrated southward, driven by the decline of summer insola-
tion in the North Hemisphere (Berger & Loutre, 1991; Sachs et al., 2018; 
Figure 3). The sea surface temperatures (SSTs) of the western Pacific Ocean 
and the East China Sea decreased significantly (Stott et  al.,  2004; Kajita 
et al., 2018; Figure 3). By contrast, the SSTs of the eastern Pacific Ocean 
displayed a remarkable increase (Marchitto et  al.,  2010; Figure  3). They 
together favored the development of a more El Niño-like state in the Pacific 
Ocean. Increasingly stronger El Niño has also been observed in the Botry-
ococcene δD record from El Junco Lake (Galapagos) (Zhang et al., 2014; 
Figure  3). Besides, overall higher frequencies of El Niño events were 
recorded in Laguna Pallcacocha during the mid-to-late Holocene transition 
compared to the mid-Holocene (Mark et  al.,  2022; Figure  3). Moreover, 
ENSO activities have been demonstrated to become more active since ∼4.5 
ka after the muted state over the mid-Holocene (Du et al., 2021; Koutavas 
& Joanides, 2012; Figure 3). It thus appears that the hydrological shift on 
the southeast coast of China during the mid-to-late Holocene transition was 
triggered by the switch in the ENSO system with certain thresholds crossed.

Under an El Niño-like scenario, the EASM intensity would be reduced (Rao 
et al., 2016). The onset of the EASM would also be delayed due to the south-
ward displacement of the westerlies (Chiang et al., 2015). The south-north 
displacement of the westerlies relative to the Qinghai-Tibet Plateau could 
modulate the hydrological changes over the EASM region by regulating the 
transition timing and duration of the EASM intraseasonal stages (i.e., spring, 
pre-Meiyu, Meiyu, and mid-summer) (Chiang et al., 2015; Zhang, Griffiths, 
et al., 2018). During 4.7–3.8 ka, the westerlies were positioned more south-
ward than normal as indicated by both model simulations and paleoclimate 

records (Griffiths et al., 2020; Nagashima et al., 2013). The delayed northward migration of the westerlies would 
affect the seasonal march of the EASM rainfall, resulting in a lengthened Meiyu season in the middle and lower 

Figure 3.  Comparisons of SZY18 δDC29 record with paleoclimate records 
as well as archeological data. (a) 30°N summer insolation (Berger & 
Loutre, 1991) (left y-axis) and dinosterol δD record from Palau, an indicator 
of the Intertropical Convergence Zone position (Sachs et al., 2018) (right 
y-axis); (b) sea surface temperature (SST) records from the western Pacific 
(Stott et al., 2004) (left y-axis) and the East China Sea (Kajita et al., 2018) 
(right y-axis); (c) SST record from the eastern Pacific (Marchitto et al., 2010); 
(d) Botryococcene δD record from El Junco, a proxy of El Niño activity 
(Zhang et al., 2014); (e) flood events per 100 years from Laguna Pallcacocha, 
a proxy of El Niño frequency (Mark et al., 2022); (f) foraminiferal δ 18O 
variability, IODP drill site V21-30, a proxy of ENSO variability (Koutavas 
& Joanides, 2012); (g) leaf wax δD record from Lake Challa (Tierney 
et al., 2011); (h) SZY18 δDC29 record; and (i) temporal distribution of mixed 
rice and millet farming archeological sites in Southeast China. The gray shade 
indicates the transitional period. Detailed information on archeological sites 
refers to Table S4 in Supporting Information S1.
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reaches of the Yangtze River but a shortened mid-summer stage in North China (Chiang et al., 2015). Corre-
spondingly, the West Pacific subtropical high (WPSH) would be enhanced and positioned more southwestward, 
which covered the southeast coast of China for a longer period and as such suppressed the local precipitation (Rao 
et al., 2016). This mechanism appears to be further supported by a brief return to more depleted δDC29 values after 
3.8 ka, coeval with a possible shift to a more La Niña-like mean state over the tropical Pacific, as indicated by the 
SST records from the Pacific Ocean (Marchitto et al., 2010; Stott et al., 2004; Figure 3).

Interestingly, the drying mid-to-late Holocene transition is coincidental with the weakening of the East African 
monsoon revealed by the leaf wax δD record from Lake Challa (Tierney et al., 2011; Figure 3). Recent studies 
have highlighted the potential of the East African monsoon in modulating the ENSO mean state over the tropical 
Pacific Ocean, with a more El Niño-like condition under a weak East African monsoon (Griffiths et al., 2020; 
Pausata et al., 2017). Their covariation thus supports a dominant control of ENSO on the hydrological changes in 
Southeast China during the mid-to-late Holocene transition.

4.3.  Potential Impact on the Regional Agriculture Development

The mid-to-late Holocene transition witnessed the southward dispersal of rice farming in South China (Yang 
et al., 2018). Rice, as a wetland-based crop, was the most common crop excavated from the Neolithic sites in 
Southeast China by far (Dai et al., 2021). Millet, as a dry crop, is considered to spread with rice. Up till now, the 
earliest mixed rice and millet farming in Fujian Province was found in the Baitoushan site, dating back to 5.5 ka 
(Dai et al., 2021). Mixed rice and millet farming has been reported to occur around 5.0 ka in the Nanguanlidong 
site, Southeast China (Tsang et al., 2017). These studies support that mixed rice and millet sporadically occurred 
in Southeast China before 5 ka or even earlier, probably as a result of the establishment of millet domestication 
as well as the exchange between populations from northern and southern regions. Notably, a compilation of the 
AMS 14C dates of major sites with mixed rice and millet farming in Southeast China shows that the sites signif-
icantly increased in number and were more widely distributed after ∼4.8 ka, which is generally concurrent with 
the abrupt drying transition documented in this study (Figure 3 and Table S4 in Supporting Information S1). In 
addition, the δ 13C data of pig remains in Pingfengshan and Huangguashan sites showed strong variations, which 
suggested mixed food sources from C3 and C4 plants as well as marine resources (Ge et al., 2019). Especially, 
the strong signal of C4 plant indicative of increasing consumption of millets was dated back to 4.0–3.6 ka (Ge 
et al., 2019).

Compared to rice, millet is more drought-tolerant with a shorter growing season (Miller et al., 2016). In cases of 
severe drying, rice yield could be significantly reduced as the irrigation system probably had not been applied 
in the region yet (Ma et al., 2020). However, millet could cope with drier conditions. Therefore, mixed rice and 
millet farming might be formed in the hilly areas of the southeast coast of China to facilitate an adequate supply 
of food and act as an adaptation measure of human societies to climate risks. We hypothesize that the widespread 
mixed rice and millet farming, emerging with abrupt drying, might be triggered by the changing hydroclimate.

5.  Conclusions
Hydroclimate changes on the southeast coast of China during the mid-to-late Holocene transition were recon-
structed by leaf wax biomarker proxies from the Shuizhuyang peat deposit. The large positive shift in δDC29 
reveals an abrupt drying from 4.7 to 3.8 ka, consistent with a switch in the hydrological cycle during the mid-late 
Holocene. This abrupt drying is likely to be shaped by a more El Niño-like mean state in the tropical Pacific 
Ocean, which would decrease the rainfall on the southeast coast of China due to the more southwestward position 
of the WPSH and its longer cover. The increasing aridity might have promoted the development of mixed rice and 
millet agriculture on the southeast coast of China during this critical transition.

Data Availability Statement
The data in this study are provided in Supporting Information and have been deposited in Zenodo 
(https://doi.org/10.5281/zenodo.7063279).
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