

Recommended citation of the report:

Ziegler, M. O. (2023). Manual of the Python Script FAST Estimation v1.0. World Stress Map Technical
Report 23-01, GFZ German Research Centre for Geosciences.
DOI: https://doi.org/10.48440/wsm.2023.001

The software described in this report, including data examples, is published as:

Ziegler, M. O. (2023). Python Script FAST Estimation v1.0. GFZ Data Services. DOI:
https://doi.org/10.5880/wsm.2023.001

The software is available for download on GitHub:

https://github.com/MorZieg/FAST_Estimation

Imprint
World Stress Map Project

GFZ German Research Centre for Geosciences

Telegrafenberg
D-14473 Potsdam

Published in Potsdam, Germany
February 2023

https://doi.org/10.48440/wsm.2023.001

https://doi.org/10.48440/wsm.2023.001
https://doi.org/10.5880/wsm.2023.001
https://github.com/MorZieg/FAST_Estimation
https://doi.org/10.48440/wsm.2023.001
https://doi.org/10.48440/wsm.2023.001
https://creativecommons.org/licenses/by-sa/4.0/

I

Manual of the Python Script FAST Estimation v1.0

WSM Technical Report 23-01

Moritz O. Ziegler
GFZ German Research Centre for Geosciences, Potsdam, Germany

II

Table of Contents

List of Tables ... III

List of Figures.. III

Abstract ... 1

1 Introduction ... 2

2 Validation of the approach .. 3

3 Application of FAST Estimation .. 5

3.1 General procedure .. 5

3.2 Specific procedure without PyTecplot .. 7

3.3 Output .. 8

4 Basic principle ... 9

5 Individual functions .. 11

5.1 Writing Tecplot 360 EX macro function (write_macro)................................ 11

5.2 Load output database (load_abq, load_mse) ... 12

5.3 Extract variables from *.plt file (extract_tp) .. 12

5.4 Estimation of the stress state (solve) ... 13

5.5 Additional functions ... 13

6 Troubleshooting ... 15

7 Examples .. 16

Acknowledgements ... 17

References ... 17

III

List of Tables

Table 0-1 Structure of the GitHub repository. ... 1

Table 3-1 Input variables required by FAST Estimation. .. 6

Table 4-1 Example for the information required for FAST Estimation. 9

Table 5-1 Input variables required by the function write_macro. 11

Table 5-2 Input variables required by the function extract_tp. 13

Table 5-3 Input variables required by the function solve. ... 13

Table 7-1 Abaqus example files .. 16

Table 7-2 Moose example files ... 16

List of Figures

Figure 2-1 Accuracy of FAST estimation for a one-unit model .. 3

Figure 2-2 Accuracy of FAST Estimation for a realistic model ... 4

Figure 2-3 Accuracy of FAST Estimation for a maximum complexity 4

Figure 3-1 FAST Estimation procedure using PyTecplot. .. 5

Figure 3-2 FAST Estimation procedure including an intermediate manual step. 8

Figure 4-1 Concept of FAST Estimation. .. 10

1

Abstract

The classical way to model the stress state in a rock volume is to estimate displacement
boundary conditions that minimize the deviation of the modelled stress state with respect to
model-independent stress information such as stress magnitude data. However, these data
records are usually subject to significant uncertainties and measurement errors. Hence, it has to
be expected that not all stress magnitude data records are representative and can be used in a
model. In order to identify unreliable stress data records, the stress state that is based on
individual data records is solved and compared with observations at a few discrete locations.

While this method works, it is not efficient in that most of the solved model scenarios will be
discarded. The solving of the entire model consumes immense amount of computation time for
a high-resolution model. Yet, the stress state is required at only a very limited number of
locations. For linear geomechanical models it is sufficient to estimate the stress state from three
model scenarios with arbitrary, but different displacement boundary conditions. These three
results can be used to estimate analytically using a linear regression at discrete points stress
states based on user-defined boundary conditions.

The tool Fast Automatic Stress Tensor Estimation (FAST Estimation) is a Python function that
automatizes this approach. FAST Estimation provides very efficiently the stress states at pre-
defined locations for all possible boundary conditions. It does not provide the continuous stress
field as provided by a solved geomechanical model. Instead, it is a cost-efficient solution for the
rapid assessment of stress states at a limited number of discrete locations based on pre-defined
boundary conditions.

The script files are provided for download at:

http://github.com/MorZieg/FAST_Estimation

Table 0-1 gives an overview of the folder structure and input files with a short explanation.

Table 0-1 Structure of the GitHub repository.

Folders/Files in GitHub repository http://github.com/MorZieg/FAST_Estimation. The
page numbers (if available) direct to the documentation in this manual.

File Name Explanation Page

fast_estimation.py Python script for the estimation of the stress state at discrete
locations in a model based on the applied boundary conditions.

5

CITATION.bib The recommended citation for the software.

LICENSE The full GPL v3.0 license text.

README.md Readme file that contains relevant information on the usage of
the software.

examples/ Folder that contains example files for an estimation using either
Moose or Abaqus.

16

cellcent2nodal.mcr Tecplot macro file that converts cell-centred to nodal variables. 7

rename_stress.mcr Tecplot macro that renames the stress state variables from a
Moose solver to be compatible with the Tecplot Add-on
GeoStress.

7

http://github.com/MorZieg/FAST_Estimation
http://github.com/MorZieg/FAST_Estimation
http://github.com/MorZieg/FAST_Estimation

2

1 Introduction

3D geomechanical-numerical models provide a continuous description of the stress state in a
rock volume of interest. Besides the implementation of the gravitational volume forces the
lateral surface forces are imposed by displacement boundary conditions. In a rectangular model
these are applied normal and parallel to the prevailing horizontal stress orientations at the
model boundaries. The boundary conditions are adapted in a way that the resulting stress state
minimizes the deviation with respect to stress magnitude data at discrete points within the
model volume (Hergert et al., 2015; Reiter & Heidbach, 2014; Ziegler & Heidbach, 2021a).

To find the best-fit model scenario a large number of model scenarios that only differ in their
displacement boundary condition need to be solved. In addition, when also the uncertainties of
the stress magnitude data are considered the number of model scenarios increases further
(Ziegler and Heidbach, 2021a) and for models with high spatial resolution the computational
time needed becomes an issue. Furthermore, it is inefficient since it has to be expected that
many of the model scenarios will be discarded right away for being unrealistic.

However, due to the linear elastic rheology it is sufficient to estimate the stress state from three
model scenarios with arbitrary, but different displacement boundary conditions. These three
results span in the stress space planes that can be used to estimate analytically at discrete points
stress states that are a result of all possible boundary conditions using a linear regression. The
tool FAST Estimation (Fast Automatic Stress Tensor Estimation) is using this approach to increase
speed and efficiency in the estimation of the best-fit model scenario.

FAST Estimation is a derivative of the model calibration approach FAST Calibration (Ziegler &
Heidbach, 2021b). The tool runs in Python 3.x in conjunction with the visualization software
Tecplot 360 EX 2019 R1 and its Add-on GeoStress (Heidbach et al., 2020; Stromeyer et al., 2020).
It supports both Abaqus output files and output databases from the Moose Framework. A fully
automatized application of FAST Estimation is possible using the solvers Abaqus or the Moose
Framework together with PyTecplot, the Python extension of Tecplot. The user should be
familiar with 3D geomechanical-numerical modelling, Python, Tecplot 360 EX, including a basic
knowledge of Tecplot 360 EX macro functions, and the Tecplot 360 EX Add-on GeoStress
provided by Stromeyer et al. (2020) and documented by Heidbach et al. (2020).

This FAST Estimation manual provides an overview of the scripts and is designed to help the user
to adapt the scripts for their own needs. FAST Estimation is briefly validated in Section 2 and
basic guidance sufficient to successfully run FAST Estimation are provided in Section 3. The
mathematical background is described in Section 4. Section 5 provides information on the
individual Python functions that come with FAST Estimation and is mainly dedicated to advanced
users who might want to reuse or adapt functions. Eventually, common errors and pitfalls are
addressed (Section 6) and basic usage examples are provided (Section 7).

3

2 Validation of the approach

FAST Estimation aims at a massive reduction of computation time by reducing the amount of
model scenarios that have to be solved. Instead of solving, the stress state at a discrete number
of locations is estimated in Python using a linear regression analysis. This significantly speeds up
the process. However, it needs to be ensured that no significant errors or uncertainties are
introduced by this approach. Therefore, the results of FAST Estimation are validated in the
following.

Three generic models with increasing complexity are used in order to validate the accuracy of
FAST Estimation. Each generic model has a volume of 10 x 10 x 5 km³ and each is solved for three
combinations of arbitrary, but different displacement boundary conditions parallel to the x and
y axes of the rectangular model. The resulting three stress states are the basis for FAST
Estimation to setup a linear regression. The equation system is setup for 100 random locations
throughout the model volume where the three sets of boundary conditions and the resulting
stress states are available. Then, the stress state that results from application of another set of
reference boundary conditions is estimated at the 100 locations. To test the accuracy of this
approach the obtained estimated stress state is compared to a stress state that results from
model solution provided by a solver that is using the same reference kinematic boundary
conditions.

The differences between the actually solved stress states and the stress states estimated by
FAST are visualized using boxplots for each component of the stress tensor. Both, the six
independent components of the 3D stress tensor and the reduced stress tensor with only four
independent components are regarded. The orientation of the maximum horizontal stress SHmax
is left out in the comparison.

Figure 2-1 Accuracy of FAST estimation for a one-unit model

Differences between the classically modelled stress state and the stress state using FAST
estimation for a model with homogeneous rock properties.

The first generic model has homogeneous linear elastic rock properties. A maximum difference
of < 0.02 MPa is observed for the normal stress components of the stress tensor and the reduced
stress tensor with a median around 0.008 MPa (Figure 2-1). No differences are observed for the
shear stress components of the stress tensor. In the regarded homogeneous setting the shear
components are expected to be very small to a point where they can be neglected.

The second generic model contains five lithological units with different rock properties that are
partly out-cropping, out-pinching, and folded (Figure 2-2). The differences between modelled
stress state and stress state estimated by FAST for such a realistic model geometry are indicated
in Figure 2-2. While the differences for the normal stress tensor components and the reduced

4

stress tensor are significantly increased to < 0.04 MPa, the medians remain almost the same
with around 0.01 MPa. It is noteworthy that now differences exist for the shear stress
components. Even though they are still negligibly small, both in absolute values and in
comparison to the normal components.

Figure 2-2 Accuracy of FAST Estimation for a realistic model

Left: Generic model setup with five units with different linear elastic rock properties (colour-
coded). Right: Differences between classically modelled stress state and the stress state
using FAST Estimation.

The third generic model is using arbitrarily distributed rock properties (Figure 2-3). The three

elastic rock properties, i.e. the Young’s modulus E, the Poisson ratio and the Density ρ, are
randomly assigned from a broad distribution using HIPSTER v1.3 (Ziegler, 2019, 2022). This
results in a maximum heterogeneity of the model (Figure 2-3). The resulting differences indicate
no significant increase in the median and the whiskers of the boxplots remain < 0.05 MPa.
However, the outliers are up to < 0.1 MPa. Furthermore, the shear components of the stress
tensor are also significantly more affected but still smaller than the normal components.
Nevertheless, FAST Estimation succeeds in providing generally good results, in particular in lights
of the magnitude of uncertainties in the stress state which is at least one magnitude higher.

Figure 2-3 Accuracy of FAST Estimation for a maximum complexity

Left: Generic model with randomly distributed rock properties (colour-coded). Right:
Differences between classically modelled stress state and the stress state using FAST
Estimation.

5

3 Application of FAST Estimation

FAST Estimation runs with full functionality both on Windows and Linux computers and supports
output files from two solvers – Abaqus and the Moose Framework. A full automatization is
achieved using the commercial Python extension of Tecplot – PyTecplot. As an alternative to
PyTecplot, as an intermediate manual step the user needs to run a Tecplot macro. FAST
Estimation is designed and tested for usage with Python 3.11, Tecplot 360 EX 2019 R1, and
PyTecplot 1.4.2. In particular, if newer Tecplot and PyTecplot versions are used adaptations may
be required.

As a Python 3 script several functions required for script execution are provided in one file, which
can be copied and configured for each project. Alternatively, FAST Estimation is used as a Python
package with all required variables transmitted by the caller function.

3.1 General procedure

The FAST Estimation approach requires at least one set of displacement boundary conditions,
one in x and one in y direction, to solve for a stress state at one location specified in x, y, and z
model coordinates. Furthermore, information on the test boundary conditions (three different
sets of boundary conditions), the name of the solved model with test boundary conditions, and
(if PyTecplot is not used) the full path of the working folder are required. Whether the full stress
tensor (all six independent components), the reduced stress tensor (SHmax, Shmin, and Sv), or only
individual components are estimated is left to the user. A compilation of all required variables
and examples is presented in Table 3-1.

FAST Estimation in connection with Tecplot and PyTecplot supports output files from both
Abaqus and the Moose Framework. In case of Abaqus two different output files have to be
supported, depending on whether Tecplot is run on a Windows (*.odb file) or Linux (*.fil file)
operating system. For some combinations of OS, Solver, and whether PyTecplot is used or not,
certain additional aspects need to be considered which are explained in the following
subsection.

Figure 3-1 FAST Estimation procedure using PyTecplot.

Three columns indicate the three involved parties: The user, Python and Tecplot.

6

The application of FAST Estimation using PyTecplot works automatically from loading the output
database files to the computation and display of boundary conditions in a single step illustrated
in Figure 3-1. Most procedures specific to certain operating systems and solvers are
implemented. Nonetheless, if running in a Linux environment with an Abaqus solver, the
command for the generation of a *.fil file needs to be included to the Abaqus input file. This is
done by including the following lines at the end of Abaqus input files first *STEP section.

*EL FILE

S

*NODE FILE

COORD, U

Table 3-1 Input variables required by FAST Estimation.

Examples are provided in the script file.

Variable Description

folder

(without
PyTecplot)

Provide the directions to the folder in your system which contains the script data. It is
important to include the full path for Tecplot 360 EX (which does not support relative
paths).
Example (Windows): folder = 'd:\\Data\\Project\\FAST\\Test'
Example (Linux): folder = '/home/user/Project/FAST/Test'

name Provide the file name of the output database file with three independent stress states
derived from three different boundary conditions. This is also the name of the data-
files that will be created by the Tecplot 360 EX macro.
Example: name = 'test_scenarios'

bcs Enter the displacements in x’ (Shmin or SHmax) and y’ (SHmax or Shmin) direction that are
prescribed at the different test scenarios. Make sure to assign the values in the
correct order, i.e. as in the solver.
Example: bcs = [[4, -4],[4,-5],[5, -5]]

stress_vars Provide the names of the stress variables in the model that are estimated. Note that
the variables are case-sensitive.
Example: stress_vars = ['SHmax','Shmin', 'Sv']

loc Location where the stress state is estimated. If the variable is a string, it is assumed
that it specifies a *.csv file which contains the coordinates.
Example: shmax = [[5050,-3500,-800],[8000,2500,-3402]]

bc_eval Boundary conditions used to estimate the resulting stress state at the locations
specified in loc. If the variable is a string, it is assumed that it specifies a *.csv file
which contains the boundary conditions.
Example: bc_eval = [[-4, 3],[-2, -2.5]]

solver The name of the used solver, i.e. either Abaqus or Moose
Example: solver = ‘abaqus’

pytecplot Whether PyTecplot should be used or not. If set to ‘off’ a macro for the use in Tecplot
360 EX is created.
Example: pytecplot = ‘off’

7

3.2 Specific procedure without PyTecplot

The application of FAST Estimation without using PyTecplot requires several steps (including two
steps performed within the Python script) which are illustrated in Figure 3-2.

1. Prepare your working directory with a subfolder called “data” and set the variables in the

FAST Estimation script.

2. Load the model output database in Tecplot.

 Abaqus/Linux Instead of loading the standard *.odb file, only the *.fil file is supported by
the Tecplot loader on Linux systems. To generate a *.fil file include the following lines in the
Abaqus input files first *STEP section before running the model.

*EL FILE

S

*NODE FILE

COORD, U

Moose The output database from the solver comes in three consecutive files each for one
boundary condition scenario. These files need to be loaded consecutively into one Tecplot
database. Make sure to load the files in the correct order.

3. Optionally run GeoStress (Heidbach et al. 2020) or a similar tool.

Abaqus/Linux The stress tensors variables in the *.fil file are cell-centered instead of
nodal variables as required for a successful application of GeoStress. Running the
supplemented Tecplot macro cellcent2nodal.mcr converts the stress tensor variables to
nodal variables. This has to be done before execution of GeoStress. Otherwise running
GeoStress will result in an error.

Moose The stress tensor output variables of Moose are called stress_xx etc. in contrast to
XX Stress etc. expected by GeoStress. The same holds for the displacements that are called
disp_x etc. in contrast to X Displacement. Running the supplemented Tecplot macro
rename_stress.mcr fixes this issue so that GeoStress works. If this step is omitted, the
GeoStress GUI fails to load.

4. Run FAST Estimation in the working directory. A Tecplot macro is written to your working
directory. You will be prompted to execute the macro in Tecplot.

5. Run the macro in Tecplot to export the modelled stress state from the test scenarios at the
locations of the stress data records to *.csv files in the data folder.

6. Press enter in the Python command window. The *.csv files will be loaded to Python

variables and the stress states according to the specified boundary conditions are
computed and written to the file estimated_stress_states.dat.

8

Figure 3-2 FAST Estimation procedure including an intermediate manual step.

Three columns indicate the three involved parties: The user, Python and Tecplot. The
two steps are indicated by the two vertical boxes in each of the three columns.

3.3 Output

The output is either returned to the caller function as a variable or written to the file
estimated_stress_state_YYYMMDD_HHMMSS.dat. The timestamp ensures that the file is not
overwritten by a subsequent execution of FAST Estimation. Both, variable and file are structured
following the boundary condition scenarios as follows and shown in the example:

1. Boundary displacements in x and y direction.

2. Is a stress rotation observed? If yes, at how many of the specified locations?

3. The components of the stress state in lines according to the locations.

The output variable can be used for an assessment of the stress state in a caller function. The
output file can be read manually or automatically by another script or function.

Stress states estimated by FAST Estimation v1.0

Stress components: SHmax Shmin Sv

Boundary Condition Scenario # 1

-4.400000, 2.000000, SHmax azimuth remains.

Estimated Stress States

9.8989, 30.3757, 79.6037,

-8.3961, 12.0808, 24.7179,

Boundary Condition Scenario # 2

…

9

4 Basic principle

The core of FAST Estimation is implemented in the function solve that sets up a system of linear
equations which are used to estimate the stress state at a certain location as a result of user-
defined boundary conditions. Therefore, the boundary conditions (bc) and resulting stress
states (exemplified SHmax) at this location (x, y, z) of three different combinations of boundary
conditions are required. An example of the available information is shown in Table 4-1.

Table 4-1 Example for the information required for FAST Estimation.

Three model scenarios with different boundary condition are required. For each
scenario the displacement in x’ and y’ and SHmax are available.

model
scenario

x’ displacement y’ displacement 𝑺𝑯𝒎𝒂𝒙

1 -10 5 -12.3

2 -30 25 2.5

3 -30 5 -14.4

Three vectors are now available, one for each of the three model scenarios that each takes the
form

𝑣 ⃗⃗⃗ = (

𝑥
𝑦

S𝐻𝑚𝑎𝑥

)

with the boundary displacement x in x’ direction and y in y’ direction as well as SHmax, the
resulting stress state.

It can be pictured that this information is used to set up the equation of the plane that is defined
by the displacement boundary conditions in x’ and y’ direction and the stress magnitude. Hence,

the planes are set up in e.g. ℝ3(x′, y′, ∆S̃Hmax) (Figure 4-1). The planes equation in parameter
form is

𝑥 = 𝑝 + 𝑠 𝑟1⃗⃗⃗ + 𝑡 𝑟2⃗⃗ ⃗

with the position vector 𝑝 = 𝑣1⃗⃗⃗⃗ , the parameters s and t, and the direction vectors 𝑟1⃗⃗⃗ and 𝑟2⃗⃗ ⃗
which are computed by

𝑟1⃗⃗⃗ = 𝑣2⃗⃗⃗⃗ − 𝑣1⃗⃗⃗⃗

𝑟2⃗⃗ ⃗ = 𝑣3⃗⃗⃗⃗ − 𝑣1⃗⃗⃗⃗

Then the parameter form is transferred to the coordinate form of the planes equation which is
defined as

𝑛1 𝑥′ + 𝑛2 𝑦′ + 𝑛3 𝑆𝐻𝑚𝑎𝑥 = 𝑑

with n⃗ as the normal vector of the plane derived by

�⃗� = 𝑟1⃗⃗⃗ × 𝑟2⃗⃗ ⃗

and d as
𝑑 = 𝑝 ∙ �⃗�

with p⃗ the planes position vector.

Then the planes equation can be transferred to solve for the stress magnitude and thus reads

10

 𝑆𝐻𝑚𝑎𝑥 = (𝑑 − 𝑛1 𝑥
′ − 𝑛2 𝑦

′) 𝑛3
−1

Which enables estimation of the stress magnitude when the desired boundary conditions x’ and
y’ are included.

Figure 4-1 Concept of FAST Estimation.

Results of the three model scenarios provide three stress magnitudes that result from
three different sets of displacement boundary conditions for each model. Black circles
indicate for an arbitrarily chosen point in the model volume the values of the model
results for the boundary conditions specified on the x- and y-axes. In a linear system
these three different model results span a stress plane in ℝ3(x′, y′, SHmax) for any pair
of displacement boundary conditions.. Solving analytically the planes equation for the
desired boundary conditions results in a new stress magnitude value (red circle) without
solving the model again.

11

5 Individual functions

The technical implementation of FAST Estimation is described in this chapter, mainly designated
for advanced users that may want to adapt the code for their own demands. Therefore, the
Python functions and their intentions are described. While the more important functions are
described in detail, a short summary is provided for the less important functions.

5.1 Writing Tecplot 360 EX macro function (write_macro)

Only required if PyTecplot is NOT used. The function write_macro generates a Tecplot 360 EX
macro that exports the modelled stress state from given locations in the model, usually at
locations where the stress state is estimated. Since these locations are not necessarily at nodes
the variables are interpolated from the nodes to the exact coordinates in the volume. The
function requires four input variables (Table 5-1) which are automatically provided and
transmitted by the script.

Table 5-1 Input variables required by the function write_macro.

Variable Description

coords Locations in model coordinate system where the stress state is estimated.
Example: coords = [[1407,2016,-600],[511,2018,-400],[506,2021,-100]

stress_vars Provide the names of the stress variables in the model that should be estimated.
Example: stress_vars = ['SHmax','Shmin']

name The desired name of the macro without the file type extension “.mcr”.

folder Provide the directions to the folder in your system which contains the script data. It is
important to include the full path since this information is not used in Python but for
the Tecplot 360 EX macro which does not support relative paths. Make sure of the
correct usage of slash/backslash depending on the operating system and that the
correct escape characters are used on Windows.
Example (Windows): folder = 'd:\\Data\\Project\\FAST\\Test'
Example (Linux): folder = '/home/user/Project/FAST/Test'

With these variables the function creates a Tecplot 360 EX macro with the following structure.

1. The Tecplot macro header is written which may be sensitive with regards to the
Version of Tecplot. The according line is clearly marked in the code and may need an
adaptation. Per default a Macro header suitable for Tecplot 360 EX 2019 R1 is used
(#!MC 1410). Other headers are e.g. #!MC 1120 for Tecplot 360 EX 2013 R1

2. The internal number of the variables that are used for stress estimation in Tecplot 360

EX are sought and stored in according macro variables.

 $!GETVARNUMBYNAME |VAR0|

 NAME = "SHmax”

3. For each data record location specified in the variable stress an individual 1D zone

(point) is created. The number of zones created per data record location depends on
the number of model scenarios, usually three. The following syntax (with an
exemplified location) is repeated accordingly often.

$!CREATERECTANGULARZONE

IMAX = 1

12

JMAX = 1

KMAX = 1

X1 = 6.621267e+05

Y1 = 5.300777e+06

Z1 = -1.259692e+02

X2 = 6.621267e+05

Y2 = 5.300777e+06

Z2 = -1.259692e+02

4. The variables are linearly interpolated from the source zones (i.e. one of the model

steps) to the zones defined in step 1. The following code is repeated accordingly often.

$!LINEARINTERPOLATE

SOURCEZONES = [1]

DESTINATIONZONE = 4

VARLIST = [|VAR0|,|VAR1|]

LINEARINTERPCONST = 0

LINEARINTERPMODE = DONTCHANGE

5. The variable values in the 1D zones are exported to comma-separated data files, for

each variables an individual file.

$!EXTENDEDCOMMAND

COMMANDPROCESSORID = 'excsv'

COMMAND = 'FrOp=1:ZnCount=6:ZnList=[4-

9]:VarCount=1:VarList=[VAR0]:ValSep=",":FNAME="D:\Data\Project\FA

ST\data\shmax.csv"'

6. The 1D zones created in step 3 are deleted from the Tecplot 360 EX file.

$!DELETEZONES [4-34]

5.2 Load output database (load_abq, load_mse)

Only required is PyTecplot IS used. Depending on the solver (Abaqus or Moose) the according
version of the function is used. As only argument the name of the output database without file
extension is provided. PyTecplot currently does not support loading of Abaqus or Moose output
databases via a specific command. Thus, it is realized using a macro command. Then the file is
saved as a *.plt file native to Tecplot.

The loading of Abaqus output databases is dependent on the operating system since Tecplot on
Windows supports only reading Abaqus *.odb files while Tecplot on Linux supports only Abaqus
*.fil files. The check for the operating system works automatically with the Python platform
function.

The Moose Framework provides the three different sets of boundary conditions in three
separate files. They are consecutively loaded and appended to the Tecplot *.plt file using macro
commands.

5.3 Extract variables from *.plt file (extract_tp)

Only required is PyTecplot IS used. The *.plt files created by the functions load_abq or load_mse
are loaded in Tecplot. The arguments of the function are listed and described in Table 5-2. Once

13

the *.plt file is loaded, specific actions need to be taken dependent on the solver type and
operating system.

If a Linux operating system is used the cell-centred stress tensor variables from the *.fil file are
converted to nodal variables using the function cell2nodal. In case of using Moose as solver, the
solution time is assigned and the variables of the stress tensor are renamed to comply with the
variable names expected by the GeoStressCmd Add-on using the function rnm_vrbls. If desired,
the reduced stress tensor (i.e. SHmax and Shmin) is derived using the GeoStressCmd Add-on.

Eventually, the stress state is extracted at the specified locations. Therefore, the additional
function strextract is used. Its arguments are the location and zone of the stress component, the
PyTecplot model handle, and the name of the stress component. The modelled stress states are
returned to the caller function.

Table 5-2 Input variables required by the function extract_tp.

Variable Description

name The name of the *.plt file that is to be loaded without the file extension.

solver The name of the used solver, i.e. either Abaqus or Moose
Example: solver = ‘abaqus’

loc Locations where the stress is estimated in model coordinates.
Example: loc = [[1407,2016,-600],[511,2018,-400],[506,2021,-100]

stress_vars Names of the stress variables in the model that should be estimated.
Example: stress_vars = ['SHmax','Shmin']

5.4 Estimation of the stress state (solve)

The function solve is the core of FAST Estimation that sets up the plane’s equation defined by
three sets of boundary conditions and the resulting modelled stress states (see Section 4). Then,
the equation is solved for the previously specified boundary conditions in order to obtain the
newly estimated stress state. The arguments required for the function solve and examples are
described in Table 5-3Table .

Table 5-3 Input variables required by the function solve.

Variable Description

moss Stress state of the three modelled test stress scenarios
Example: moss = [22.5, 15.4, 23.2]

bcs The boundary conditions of the three test scenarios.
Example: bcs = [[4, -4],[4,-5],[5, -5]]

bcnx Boundary conditions for estimated stress state in x' direction.
Example: bcnx = -4.4

bcny Boundary conditions for estimated stress state in y' direction.
Example: bcny = 6.3

5.5 Additional functions

In the following, functions of less importance and simpler structure are summarized.

cell2nodal When operating on a Linux system with Abaqus, Tecplot is only able to load *.fil
files which has cell-centred variables. This function works with PyTecplot in order to change the
variables from cell-centred to nodal.

14

independence_check Checks whether the test boundary conditions and the resulting stress
states are chosen in a way that they are linearly independent, i.e. that three independent
supporting points are available to set up a plane. This is required in order to setup a meaningful
plane equation.

load_csv Reads the variable files that are exported by the Tecplot macro into Python. The
variables are then sorted in the correct order.

load_bc Reads a file that contains the boundary conditions (displacement in x’ direction,
displacement in y’ direction) for which the stress state is estimated.

load_loc Reads a file that contains the location (x, y, z, in model coordinates) where a stress
state is estimated.

rnm_vrbls Output databases from Moose need to be adapted in order to be compatible with
the GeoStressCmd Addon. A solution time needs to be assigned. Furthermore, the stress tensors
components and displacement variables need to be renamed. This is achieved in this function if
PyTecplot is used.

strextract Function that extracts specified variables using PyTecplot. The *.plt file already
needs to be loaded using PyTecplot and the model handle is transmitted to the function.

stress_rotation If the variables SHmax and Shmin are estimated a possible switching between
them is investigated. If Shmin becomes larger than SHmax this may be an indicator for an incorrect
stress state (in particular if the orientation of SHmax is well constrained). This function is used to
notify the user of such an occurrence.

write_output The variable that contains the results is written to an output file. Each output
files name contains a timestamp in order to prevent the loss of data that occurs due to
overwriting a previous results file.

15

6 Troubleshooting

Several cases of possible errors are covered by error messages and instructions to resolve the
problem that are printed to the screen. In the following, several additional possible errors are
listed and possible solutions are explained.

Without PyTecplot an
error occurs in the
beginning of the second
step

• Is the file path set to the correct location? Also check in
the macro file itself.

• Are the escape characters in the file path set correctly?

• Does the folder “data” exist?

• Do the requested variables exist with the correct names?

When opening the
GeoStress GUI stress
tensor variables are
missing

• Rename the stress tensor and displacement variables to
the names expected by GeoStress, e.g. using the auxiliary
Tecplot macro rename_stress.mcr

An error occurs during
execution of GeoStress
GUI

• Are the stress tensor variables nodal variables? Convert
cell-centered variables to nodal ones using the auxiliary
Tecplot macro cellcent2nodal.mcr

Using PyTecplot an
error occurs during
execution of
GeoStressCmd

• Are you using a *.plt file that was read from a *.fil file on
a Windows computer? Convert cell-centered variables to
nodal ones using the auxiliary Tecplot macro
cellcent2nodal.mcr

The Tecplot macro does
not run/returns an error

• Check whether the macro header is correct. (You can find
the appropriate header for your Tecplot version by
recording a simple macro and opening it in a text editor.)

• Are any locations outside the model volume?

• Does the folder /data exist? Is the path specified in the
macro correct?

• Are there sufficient steps/zones in Tecplot?

An error shows after
running the macro in
Tecplot and pressing
enter in the Python
command prompt

• Re-run the Python script and press enter without leaving
the commando prompt.

• Make sure the macro exported the stress states to the
correct folder.

16

7 Examples

In the supplemented examples a basic estimation procedure is presented. All files are available
in the examples folder as Abaqus® solver input file (*.inp) and output file (*.odb and *.fil, Table
7-1) and as Moose input file (*.i) and output database (*.dat, Table 7-2). Three model scenarios
with arbitrary, but different displacement boundary conditions (4, -4; 2, -5; 4, -3) are included.
The geometry is in a separate file (*.geom and *.inp respectively). The exemplary parameters
that are provided in the Python script matches these examples.

Table 7-1 Abaqus example files

Short explanation of the files provided for an exemplified estimation.

File Name Explanation

test_scenarios.fil Three model scenarios with different displacement boundary conditions.
Abaqus® output database for loading in Tecplot on Linux.

test_scenarios.inp Three model scenarios with different displacement boundary conditions.
Abaqus® input file.

test_scenarios.odb Three model scenarios with different displacement boundary conditions.
Abaqus® output database for loading in Tecplot on Windows.

Table 7-2 Moose example files

Short explanation of the files provided for an exemplified estimation.

File Name Explanation

test_scenarios_1.i First (out of three) model scenario Moose input file.

test_scenarios_1_out_0
001.dat

First (out of three) solved model scenario.

test_scenarios_2.i Second (out of three) model scenario Moose input file.

test_scenarios_2_out_0
001.dat

Second (out of three) solved model scenario.

test_scenarios_3.i Third (out of three) model scenario Moose input file.

test_scenarios_3_out_0
001.dat

Third (out of three) solved model scenario.

The output databases can be directly loaded in Tecplot 360 EX and FAST Estimation can hence
be tested without using Abaqus® or the Moose Framework to solve the model. Please note that
the models were solved using Abaqus® 2019. Output files from this version of Abaqus® can only
be read from Tecplot 360 EX 2019 R1 onwards. For compatibility with older Tecplot 360 EX
versions the input files can be rerun in an older Abaqus® version (older Tecplot 360 EX versions
up to 2017 require Abaqus® 6.11 output files, later on Abaqus ® 6.14).

17

Acknowledgements

The authors would like to thank Kirsten Elger and Dorothea Hansche for supporting the
publication.

The work leading to these results has been supported in the framework of the project
Spannungsmodell Endlagerung Deutschland SpannEnD 2.0 by the federal company for
radioactive waste disposal BGE.

References
Heidbach, O., Ziegler, M. O., & Stromeyer, D. (2020). Manual of the Tecplot 360 Add-on

GeoStress v2.0. https://doi.org/10.2312/WSM.2020.001
Hergert, T., Heidbach, O., Reiter, K., Giger, S. B., & Marschall, P. (2015). Stress field sensitivity

analysis in a sedimentary sequence of the Alpine foreland, northern Switzerland. Solid
Earth, 6(2), 533–552. https://doi.org/10.5194/se-6-533-2015

Morawietz, S., Heidbach, O., Reiter, K., Ziegler, M. O., Rajabi, M., Zimmermann, G., Müller, B.,
& Tingay, M. (2020). An open-access stress magnitude database for Germany and
adjacent regions. Geothermal Energy, 8(1). https://doi.org/10.1186/s40517-020-00178-5

Reiter, K., & Heidbach, O. (2014). 3-D geomechanical-numerical model of the contemporary
crustal stress state in the Alberta Basin (Canada). Solid Earth, 5(2), 1123–1149.
https://doi.org/10.5194/se-5-1123-2014

Stromeyer, D., Heidbach, O., & Ziegler, M. O. (2020). Tecplot 360 Add-on GeoStress v2.0 (V2.0).
GFZ Data Services. https://doi.org/10.5880/wsm.2020.001

Ziegler, M. O. (2019). Manual of the Python Script HIPSTER v1.3.
https://doi.org/10.48440/wsm.2021.001

Ziegler, M. O. (2022). Rock Properties and Modelled Stress State Uncertainties: A Study of
Variability and Dependence. Rock Mechanics and Rock Engineering.
https://doi.org/10.1007/s00603-022-02879-8

Ziegler, M. O., & Heidbach, O. (2020). The 3D stress state from geomechanical–numerical
modelling and its uncertainties: a case study in the Bavarian Molasse Basin. Geothermal
Energy, 8(1). https://doi.org/10.1186/s40517-020-00162-z

Ziegler, M. O., & Heidbach, O. (2021a). Manual of the Matlab Script FAST Calibration v2.0.
https://doi.org/10.48440/wsm.2021.002

Ziegler, M. O., & Heidbach, O. (2021b). Manual of the Python Script PyFAST Calibration v1.0.
https://doi.org/10.48440/wsm.2021.003

Ziegler, M. O., & Heidbach, O. (2023). Bayesian Quantification and Reduction of Uncertainties
in 3D Geomechanical‐Numerical Models. Journal of Geophysical Research: Solid Earth,
128(1). https://doi.org/10.1029/2022JB024855

Ziegler, M. O., Heidbach, O., Reinecker, J., Przybycin, A. M., & Scheck-Wenderoth, M. (2016). A
multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse
Basin. Solid Earth, 7(5), 1365–1382. https://doi.org/10.5194/se-7-1365-2016

18

