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SUMMARY

The Collaboratory for the Study of Earthquake Predictability (CSEP) is an international effort
to evaluate earthquake forecast models prospectively. In CSEP, one way to express earthquake
forecasts is through a grid-based format: the expected number of earthquake occurrences
within 0.1° x 0.1° spatial cells. The spatial distribution of seismicity is thereby evaluated using
the Spatial test (S-test). The high-resolution grid combined with sparse and inhomogeneous
earthquake distributions leads to a huge number of cells causing disparity in the number of
cells, and the number of earthquakes to evaluate the forecasts, thereby affecting the statistical
power of the S-test. In order to explore this issue, we conducted a global earthquake forecast
experiment, in which we computed the power of the S-test to reject a spatially non-informative
uniform forecast model. The S-test loses its power to reject the non-informative model when
the spatial resolution is so high that every earthquake of the observed catalog tends to get
a separate cell. Upon analysing the statistical power of the S-test, we found, as expected,
that the statistical power of the S-test depends upon the number of earthquakes available
for testing, e.g. with the conventional high-resolution grid for the global region, we would
need more than 32 000 earthquakes in the observed catalog for powerful testing, which would
require approximately 300 yr to record M > 5.95. The other factor affecting the power is
more interesting and new; it is related to the spatial grid representation of the forecast model.
Aggregating forecasts on multi-resolution grids can significantly increase the statistical power
of the S-test. Using the recently introduced Quadtree to generate data-based multi-resolution
grids, we show that the S-test reaches its maximum power in this case already for as few as
eight earthquakes in the test period. Thus, we recommend for future CSEP experiments the
use of Quadtree-based multi-resolution grids, where available data determine the resolution.

Key words: Earthquake hazards; earthquake interaction; forecasting and prediction; Statis-
tical seismology; Earthquake forecast testing; Statistical power analysis.

1 INTRODUCTION

Earthquake forecast models are a basic component of probabilistic
seismic hazard assessment. They enable us to understand earth-
quake occurrence better and can lead to building an earthquake-
resilient society. Contemporary research about forecasting earth-
quakes follows numerous approaches, including those based purely
on a statistical analysis of the earthquake catalogs and physics-based
methods (e.g. Helmstetter et al. 2007; Morales-Esteban et al. 2010;
Martinez-Alvarez et al. 2013; Asim et al. 2018; Maleki Asayesh

© The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society.

et al. 2019; Mancini et al. 2019; Ahmad et al. 2019; Tareen et al.
2019; Tariq et al. 2019; Asayesh et al. 2020; Mignan & Broccardo
2020; Rhoades et al. 2020; Sharma et al. 2020; Asayesh et al. 2022;
Ebrahimian ef al. 2022, etc.).

Earthquake forecast modelling is a complex process, and it is
important to assess the skill and performance of forecast mod-
els. For that reason, the community-based Collaboratory for the
Study of Earthquake Predictability (CSEP) was established (Jor-
dan 2006; Michael & Werner 2018; Schorlemmer ef al. 2018). The
important principle of CSEP is to evaluate earthquake forecasts
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prospectively against future earthquake observations without any
intervention from earthquake forecast modellers, thereby ensuring
the reproducibility and transparency of testing experiments and
results.

CSEP has conducted experiments in various pre-defined geo-
graphical areas referred to as festing regions (Schorlemmer et al.
2010), e.g. the California testing region (Schorlemmer & Gersten-
berger 2007), the Japan testing region (Tsuruoka et al. 2012), the
Italy testing region (Schorlemmer ez al. 2010) and the global testing
region (Bayona et al. 2021). In one type of CSEP forecast experi-
ment design, the testing regions are represented as spatial grids with
cells of dimensions of 0.1° x 0.1° in longitude and latitude, where
each cell is further subdivided into bins of 0.1 magnitude units. A
forecast provides the expected number of earthquakes, assuming a
Poisson distribution, for each of the pre-specified space-magnitude
bins of the testing region (Schorlemmer & Gerstenberger 2007). The
Poisson assumption is debatable, leading to strong biases in evalu-
ating short-term forecasting models (Lombardi ez al. 2010; Werner
et al. 2011), and new CSEP efforts are also trying to address this
problem (Savran et al. 2020; Bayona et al. 2022).

CSEP provides a community-endorsed testing suite to evalu-
ate forecast models (Schorlemmer et al. 2007; Zechar et al. 2010;
Werner et al. 2011). The suite consists of multiple tests designed
to assess the consistency of different aspects of forecasts with ob-
served data assuming a Poisson distribution. These tests evaluate the
consistency of the spatial distribution, the magnitude distribution,
the combined space-magnitude distribution, and the total number
of earthquakes provided by forecast models.

The forecast models mostly use the Gutenberg-Richter
frequency-magnitude distribution to provide the expected number
of earthquakes per magnitude bin (Bayona et al. 2022), leading to
similar outcomes of the Magnitude test (M-test) and rendering the
evaluation of magnitude consistency less informative than that of
the spatial distribution, which is specifically tested with the Spatial
test (S-test). Because earthquakes are inhomogeneously distributed
around the globe, some regions are seismically quiet and have never
witnessed a notable earthquake in recorded history, while others are
highly active and frequently experience earthquakes. Therefore, it is
important to check the spatial consistency of models with observed
earthquake data.

However, the observed data to test earthquake forecast models
usually only consist of a small number of earthquakes ranging from
a few tens of events to a few hundred earthquakes depending on the
testing region and duration of observation. The earthquake forecast
evaluation conducted for the California testing region conducted
by Bayona et al. (2022) used 40 earthquakes covering 10 yr, while
Bayliss et al. (2022) and Zechar et al. (2013) used 32 and 31 M4.95+
observed earthquakes covering the duration of 5 yr. The forecast
evaluation conducted by Taroni et al. (2018) for the Italy testing
region is based on 97 M3.95+ earthquakes for the duration of 5 yr.
Bayona et al. (2021) conducted an earthquake forecast evaluation
for the global testing region using 651 M5.95+ earthquakes for a 6-
yr duration. In contrast, the numbers of spatial cells for California,
Italy, and the global testing region are 7682, 8993 and 6.48 million,
respectively. This means that we have, on average, approximately
one earthquake to evaluate the forecast per several hundred spatial
cells for the regional testing areas of California and Italy and one
earthquake per 10000 cells on the globe to evaluate the forecast
models. The scarcity of observation data can result in tests with low
statistical power, leading to a reduced chance of detecting the true
performance of models (Bezeau & Graves 2001; Bray & Schoenberg
2013; Button et al. 2013). Less powerful forecast evaluations can

potentially lead to the use of flawed forecast models for seismic
hazard assessment.

The power of the S-test defines the capability of the test to cor-
rectly identify whether or not the occurrence of observed seismicity
is consistent with the forecast models. Because the true seismic-
ity model is unknown, computing the power of the S-test is not
straightforward. The statistical power analysis of the S-test is based
on the assumption that the S-test should identify two seismicity
models that are different and inconsistent with each other. There-
fore, we can determine the power of the S-test to discriminate be-
tween two alternative forecast models by using one forecast as data
generating model and then using this data to evaluate the other
forecast model. The power is computed as the probability that the
S-test successfully identifies that the catalogs based on one fore-
cast model are inconsistent with the other forecast model. As a
reference for computing the power, we use in this study the Global
Earthquake Activity Rate model [GEARI; (Bird ef al. 2015)], one
of the global forecast models that competed in the aforementioned
global experiment (Strader ef al. 2018). GEAR1 was the most in-
formative forecast model in the global forecast experiment based
on 651 M5.95+ earthquakes during 2014-2019 (Bayona et al.
2021).

In this study, we show two key factors determining the statis-
tical power of the S-test, namely the sample size (number of ob-
served earthquakes) and the grid resolution. While it is not possi-
ble to change the amount of observed data for a given duration
of time, we can change the test grid, thus the number of cells
for which a forecast is made. To explore the S-test’s statistical
power for different spatial grid resolutions, we use the strategy in-
troduced by Asim et al. (2022) to replace the conventional 0.1°
x 0.1° grid by the Quadtree-based grids. Quadtree is a hierarchi-
cal tiling strategy for recursively dividing the globe into tiles to
create easily and elegantly single- or multi-resolution grids. We
find that representing earthquake forecast models using fewer cells
(low-resolution grid) can improve the power of testing. We observe
that for powerful testing for the uniformly gridded global testing
region with a reasonable number of earthquakes in the observed
catalog (e.g. 1000-2000 earthquakes), we should not have more
than 16 000-65 000 cells in the testing region. However, uniformly
reducing the resolution results in losing models’ spatial informa-
tion in seismically active regions. Thus, instead of reducing the
grid resolution uniformly, we show that using data-driven multi-
resolution grids significantly increases the statistical power of the
S-test.

The following section explains the CSEP consistency tests in
detail, focusing on the S-test. Section 3 introduces the statistical
power of a test, and how the S-test’s power depends on the number
of observed earthquakes and grid resolutions. Section 4 shows the
experimental results for the statistical power of the S-test for dif-
ferent grid resolutions, and the global forecasts are re-evaluated in
Section 5. In Section 6, we discuss the recommendation for improv-
ing the power of the S-test in CSEP experiments and show how this
can affect the performance evaluation of forecast models.

2 CSEP FORECAST EXPERIMENT

2.1 CSEP consistency tests

CSEP forecasts are provided as the expected number of earthquakes
for a given time horizon in the independent space-magnitude bins.
In each bin (indexed by i), the forecasted number of earthquakes
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A; s then compared with the observed number of earthquakes w;
in the same cell in various ways depending on the applied test.
If earthquakes are assumed to follow a Poisson distribution, the
Poisson likelihood of the observation is computed based on the
expectation value A of the model according to

Pr(w|)) = g exp(—A) . (1)

It is convenient to work with the logarithm of likelihood values,
referred to as log-likelihood, given by

L(w|) = In(Pr(w|))) = —A + oln(k) — In(@!) . @)

The joint log-likelihood value, L, for a complete space-magnitude
forecast A, and observation €2, is the sum of all bin-wise log-
likelihood values:

Noin Noin

LQIA) = Y In(Pr(e i) = Y _(—h + oilnGy) — In(@,1), ()

i=1 i=l1

where Ny, refers to the total number of space-magnitude bins. The
joint log-likelihood values given by eq. (3) are negative, with higher
values (closer to zero) indicating better agreement between forecast
and observation. Earthquake catalogs consistent with the forecast
model are simulated (2) to understand the uncertainty of the joint
log-likelihood. Currently, in CSEP, the procedure employed to gen-
erate () using the earthquake forecast is provided by Schorlem-
mer & Gerstenberger (2007) and Zechar et al. (2010). Numerous
simulated catalogs are generated, and log-likelihood values for the
forecast given the simulated catalogs are computed, referred to as
simulated log-likelihoods, L, thereby generating a distribution of
values:

L = L(QIA). 4)

The acceptance or rejection of the model is decided by compar-
ing the log-likelihood value with the simulated log-likelihood val-
ues. The model can be considered inconsistent if the log-likelihood
value of the observation falls in the lower tail of the simulated
log-likelihood values. Otherwise, the forecast model is considered
consistent with the observation.

All consistency tests in the CSEP testing suite follow the proce-
dure above, where forecast rates A are related to different aspects.
The S-test evaluates the consistency of earthquake forecast rate dis-
tribution across spatial cells compared to the observed catalog. The
magnitude aspect of the forecast and observation is excluded first
by summing up the magnitude bins corresponding to every spatial
cell, followed by normalizing the forecast rates so that their sum
matches the total number of earthquakes in the observed catalog
(Nobs)- The total number of earthquakes in simulated catalogs (IV )
is fixed to the Nyps for computing L values.

Recently, Bayona et al. (2022) proposed a new version of the S-
test based on the Binary likelihood function instead of the Poisson
likelihood. This new test is proposed to capture the non-Poisson
distribution of data better. The Binary likelihood function treats ob-
servations in terms of active or non-active cells, unlike considering
the number of earthquakes for each cell in the grid, and calculates
the Poisson probabilities of observing w; = 0 and w; > 0 earth-
quakes in a spatial cell given the forecast ;. The whole procedure
of the Binary S-test remains the same except for N being fixed to
the total number of active cells in the observed catalog during the
generation of simulated catalogs and the forecast being normalized
to the number of active cells instead of N,s. The Binary S-test is
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meant to reduce the sensitivity of the S-test to the presence of seis-
micity clusters (or the presence of multiple earthquakes in cells) in
the observed catalog.

Given that the underlying procedure of all consistency tests avail-
able in the CSEP testing suite remains similar, weaknesses or low
power identified in the S-test might hint at similar issues in other
CSEP consistency tests. Therefore, it is important to understand
the conditions in which the outcome of the S-test is statistically
powerful, thus, more reliable.

2.2 Global forecast experiment

In CSEP, numerous regional and global testing experiments have
been conducted for various tectonic settings. Compared to the re-
gionally calibrated forecast models, global forecast models offer
greater testability due to the availability of a higher number of
earthquakes in the observed catalog despite the huge disparity in
the number of spatial cells and events.

A prospective global earthquake forecast experiment to evaluate
forecast models with 2 yr of observations from 2015 October to
2017 September has been conducted by Strader ez al. (2018). The
competing forecast models in this experiment were the global hy-
brid GEARI (Bird et al. 2015), the tectonic SHIFT_GSRM2f (Bird
& Kreemer 2015) and the seismicity KJSS (Kagan & Jackson 2010,
2011) models. Later on, Bayona ef al. (2021) constructed two more
global earthquake forecast models, named TEAM (tectonic) and
WHEEL (Hybrid), and included them in the global forecast exper-
iment. In this experiment, the forecast testing has been carried out
for 6 yr, from 2014 to 2019, using 651 earthquakes of M > 5.95
(Bayona et al. 2021) reported by the Global Centroid Moment Ten-
sor (CMT) earthquake catalog (Ekstrom ef al. 2012). The GEAR1,
WHEEL and KJSS models passed the S-test and were thus found
to be spatially consistent with the observed catalog. In contrast, the
geodetic-based TEAM and SHIFT_GSRM2f models were found to
be inconsistent with the observations. These experiments concluded
that the hybrid GEAR1 model was the most informative earthquake
forecast model during 20142019 evaluation period. We conduct the
S-test for these five global forecasts using pyCSEP. Previously, the
CSEP testing suite was available as a monolithic and tightly coupled
code base. Recently, it has been redesigned into an object-oriented
and open-source toolkit in Python, known as pyCSEP (Savran et al.
2022b, a). This toolkit provides an independent module contain-
ing all the community-endorsed statistical tests in the CSEP testing
suite. We obtain the same performance results as reported by Bay-
ona et al. (2021), thereby demonstrating the reproducibility of the
test results and ensuring the credibility of the testing infrastructure
used.

In addition to testing the previously competing global forecast
models, we also generate and test a uniform global forecast model.
The uniform forecast model is created by assigning the same fore-
cast density to every cell in the grid, thus yielding forecasts pro-
portional to the area of each cell. It is a simple forecast model
and does not involve any information about the actual seismicity
with its variability; therefore, it is a non-informative forecast model.
The uniform forecast model expects independent, unclustered and
evenly distributed seismicity across the whole region in contrast
to the heterogeneous distribution of the actual seismicity (Kagan
2007). Consequently, the desired outcome of the S-test is to reject
the uniform model based on the observed catalog. Fig. S1 shows
the uniform forecast model along with the spatial distribution of
observed seismicity, while Fig. 1 shows the outcome of the S-test
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Figure 1. Performance of the S-test for models participating in the global
forecast experiment, along with the performance of the uniform forecast
model, which is passing the S-test. The error bars show the log-likelihood
confidence interval relative to the observed log-likelihood score. The red
dots indicate that the observed log-likelihood falls in the lower tail of the
simulated log-likelihood and fail the S-test, while the green squares indicate
that the S-test is passed.

for all the competing forecast models. The uniform global forecast
model passes the S-test contrary to the expectations, showing that
the non-informative uniform forecast is consistent with the obser-
vation, which also raises concerns regarding the S-test’s capability
to evaluate forecast models objectively.

The S-test tends to favour more uniform forecast models than
other models that try to forecast the precise locations of earth-
quakes (i.e. provide higher forecast rates in certain cells). In the
case of the uniform forecast model, the forecasts in the cells are
similar everywhere; thus, it does not matter where the earthquakes
are occurring, and the log-likelihood value is not controlled by the
spatial distribution of the observed earthquakes but rather by the
number of earthquakes occurred in the cells. For a grid with high
resolution as the 0.1° x 0.1° grid for the global testing experiment,
the size of spatial cells is so small that each cell usually observes
only one earthquake. This also happens to be the case for the simu-
lated catalogs. Thus, the likelihood for observed data will fall in the
range of the simulated likelihoods, and the S-test accepts the fore-
cast as consistent with the observation. In other words, the global
uniform forecast states, obviously incorrect, that earthquakes are
everywhere similar likely on the globe, and the S-test is unable to
reveal this inconsistency with the observed seismicity. Thus, the
uniform forecast expressed on such a high-resolution grid can only
be rejected by the S-test if the observed catalog contains clusters of
seismicity, which means that some spatial cells in the grid receive
multiple earthquakes.

To be useful, the S-test should be powerful enough to reject
a non-informative forecast model irrespective of the occurrence
of clustered seismicity. Fig. 1 shows that the S-test rejects the
SHIFT_GSRM2f and TEAM forecast models, while other mod-
els are found consistent with the observed seismicity. However, the
acceptance of the S-test can be meaningless if the power of the test
is low. To address this problem, we conduct a detailed analysis of
the statistical power of the S-test to find out how (i) the sample size
(earthquakes in the test catalog) and (ii) the definition of the spatial
test grid contribute to the forecast evaluation.

Table 1. Statistical power of S-test for different number of earthquakes in
the test catalogs generated using A; = GEARI1 and 100 simulations.

Ay 64 128 256 512 1024 2048
KIJSS 0.18 028 056 0.86 0.99 1
SHIFT_GSRM2F 0.75 0.97 1 1 1 1
TEAM 0.98 1 1 1 1 1
WHEEL 0.2 032 058 083 099 1
Uniform 0 0 0 0 0 0

3 STATISTICAL POWER ANALYSIS

The power of a test is defined as the probability of rejecting a null
hypothesis (H,) when it is false (Lehmann et al. 2005) or, in other
words, the probability of making a correct decision when rejecting
a hypothesis (Lehmann et al. 2005),

Power = Pr(Correctly rejecting Hy). )

The value of statistical power ranges from 0 to 1, and as the power
of a test increases, the probability of wrongly failing to reject the
null hypothesis decreases.

In CSEP forecasting experiments, there is no accepted true model
for seismicity, and the likelihood tests evaluate equipollent hypothe-
ses (Schorlemmer et al. 2007). Therefore, we use an indirect way to
calculate the power of the test based on simulations (Zechar et al.
2010). We assume one earthquake forecast model as the true model
of seismicity (A;) and use its simulations as observed catalogs.
This observation is then used to evaluate a different forecast model
(A,) using the S-test. The process of generating observations based
on A; to evaluate forecast models A, is repeated multiple times,
and the power is estimated as the fraction of instances in which the
simulated A; catalogs (assumed observation) are inconsistent with
the A, forecast, i.e.,

Number of S-test failures

P f S-test = ' °
ower of >-tes Total number of simulations ©

The flowchart for computing the statistical power of the S-test is
shown in Fig. S2.

The GEARI forecast model was found to be the most informa-
tive forecast model in the CSEP global forecast experiment based on
the pair-wise comparison with other models in terms of information
gain per earthquake (Bayona ef al. 2021). Thus, in statistical power
analysis of the S-test, we consider GEAR1 as the seismicity gener-
ator (A ) and generate earthquake catalogs with a different number
of earthquakes [Ny,s =( 64, 128, 256, 512, 1024, 2048)] in the
0.1° x 0.1° global test grid. Then, we use these observed catalogs
to evaluate all the competing earthquake forecast models, including
the uniform forecast. This experiment is repeated 100 times, and the
statistical power of the S-test is calculated and provided in Table 1
for each forecast. The power of the S-test is found to be directly cor-
related to the number of earthquakes in the observed catalog. This
finding agrees with the general understanding that the statistical
power of tests used to evaluate forecast models is directly related to
the quantity of data available for testing (Bezeau & Graves 2001).

Table 1 demonstrates that the S-test has a different power to reject
different forecast models for synthetic GEAR1 catalogs, which is
due to different levels of similarity between the GEAR1 and the
other forecast models. The TEAM and SHIFT_GSRM2f are rejected
for small test samples, while KJSS and WHEEL require larger
data sets. The latter can be explained by the fact that WHEEL and
GEARI are both using KJSS as one model component, and thus
the models are similar. However, the power of the S-test to correctly
reject the models increases with the number of earthquakes. In
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contrast, the S-test remains powerless against the uniform forecast
model with zero power, even with more than 2000 earthquakes in the
observed catalog. In this study, we use the uniform forecast model
as A, for the statistical power analysis because it is a simple model
that is neither based on any meaningful dataset (i.e. earthquake
catalogs, etc.) nor physics and statistics. Thus, it can be assumed
that the uniform forecast model is different from the GEAR1 and
should be rejected.

The power of a test is not a fixed value but depends on the
hypotheses (i.e. forecast models) being considered for the power
analysis. The number of earthquakes in the observed catalog is an
important factor to consider when conducting a forecast evaluation
experiment, but it is not the only factor contributing to the power of
the test. Thus, we further need to explore the statistical power of the
S-test for different representations of forecast in terms of the spatial
grid, where we can reduce the number of cells.

3.1 Showcasing power of S-test

Real forecast models may involve multiple complexities, such as re-
gional (tectonic) variations, data dependence, etc. Therefore, before
exploring the effect of different grid resolutions on the statistical
power of the S-test results for real forecast models, we perform
a simple synthetic experiment to understand the behaviour of the
S-test in a fully controlled environment. We create a hypotheti-
cal one-dimensional scenario where we test the uniform forecast
model against earthquakes inhomogeneously distributed in space.
In particular, we used a Gaussian distribution with zero mean and
a standard deviation of 1.0 normalized in the spatial range between
—3 and 3 to select the events randomly. The forecasts and test
data are binned in one-dimensional grid cells equivalently to the
two-dimensional grid cells in real CSEP forecast experiments. In
the experiment, we create two different types of discretizations in
space, using either (i) uniform bins or (ii) density-based bins. The
uniform bins are equally spaced, while density-based bins are cre-
ated in a way that all bins have, on average, the same event rate. The
locations of the test samples drawn from the Gaussian distribution
are associated with their corresponding bin. Thus, each bin gets
either zero, one, two or more observed events per bin. Using the
forecast and the test sample, we have all the ingredients of an earth-
quake forecast experiment to run the S-test. We use the S-test to
determine whether or not the uniform distribution is consistent with
the data generated by the Gaussian distribution. The experiment is
repeated multiple times, and the statistical power of the S-test is cal-
culated for different combinations of uniform bins, density-based
bins, the total number of bins and the sample size.

Fig. 2 summarizes the whole synthetic experiment and showcases
the statistical power of the S-test. As an example, panel (a) shows 20
uniform bins with 10 events (blue points) randomly selected from
the Gaussian distribution (blue line), while panel (b) shows the same
case for density-based bins, having small-sized bins in the centre
and bigger bins towards the edges. As the density-based bins are
designed to contain, on average, an equal rate (or probability) for
each bin, thus the true rate becomes a horizontal line instead of the
bell-shaped curve, while the uniform forecast (black line) becomes
an inverted bell-shaped as more data are expected in the larger
cells towards the edges. By repeating the S-test for 1000 random
simulations, we first explore the dependence of the test power on
the number of spatial grid cells. In particular, we set the sample
size to Neq = 10 and change the number of grid cells, Ny, from 1
to 100. As shown in panel (c), we find that the power reaches for
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uniform binning (black curve) its maximum (~0.3) at N = 4 and
then monotonously decreases with increasing Nj;. In contrast, the
power converges for the density-based bins (blue curve) to a value
of about 0.85 for increasing N.. In a second step, we explore the
dependence of the power on the sample size given N..; = 20 (panel
d). We find a systematic increase of the power with N4 for both
binning approaches. However, the increase in power is significantly
faster for density-based bins than the uniformly spaced binning. A
power of 0.9 is already obtained for 15 events in the former case but
for 38 events in the latter case. It should be noted that the example
shown in Fig. 2 refers to a rather smooth seismicity distribution.
Repeating the same experiment for a Gaussian distribution with a
standard deviation of 0.5 instead of 1.0 shows that a power of 0.9
is already achieved for Ny = 6 [with Ny = 10, panel (c)] and for
five events [with Ny = 20, panel (d)] for the same density-based
grids.

This simple experiment, which emulates the earthquake forecast
experiment with hypothetical spatial grids and earthquakes, pro-
vides meaningful insights into the statistical power of the S-test.
It highlights different potential factors affecting the power of the
S-test, such as the number of earthquakes in the test catalog and the
definition of the spatial grid. The density-based binning (hereafter
referred to as multi-resolution grid) shows the capability to increase
the statistical power of the test compared to uniformly spaced bin-
ning (hereafter referred to as single-resolution grid). This simplified
test setup points us to how the choice of the spatial grid can improve
the test performance.

4 EFFECT OF SPATIAL GRID ON
STATISTICAL POWER OF S-TEST

In CSEP experiments for evaluating forecast models, the choice of
0.1° x 0.1° spatial grid for representation of earthquake forecasts
has been the most convenient choice of a grid because it is easy
to handle in computer codes, intuitive and simple to understand.
However, the outcomes of the experiment conducted in Section 3.1
suggest exploring other resolutions for powerful testing of forecast
models. Recently, Asim et al. (2022) proposed Quadtree to acquire
spatial grids for CSEP forecast experiments as a replacement for
0.1° x 0.1° grid. Quadtrees are not only easy to implement and
intuitive but also provide the flexibility to generate grids with de-
sired resolutions. Furthermore, the Quadtree approach is already
integrated into pyCSEP, making the grid generation even more
straightforward. Thus, we use the recently proposed Quadtree grids
to explore the statistical power of the S-test for different resolutions
of spatial grids.

4.1 Quadtree grids for CSEP experiments

The Quadtree is a tree-based hierarchical data structure in which
each node is allowed to have either zero or four child nodes. The
Quadtree, in combination with the Mercator projection of the earth,
divides the global map into four quadrants, also called #iles, where
the prime meridian and the equator define the dividing lines. In
this case, we refer to the globe as the root node, representing the
globe up to 85.05° latitude north and south. In the first step, the root
tile is divided into four square subtiles, the NE, NW, SW and SE
regions. These tiles are uniquely identified using Quadkey, which
are numbers of the base-four system 0, 1, 2 and 3, respectively. Each
of these four tiles can be further divided into four square subtiles.
The Quadkeys of these subtiles are generated from the Quadkey of
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Figure 2. A showcase of the potential factors affecting the statistical power of the S-test using a synthetic experiment. In this synthetic experiment, a uniform
forecast model is tested for events randomly sampled from a one-dimensional Gaussian distribution (mimicking observed earthquakes) using the S-test. We
analyse the S-test’s statistical power as a function of the number of events (Nq) and the number of grid cells (Neeyy) for uniform and density-based binning
(mimicking spatial grids). (a) Illustration of 20 uniformly spaced bins, along with its counts for 10 events randomly sampled from Gaussian distribution with
o = 1. (b) Same as (a) but for 20 density-based bins. (c) Dependence of the S-test’s power on Neeji, given Neq = 10. (d) The power of the S-test as a function

of Neq in the case of 20 grid cells for uniform and data-based binning.

the parent tile by appending the relative Quadkey of the subtile (0, 1,
2 or 3), e.g. the subtiles of tile 3 are 30, 31, 32 and 33. The number
of times a tile is divided is called the zoom level (L). This way, the
entire globe can recursively be divided into as many tiles as desired,
with a unique Quadkey for every subtile. Once the tiling process
reaches the required decomposition, we refer to it as a Quadtree
grid, and each tile is referred to as a spatial grid cell.

We can create a data-driven multi-resolution grid by associating
the recursive division of tiles subject to the data availability. We
can also use other data sets that could potentially be involved in
creating the forecast models to define Quadtree spatial grids, such
as seismicity, information about global strain rate, Coulomb stress
changes, etc. Here, for simplicity, we only use the observed seis-
micity to generate the Quadtree spatial grids. The idea is to increase
the grid’s resolution in regions with high earthquake density while
keeping cells large for seismically less active regions. To generate
such a data-based multi-resolution grid, first, we define a threshold
for the maximum number of data points (earthquakes in our case)
allowed per cell, N.x. We can also introduce an additional crite-
rion, such as a minimum cell area or maximum zoom level (Lyax),
allowed for a cell to ensure that cell size does not get too small for
seismically dense regions.

4.2 Statistical power analysis: single-resolution grids

We use the Quadtree for the global testing region to analyse the
statistical power of the S-test against the uniform forecast model
in the case of different single-resolution grids. We generate spatial
grids at different zoom levels [L = (5, 6, 7, 8,9, 10 and 11)], which
lead to the spatial grids with a different number of cells [(1024,

4096, 16384, 65536, 262144, 1048576 and 4194304)]. We name
these single-resolution Quadtree grids based on their zoom level
as L5, L6, L7, L8, L9, L10 and L11. For every grid, a uniform
forecast model is generated. The observed catalogs of different
sizes [N,y = 2', wherei = (6,7, 8, ..., 15)] are simulated using the
seismicity model A; (i.e. GEAR1) in the same way as explained
in Section 3. Now the uniform forecast for each spatial grid is
evaluated using the simulated observed catalogs, and the statistical
power is computed for all the combinations of spatial grids and
Nobs, as shown in Fig. 3. The figure reveals that the S-test only
achieves maximum power, i. e.the uniform forecast is rejected in
all 100 simulated catalogs, if the number of earthquakes in the
observed catalogs exceeds 32 000 in the case of a single-resolution
grid with approximately 4.2 million cells, which is the nearest to
the conventional 0.1° x 0.1° grid in terms of the number of cells.
The trends of statistical power observed in this figure are consistent
with Table 1 and Fig. 2, highlighting that the statistical power of
the S-test increases with more earthquakes in the observed catalog.
The analysis also explains our result that the S-test cannot reject
the uniform model for the observed earthquakes in the 0.1° x 0.1°
gridded global test region (see Section 2.2). Since we do not have
any true seismicity model for the earth, we rely on simulations
from GEARLI as a proxy. Therefore, the statistical power analysis of
the S-test is an approximation for the real scenarios, which should
help design the forecast experiment for powerful testing of forecast
models.

In the aforementioned global forecast experiment, only 651 earth-
quakes are available to test the forecast in 6.48 million spatial cells.
The decrease in the resolution of the grid can lead to a powerful
S-test with fewer earthquakes. Using Fig. 3 as a look-up table, 651
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Figure 3. The statistical power of the S-test with GEARI1 as the data-generating model to reject the uniform model forecasts for single-resolution grids
indicates that the power of the S-test increases for the grids with lower resolution and a larger test sample size.

observed earthquakes of the actual forecast experiment suggest that
we should have at most 16 000 spatial cells in the global test grid to
conduct a statistically powerful forecast evaluation. However, sim-
ply decreasing the resolution of earthquake forecast models uni-
formly from a grid of 6.48 million cells to 16000 cells leads to
bigger spatial cells (e.g. more than 300 x 300 km cell dimensions
around the equator) and loss of spatial information provided by a
model, particularly for regions with dense seismicity. Therefore,
we need to explore the density-based grids for testing earthquake
forecast models, as also suggested by the outcome of the synthetic
experiment in Section 3.1.

4.3 Statistical power analysis: multi-resolution grids

We generate different data-driven multi-resolution grids based on
the global CMT catalog (1976-2013) and repeat the rest of the steps
to determine the statistical power of the S-test. For this analysis, we
use the global CMT catalog without declustering up to the year
2013 to generate data-based Quadtree grids. For demonstrating the
use of multi-resolution grids for the S-test analysis, we used the
catalog consisting of 28 465 earthquakes covering 37 yr from 1976
to 2013 with M > 5.15. The corresponding frequency-magnitude
distribution of earthquakes is shown in Fig. S3. For the grid gener-
ation, we use the criteria that the number of earthquakes in a cell is
not allowed to exceed Ny« as long as the grid resolution is smaller
than L,,.. Here, we set L,x = 11.

We generate grids for different thresholds on the maximum num-
ber of earthquakes allowed per cell as N,,,,. = (100, 50, 25, 10, 5 and
1), which results in multi-resolution grids with the number of cells
(922, 1780, 3502, 8089, 14 782 and 39 811), respectively. We name

these grids as NI0OL11, N50L11, N25L11, NIOL11, N5L11 and
NILI1. The data-based grids can reduce the number of spatial cells
without losing the resolution of the spatial seismicity distribution.
The uniform forecast is aggregated to every multi-resolution grid,
and the statistical power is computed for each grid using synthetic
catalogs based on A; (GEARI). The trend of statistical power of
the S-test for data-based multi-resolution grids as a function of Nyps
is recorded in Fig. 4. The figure indicates that the S-test achieves
high power in evaluating earthquake forecast models when tested on
multi-resolution grids. The S-test rejects the uniform model for all
100 simulations (estimated power of 1.0) for every multi-resolution
grid with just four or eight earthquakes in the test catalog. Thus, if
we aim to increase the statistical power of the S-test, then we must
evaluate the forecast models on the data-driven multi-resolution
grids without waiting for more data.

5 RE-EVALUATION OF GLOBAL
FORECASTS

Our synthetic study in the previous section shows that the choice
of the test grid strongly impacts the S-test’s statistical power. The
disparity in the number of spatial test cells and the number of ob-
served earthquakes leads to the motivation to analyse the statistical
power of the S-test. Furthermore, the S-test cannot even find the
non-informative uniform forecast model as inconsistent with the
observed seismicity. It raises questions about the significance of the
S-test result in previous CSEP forecast experiments. The result of
any test with low power can be considered less informative. Thus,
we re-evaluate the global models on different single and multi-
resolution Quadtree grids to identify powerful testing.
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Figure 4. The statistical power of the S-test with GEAR1 as the data-generating model to reject the uniform forecast model for multi-resolution grids indicates
that with multi-resolution grids, statistically powerful testing can be performed with as few as four or eight earthquakes in the observed catalog.

The forecast models competing in the global forecast experiment
shown in Fig. 1 are available for the 0.1° x 0.1° grid. We need
to explore how the performance of these forecast models changes
for different grids. Because we do not have the codes to recreate
those models for different grids, we create multiple versions of the
forecast models by mapping the forecasts from the 0.1° x 0.1°
grid onto the multiple Quadtree grids. Mapping forecasts from 0.1°
x 0.1° grid to other grids involve aggregation and de-aggregation
Asim et al. (2022). Aggregation of forecasts of smaller cells to a
larger cell is done by summing the smaller cells’ rates. The forecast
mapping from a bigger cell to smaller cells is referred to as forecast
de-aggregation, which is carried out by uniformly distributing the
rate of the bigger cell into smaller cells. For forecasts available
at a Quadtree grid of any resolution, the forecast (de-)aggregation
is fast and computationally inexpensive because all the cells are
exactly comparable, and not a single cell from the model grid is
shared between two or more cells of the testing grid. However,
for aggregating forecasts from 0.1° x 0.1° to Quadtree grids, we
also come across cells that are shared between multiple adjacent
cells. For such shared 0.1° x 0.1° cells, we also assume a uniform
seismicity rate within the cells and distribute the forecast rates to
the intersecting test cells according to the overlap area with these
cells.

The forecast aggregation from a 0.1° x 0.1° model grid to a
Quadtree grid raises the question of whether the change in the fore-
cast grid affects the consistency of the model or not. In theory,
the sum of Poisson models is also a Poisson model with the rate
A = Y A;. Thus, a model passing the consistency test on higher
resolution should also pass on the lower resolution grids after ag-
gregation. In order to demonstrate this, we use the GEAR1 forecast
model available for 0.1° x 0.1° as a seismicity generator and sim-
ulate catalogs with Ny, = 2673151 events. For each Ny, we
generate 100 random catalogs. Then, we aggregate GEAR1 on dif-
ferent multi-resolution Quadtree grids and evaluate them using the

S-test against the generated GEAR1 catalogs. We determine the per-
formance of the S-test as the fraction of times the S-test is passing
for each Noys. The results are presented in Fig. 5, showing that the
catalogs generated by GEAR1 of 0.1° x 0.1° grid and the forecasts
aggregated on different grids are consistent with each other. The
S-test traditionally uses a 95 per cent confidence interval, with a
rejection when the actual value is outside the lower bound. Thus, a
true model should theoretically pass the test in 97.5 per cent of the
cases. Our results show that the values scatter between 95.6 per cent
and 100 per cent. These values are consistent with the theoretical
value considering that we use 1000 random catalogs. The results
indicate that (de-)aggregation of a true model to the Quadtree grids
does not affect the consistency of the forecast models. A forecast
model representing the true spatial earthquake distribution will pass
the S-test if (de-)aggregated to Quadtree grids. However, as shown
by our previous tests, a false model, which passes the test on the
0.1° x 0.1° grid, might be rejected on the new test grids because
the statistical power is increased.

We aggregate the forecast models on different Quadtree grids
discussed in Section 4 and evaluate them using the S-test based on
the same test data used for the recent global forecast experiment,
i.e. the 651 earthquakes from the Global CMT catalog observed
in 2014-2019 with M,, > 5.95. As an example, we show GEAR1
aggregated on grid L6 (single-resolution) and grid NSOL11 (multi-
resolution), along with the observed earthquakes in Figs S4 and
S5, respectively. The Poisson S-test results are shown for all the
grids and the different forecast models in Fig. 6. The log-likelihood
confidence interval is shown relative to the observed log-likelihood
score. The outcome of the S-test in terms of non-normalized log-
likelihood values is shown in Fig. S6. The forecasts have different
test results when evaluated at different grid resolutions. Our previous
analysis using GEARI as a data-generating model suggests that
the observed catalog with 651 earthquakes can probably lead to
statistically powerful S-tests for either single-resolution grids with
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Figure 5. Observed catalogs generated using GEAR1 at 0.1° x 0.1° grid to evaluate GEAR1 aggregated forecasts on different multi-resolution grids, showing
that the aggregated forecasts are spatially consistent with the actual forecast provided at 0.1° x 0.1° grid.

less than 16000 cells or multi-resolution grids. The forecasts of
SHIFT_GSRM2f and TEAM were already found inconsistent by
the S-test at the 0.1° x 0.1° grid. We find that these models are
indeed limited in their ability to forecast the location of observed
earthquakes on all other grids as well. In contrast, the forecasts
of GEAR1, KJSS and WHEEL, as well as the uniform model, all
pass the S-test for the 0.1° x 0.1° grid as well as high-resolution
single-resolution Quadtree grids. The uniform models starts to fail
the S-test at L8 ( Neey = 65536), WHEEL at L7 (N = 16384),
GEARI and KJSS at L5 (Mo = 1024). All the models fail the S-test
for all multi-resolution grids as well. Thus, none of the models is
spatially consistent with the observations.

To further analyse the S-test’s behaviour, we keep on increas-
ing the resolution of spatial grids beyond grid LS5, i.e. L4, L3, L2
and L1 with spatial cells of 256, 64, 16 and 4, respectively. For a
grid with just one spatial cell, the S-test equals the Number-test,
and the test will always be passed due to the S-test condition that
the number of earthquakes in the forecast models equals the num-
ber of observed earthquakes. The S-test results for the forecasts at
the other low-resolution grids are also provided in Fig. S6, along
with non-normalized S-test results for the higher-resolution grids.
With decreasing the number of cells in single-resolution grids, the
confidence interval of simulated distribution is shrinking and drift-
ing towards 0 (the maximum possible log-likelihood value). The
observed log-likelihood falls in the lower tail of the confidence in-
terval for all the forecast models, while the uniform model fails
the S-test with a relatively big margin compared to other forecast
models.

We also apply the newly proposed Binary S-test to all the ag-
gregations of forecast models to analyse whether the failure of the
S-test is related to short-time clustering (Bayona ef al. 2022). The
Binary S-test is known to be less sensitive to clustering in contrast
to the Poisson S-test. The outcome of the Binary S-test is shown
in Fig. 7 in terms of the log-likelihood confidence interval relative
to the observed log-likelihood score. The same result is also pro-
vided in terms of non-normalized log-likelihood values in Fig. S7.
The results show that more forecast aggregations are consistent

with the observation based on the Binary S-test than the Poisson
S-test, as expected. The forecasts models, GEAR1 and KJSS, pass
the Binary S-test for two more grid aggregations, including one
multi-resolution grid i.e. L5 (Neen = 1024) and NI0OL11 (Neey =
922) as compared to the Poisson S-test. Similarly, WHEEL passes
the Binary S-test for all the single-resolution grids and one multi-
resolution grid of N/0OL11. Thus, the Binary S-test makes the S-test
less sensitive to the presence of temporal seismicity clusters in the
test catalog. However, all forecasts fail the Binary S-test for the rest
of the multi-resolution grids, indicating that short-time earthquake
clustering might not be the only reason why the models fail the
S-test.

We have also explored the performance of the Binary S-test by
further reducing the resolution of spatial grids up to L4, L3, L2 and
L1 with 256, 64, 16 and 4 spatial cells, respectively. The results are
shown in Fig. S7, along with non-normalized Binary S-test results.
The results show that all forecasts pass the Binary S-test for these
low-resolution grids.

6 DISCUSSION AND
RECOMMENDATION

We substitute the lack of availability of a true seismicity model
with a forecast model showing the highest information gain (i.e.
GEART1) (Bayona et al. 2021) and use it as an earthquake generator
to explore the conditions for statistically powerful testing against
the uniform forecast model. The resolution of the grid or the num-
ber of earthquakes required to conduct the statistically powerful
S-test may change slightly with different choices of the earthquake-
generation model used in the analysis. However, the essence of the
analysis shall remain valid for other reasonable earthquake gener-
ation models, with consistent outcomes to those of Sections 3.1
and 4. As an example, we replace the GEAR1 with TEAM for
generating seismicity and compute the statistical power of the S-
test. The corresponding results are provided in Figs S8 and S9 for
single-resolution and multi-resolution grids, showing similar S-test
results. This study essentially provides a way forward to conduct
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Figure 6. Results of Poisson S-test for earthquake forecast models evaluated at different grids.
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extend the testing period to achieve a powerful test in the case

O-.........il
I

500 1000 1500 2000 2500 3000 3500
Simulated log-likelihood - Observed log-likelihood

of a forecast for millions of cells. This study suggests that we
would need, in this case, more than 32 000 earthquakes in the ob-
served catalog, which would require approximately 300 yr to record
M > 595, 80 yr to record M > 5.5 and 40 yr to record M >
5.15 earthquakes on the globe. The other factor that can make the
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Figure 7. Results of binary S-test for earthquake forecast models evaluated at different grids.

S-test powerful is the representation of earthquake forecast models
using different grids. We found that using multi-resolution grids
can enhance the statistical power in such a way that instead of
32000, only eight earthquakes can be sufficient for powerful test-
ing. The technical capability to represent forecast models on differ-
ent Quadtree grids instead of 0.1° x 0.1° grid is already integrated
into the pyCSEP. Additionally, the Quadtree also offers compu-

tational advantages and facilitates handling multi-resolution grids
(Asim et al. 2022).

The trends in statistical power observed in our synthetic exper-
iments are also reflected for all the competing forecast models at
different grids in the case of the re-evaluation of the real data. All
the forecast models passing the test at the conventional grid fail to
pass the same test for some of the other grids. So the question arises
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what resolution of the grid should be the most suitable resolution
for testing the forecast models? Evaluating the forecast models at
any single-resolution grid (like a conventional grid) with reduced
resolution can be a potential choice for testing earthquake forecast
models. However, due to the sparse nature of seismicity, simply re-
ducing the resolution of the grid uniformly everywhere reduces the
capability of the grid to capture the spatial variation offered by the
forecast models and seismicity. Even after reducing the resolution
by a factor of 25 from 6.48 million cells (0.1° x 0.1°) to 0.26 million
cells (L9), we still need approximately more than 4000 earthquakes
in the test catalog for a statistically significant test. So how much
should the grid resolution be reduced to maintain the balance be-
tween capturing the spatial variation of seismicity, the number of
earthquakes required in the test catalog and the statistical power
of the S-test? If we further reduce the resolution to grid L8 with
65536 cells, we still need more than 2000 earthquakes to achieve
high statistical power, which may need approximately 20yr of test
period to record M> 5.95 earthquakes. For reliable and statistically
powerful testing with approximately 1000 earthquakes, we need a
single-resolution grid with less than 16 000 cells (grid L7).

Conducting testing experiments using single-resolution grids in-
volves a trade-off. Either we lose statistical power or the capability
to capture spatial variations by increasing the size of cells every-
where uniformly, or we have to wait too long for sufficient testing
data. Thus, it is desirable to exploit multi-resolution grids to achieve
greater power within shorter times.

Asim et al. (2022) showed that the multi-resolution data-driven
grid is superior for generating an earthquake forecast model. Using
the highest available single-resolution grid might not be the best
choice for creating forecasts. The available earthquake data can
be split into training and test datasets to search for the optimal
choice of the grid’s resolution to constrain the model’s forecast.
Thus, we can expect the forecast models to be generated using
data-based multi-resolution grids. The present study shows that
data-based multi-resolution grids can provide statistically powerful
testing with as few as eight earthquakes, which endorses the use
of multi-resolution grids also for forecast evaluation. Therefore, we
propose using multi-resolution grids to evaluate earthquake forecast
models in future CSEP experiments.

We see from Figs 6 and 7 that the S-test is systematically rejecting
the forecasts with a higher margin for multi-resolution grids as we
locally increase the resolution in the regions of higher seismicity.
For example, the S-test rejects forecasts at grid N/00OL11 with 922
cells by a smaller margin than for other multi-resolution grids. This
margin is increasing as we enhance the ability of the grid to capture
the spatial variation of data (earthquakes in this case) by reducing the
threshold on the maximum number of earthquakes (Ny.y) allowed
per cell during the grid generation process. The largest margins,
i.e.the strongest forecast rejections, are obtained for Ny, = 1,
indicating that zooming into the highly active regions offers the
most powerful testing.

With the Quadtree approach already integrated into pyCSEP, the
forecast modellers can generate multi-resolution grids based on the
availability of data at their disposal. A modeller can locally increase
the resolution of the grid if higher-resolution data are available
for the model’s training. Similarly, the resolution of the grid can
be reduced for the regions where fewer data are available. Thus,
the modellers should make sure that the choice of the grid for
every forecast model should reflect the resolution of the data used
to create the forecast. Consequently, the provided forecast on the
multi-resolution should pass the S-test on the same grid and any
aggregations of this grid.

In contrast, Asim et al. (2022) suggested that pair-wise compar-
ative testing of earthquake forecast models based on information
gain (T-test) should be conducted using the highest available spatial
resolution. Thus, to avoid any definition of a particular grid for com-
parative testing and to save computational resources associated with
forecast de-aggregation, the point-process log-likelihood, which is
equivalent to the joint likelihood (eq. 3) in the limit of vanishing cell
sizes, should be used. In particular, Asim et al. (2022) demonstrated
that the pair-wise comparison of forecasts with different grids, when
tested on a common high-resolution grid, leads to the same results
as using the grid-independent point-process log-likelihood. There-
fore, the pair-wise testing of competing forecast models on different
spatial grids is not an issue.

7 CONCLUSION

Earthquake forecast experiments are currently performed in CSEP
for forecasts represented using 0.1° x 0.1° grid. The availability of
limited data to evaluate the forecast models causes a huge disparity
in the number of earthquakes and the number of cells, leading to
statistically powerless testing. It is necessary to have statistically
powerful tests for informed decision-making. Thus, we perform a
systematic power analysis that can guide the future earthquake fore-
cast experiment. Our analysis reveals that the statistical power of
the S-test depends on the available number of earthquakes for test-
ing and the resolution of the spatial grid. To compute the statistical
power of the S-test, we substitute the true seismicity model of the
earth (as none exists so far) with the GEARI1 forecast model and
simulate earthquakes to evaluate the uniform forecast model. Our
analysis shows that we need approximately more than 32 000 earth-
quakes in the global testing region to have a statistically powerful
test in the case of the standard 0.1° x 0.1° grid. While we wait
so long to achieve a powerful S-test on this grid, we can alter the
grid representation of the forecast by changing the resolution, which
also affects the statistical power of the S-test. With data-based multi-
resolution grids, we can achieve the maximum statistical power of
the S-test with as low as eight earthquakes. Therefore, we propose
to use multi-resolution grids for future earthquake forecast experi-
ments for evaluating earthquake forecast models.
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Figure S1. Global Uniform forecast model created for 0.1° x 0.1°
spatial grid, where the forecast rate of the cells is proportional to
the area of the cell, along with the 651 earthquake of M,,5.95+
observed in 2014-2019.

Figure S2. Flowchart for computing the statistical power of S-test.
The S-test should be able to identify two seismicity models (A,
A,) as inconsistent which are different from each other. ‘N’ is the
number of simulations carried out to compute the power, ‘i> and
‘count’ are initialized as 0 at the start.

Figure S3. Frequency-magnitude distribution of global CMT cata-
log from 1976 to 2013. The dashed vertical line indicates the cut-off
magnitude used in our analysis.

Figure S4. GEAR1 forecast model (colour-coded) aggregated on
grid L6 with 4096 spatial cells along with the 651 earthquakes of
My5.95+ observed in 2014-2019 (points).

Figure S5. GEARI1 forecast model aggregated on grid N50L11
with 1780 spatial cells along with the 651 earthquakes of M,,5.95+
observed in 2014-2019 (points).

Figure S6. Earthquake forecast evaluation using Poisson S-test for
different aggregations of the global forecast models shown as non-
normalized confidence intervals.

Figure S7. Earthquake forecast evaluation using Binary S-test for
different aggregations of the global forecast models shown as non-
normalized confidence intervals.

Figure S8. The statistical power of the S-test with TEAM as data-
generating model to reject the uniform forecast model for single-
resolution grids indicates that the power of the S-test increases for
the grids with lower resolution and a larger test sample size.
Figure S9. The statistical power of the S-test with TEAM as data-
generating model to reject the uniform model forecasts for multi-
resolution grids indicates that with multi-resolution grids, statisti-
cally powerful testing can be performed with as few as four or eight
earthquakes in the observed catalog.
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