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Introduction

Reproducibility in machine learning for health research:
Still a ways to go

Machine learning applied to health falls short on several reproducibility metrics compared to other
machine learning subfields.
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The reproducibility issues that
haunt health-care Al

Health-care systems are rolling out artificial-intelligence tools for diagnosis and
monitoring. But how reliable are the models?

Multiple reproducibility workshops at
popular ML conferences such as ICML,
ICLR, or NeurlPS
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“Reproducibility refers to the ability of a researcher to duplicate

Ie the results of a prior study using the same materials as were
used by the original investigator. [...] Reproducibility is a
minimum necessary condition for a finding to be believable and
iInformative.”
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Reproducibility and reusability

EE good documentation &
integrability
Replicable

(similar results on external data) ﬁ . ﬁ
different data source

Robust

(similar results despite small changes in data) noise/perturbations

in data

Reproducible
(results are reproducible with given code and data)

Reproducibility
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Challenges for Al in health care

Data collection

. Bias in data Evaluation
+ Data leakage « Choice of metrics
* Annotations « Statistical evaluation
* Varying pre-processing « Generalization
* Reporting of metadata or clinical data « Standardized reporting
Model development Clinical approval
« Suitable choice of relevant tasks * Lengthy process
« Code sharing including all training details * Untransparent
« User interfaces for cliniciancs »  Profit-guided

* Maintenance

Al for health care HELMHOLTZ MUNICI3



Computational pathology
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Use cases for Al in computational pathology
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Reproducibility and reusability

good documentation &
integrability Checklist for
Replicable v Code

(similar results on external data) ﬁ — ﬁ q v Data

different dat i isti
ifferent data source v Analysis of statistical

Robust variance
(similar results despite small changes in data) noise/perturbations
in data
Reproducible
(results are reproducible with given code and data)
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Reproducibility and reusability in CP

160 publications in five use cases

a) Code available?

b) Model weights available?

(i) Stain normalization

yes
42 [26%] (i) Segmentation
(iii) Cell-level features no
no (iv) Genetic alterations 20 [50%]

118 [74%]

0% 50% 100%

d) Dataset availability?

Private Public
10 [24%)] / 24 [57%]

On request /1 Partially public/private

3 [7%] 5 [12%]

(v) Prognostic Information

e) Independent cohort used for evaluation?

no
19 [54%]

yes
16 [46%]

Computational pathology

20 [50%]

¢) Used machine learning frameworks
Other

= PyTorch
2 [5%] 15 [36%]
Matlab
6 [14%]
Caffe TensorFlow
3 [7%] 16 [38%]
f) Variance reported?
no
1 [27%)]
yes
30 [73%]
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Reproducing three publications in CP

Compiled checkilist for reproducibility:

In order to make your work independently reproducible, make sure you have reported all
the required details of the following:

1. The hardware and software platform the system was trained and tested on.

¢ TOp-3-perfOI’ming algorithms Of Came|y0n1 7 Cha”enge 2. The source of data and how it can be accessed.

. . . . . 3. H the dat: lit into train, validation, and testi ts.
«  Reimplemented methods with all given information O e R R ST T, VRICHtion, and festng 5

4. How or if the slides were normalised.

* Key technical methods are well described 5. How the background and any artefacts were removed from the slides.
6. How patches were extracted from the image and any data augmentation that was applied.
7

* No standardized reporting of data pre-processing How the patches were labelled

. None of the reimpl emented al gorlthm s achieved 8. How the patch classifier was trained, including technique, architecture, and hyper-
. parameters.
performance close to the performance in the challenge

9. How the slide classifier was trained, including, pre-processing, technique, architecture, and
hyper-parameters.

10. How lesion detection was performed.

11. How the patient classifier was trained, including, pre-processing, technique, architecture,
and hyper-parameters.

12. All metrics that are relevant to the all the tasks.
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Best Practices and Recommendations
Workflow in Computational Pathology

Data Preprocessing Model development Final evaluation Publication process

Share the data publicly

Code for training the model aaa aaa Journals
g Q2202222 Conferences
~ A ~ e Vavs Science community

THE CANCER GENOME ATLAS Hardware specifications and timing Repeat experiments ~
Split the dataset according to Details on training procedure \—/ multiple times +—]| Reproducibility &
cohort Hyperparameters v=|| evaluation criteria
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a a a a Experiments
Should be publicly available
to enable reproducibility
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Towards reproducible Al in health care

Paradigm shift towards data sharing @__@ Interdisciplinary collaborations

* Multi-institutional datasets ( :®: ) ° Communication of challenges

» Diverse datasets @ @ » Al supporting clinical use

« Standardized metadata - « Software development for end users

Path to the clinic

Code sharing and maintaining

* Publish training details in supplementary
<D » Use reproducibility checklists
» Collaborate with users
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