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Abstract 34 

The TomoSense experiment was funded by the European Space Agency (ESA) to support research on 35 

remote sensing of forested areas by means of Synthetic Aperture Radar (SAR) data, with a special focus 36 

on the use of tomographic SAR (TomoSAR) to retrieve information about the vertical structure of the 37 

vegetation at different frequency bands. The illuminated scene is the temperate forest at the Eifel 38 

National Park, North-West Germany. Dominant species are beech and spruce trees. Forest height ranges 39 

roughly from 10 to 30 m, with peaks up to over 40 m. Forest Above Ground Biomass (AGB) ranges 40 

from 20 to 300 Mg/ha, with peaks up to over 400 Mg/ha. SAR data include P-, L-, and C-band surveys 41 

acquired by flying up to 30 trajectories in two headings to provide tomographic imaging capabilities. 42 

L- and C-band data were acquired by simultaneously flying two aircraft to gather bistatic data along 43 

different trajectories.  44 

The SAR dataset is complemented by 3D structural canopy measurements made via terrestrial laser 45 

scanning (TLS), Unoccupied Aerial Vehicle lidar (UAV-L) and airborne laser scanning (ALS), and in-46 

situ forest census. This unique combination of SAR tomographic and multi-scale lidar data allows for 47 

direct comparison of canopy structural metrics across wavelength and scale, including vertical profiles 48 

of canopy wood and foliage density, and per-tree and plot-level above ground biomass (AGB). The 49 

resulting TomoSense data-set is free and openly available at ESA for any research purpose. The data-50 

set includes ALS-derived maps of forest height and AGB, forest parameters at the level of single trees, 51 

TLS raw data, and plot-average TLS vertical profiles. The provided SAR data are coregistered, phase 52 

calibrated, and ground steered, to enable a direct implementation of any kind of interferometric or 53 

tomographic processing without having to deal with the subtleties of airborne SAR processing. 54 

Moreover, the data-base comprises SAR tomographic cubes representing forest scattering in 3D both 55 

in Radar and geographical coordinates, intended for use by non-Radar experts. For its unique features 56 

and completeness, the TomoSense data-set is intended to serve as an important basis for future research 57 

on microwave scattering from forested areas in the context of future Earth Observation missions.  58 

 59 

1. Introduction 60 
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The introduction of Synthetic Aperture Radar (SAR) tomography has opened the way to new 61 

opportunities for microwave remote sensing of forested areas from space (Reigber and Moreira, 2000; 62 

Tebaldini et al., 2019). Tomographic SAR surveys require illumination from multiple trajectories to 63 

form a data-stack containing multiple SAR images of the same area. The data-stack is then digitally 64 

processed to produce a collection of voxels that represent the backscattered energy in three dimensions, 65 

thus allowing direct imaging of the interior of the illuminated media (Tebaldini et al. 2017). Space 66 

Agencies have increasingly invested in SAR tomography in the last few years, funding activities to 67 

assess the use of SAR tomography in the context of spaceborne remote sensing (Aghababaei, 2020; 68 

Bloomberg et al., 2021; Tello et al., 2018; Toraño Caicoya et al., 2015; Pardini et al., 2018; Mariotti 69 

and Tebaldini, 2019; Kathi et al., 2019; Ho Tong Minh et al., 2014 and 2016; Frey et al., 2008; 70 

Fatoyinbo et al., 2021; El Moussawi et al., 2019). As a token of its potential, SAR tomography has been 71 

assigned a dedicated 14-month acquisition phase in the context of the forthcoming Earth Explorer 72 

mission BIOMASS, to be launched in 2024, (Quegan et al., 2019; Soja et al., 2021), and it has largely 73 

been considered in the context of future bistatic missions operating at L-band (Azcueta and Tebaldini, 74 

2020; Moreira et al., 2015; Scipal and Davidson, 2017).  75 

In this context, the TomoSense experiment was organized by the European Space Agency (ESA) to 76 

provide the scientific community with unprecedented data to study the features of radar scattering from 77 

temperate forests, comprising tomographic and fully polarimetric SAR surveys at P-, L-, and C-band, 78 

acquired in mono- and bistatic mode by simultaneously flying two aircraft. The dataset is complemented 79 

by a range of dedicated datasets that have proven value in the estimation of above ground biomass 80 

(AGB): a detailed forest census, terrestrial laser scanning (TLS) (Disney et al., 2018), mobile laser 81 

scanning (MLS) (Mokroš et al., 2021), unoccupied aerial vehicle laser scanning (UAV-LS) (Brede et 82 

al., 2017; Brede et al., 2022) and airborne laser scanning (ALS) products (Brovkina et al., 2022).”.  83 

In this paper, we provide a comprehensive overview of the TomoSense experiment and the produced 84 

data. The dataset is intended to serve as a basis for future research on microwave scattering from 85 

forested areas, as it allows addressing applications such as retrieval of forest height and biomass, 86 

along with studying the roles of species diversity and forest vertical structure. The dataset is intended 87 
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to be usable without requiring in-depth knowledge of SAR processing, and is freely and openly 88 

available through ESA for research purposes 89 

2. The Test site 90 

The test site of TomoSense is located within the Kermeter area in the Eifel National Park in North 91 

Rhine-Westphalia, Germany. The site was chosen for its ecological diversity with forest stands of 92 

different species, topography and age classes. In addition, being part of a National Park the site is well 93 

documented and has an established forest census. The Kermeter is an upland region, up to 528 m above 94 

sea level, covered by one of the largest contiguous, deciduous forests in that region. It covers an area of 95 

3,592 hectares, of which about 3,300 hectares is a single forested area (the so-called Kermeter-96 

Hochwald or Kermeter High Forest). Beech woods dominate the shaded, damp northern slopes (24%), 97 

in places with trees that are over 200 years old. Oak woods hold sway on the drier, southern slopes 98 

(26%), interrupted by rocky outcrops (Felsheide). About 550 hectares consist of spruce trees, which are 99 

a consequence of reforestation measures after the Second World War. However, the spruce stock is 100 

continuously being reduced by thunderstorms, drought and bark beetle infestations in favour of 101 

deciduous woods. A photo of the area is shown in figure 1. The Urft Valley in front / south of the 102 

Kermeter was shaped by the meandering Urft River. In 1905 the construction of the Urft Dam was 103 

finished and created an Amazon-like reservoir 104 

 105 

Fig. 1. The Urft Valley in front / south of the Kermeter area at the Eifel National park, North-West 106 

Germany. 107 
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The main area of interest targeted by all campaign activities is the one enclosed in the yellow rectangle 108 

in figure 2. The area is approximately 6.4 Km long and 800 m wide. Topographic slopes at this area are 109 

typically on the order of ±5°, with few areas reaching 10° and beyond.  110 

 111 

 112 

Fig. 2. Graphical overview of the TomoSense campaign.  113 

 114 

3. Forest census 115 

Forest census was carried out in spring 2019 to collect several tree parameters. Each parameter was 116 

measured at single tree level within 80 plots with size of 0.05 ha (circular plot with radius 12.62 m). 117 

The plots are from the permanent inventory established by Wald und Holz in 2011, see figure 2. The 118 

distance between any two plots is about 250 m. Each plot centre is marked with a 40 cm long iron nail, 119 

and the tree positions are a function of their angle and distance to the plot centre. The position of each 120 

plot centre was measured using a Trimble Catalyst DA1 Antenna, which is expected to be accurate to 121 

within 1 m. The combination of plot size (500m²) and grid size represents a good compromise between 122 

workload and statistical accuracy. At the same time, it allows the use of SAR airborne data to investigate 123 

forestr structure at the level of a single plot. 124 

 125 
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Field data include a total of 2564 sampled trees. For each of these, the following parameters were 126 

collected: 127 

o Tree position w.r.t. plot center; 128 

o Diameter at Brest Height (DBH) in mm; 129 

o Height in m; 130 

o Species (ID and name); 131 

o Number of trees per ha; 132 

o Basal area; 133 

o Basal area per hectare. 134 

The data-set is complemented by photographic material including two photos of each plot, see figure 3. 135 

In addition an area wide map on the dominant species is available form Wald and Holz. 136 

 137 

Fig. 3. Landscape and portrait photos of plot 1330 (beech-oak forest).  138 
 139 
 140 

4. Terrestrial Laser Scanning (TLS) 141 

Collection of TLS data took place in September 2021. The campaign took place under nearly ideal 142 

weather conditions with no wind. TLS data were acquired for 11 50 m x 50 m plots. Data was acquired 143 
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following a standardized protocol (Wilkes et al. 2017) where scans were acquired on a 16.7 m grid. 144 

Individual scans were co-registered using reflective targets, so that the resulting combined plot-level 145 

point cloud was accurate to within a few mm. Following co-registration, extraction of individual trees 146 

was carried out by applying the workflow TLS2trees (Wilkes et al. 2022) based on semantic 147 

classification approach, (Krisanski et al. 2021), that uses deep learning to classify a point cloud into 148 

leaf, wood, coarse woody debris and ground points. The deep learning model is applied ‘as is’ i.e. no 149 

additional pre-training is required  Figure 4 shows the result of applying the TLS2trees workflow to 150 

TLS data from plot 1330. 151 

 152 

 153 

 154 

Fig. 4. Trees extracted from the TLS survey of plot 1330.  155 
 156 

Following the individual tree extraction, tree volume was estimated using the TreeQSM (version 2.3.1) 157 

(Raumonen et al. 2013). AGB at the level of single trees was then obtained based on published values 158 

of wood density taken from (Zianis et al., 2005). An allometric model of the form 𝑎𝑎(𝐷𝐷2𝐻𝐻)𝑏𝑏was fitted 159 

to the TLS-derived estimates of biomass, where D and H are tree diameter at breast height (DBH) and 160 

height respectively. This model is a generic allometric form for tree volume and biomass estimation 161 

that has been used for deciduous European woodland (Wutzler et al. 2008) as well as more widely 162 

(Zianis et al, 2005). The resulting model was calibrated against the TLS-derived volume of 748 trees in 163 

total, covering the dominant species, across a wide size range, and at different growth stages). The 164 
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model takes the form 1.131(𝐷𝐷2𝐻𝐻)0.857(r2 = 0.96) and this subsequently used for the ALS-derived 165 

estimates of AGB. 166 

4.1 Mobile Laser Scanning (MLS) 167 

MLS data were collected during the TLS campaign in September 2021 and all TLS plots were covered. 168 

In contrast to TLS, where only few scan positions are visited, MLS systems are carried through the plot 169 

and thereby view the canopy from this trajectory. MLS acquisition time is much faster than TLS on the 170 

one hand. However, on the other hand, the range and power of these systems is often limited leading to 171 

high occlusion in the upper canopy. At each plot, data were collected with a Greenvalley LiBackpack 172 

DGC50 in two successive walks. The raw ranging and Inertial Measurement Unit (IMU) data were 173 

processed with the provided Greenvalley software suite and resulting point clouds were registered to 174 

world coordinates based on the UAV-LS point clouds.  175 

 176 

5. UAV Laser Scanning (UAV-LS) 177 

UAV-LS data were acquired alongside the TLS data in September 2021. Two primary modes of 178 

acquisition were followed: first, coverage of all TLS plots in high density, cross-line patterns using one 179 

flight per plot. Second, flights that covered complete stands where the TLS plots were located (see 180 

figure 2). All flights were performed with a RIEGL VUX-1UAV and processing of raw sensor data to 181 

point clouds followed standardized procedures (Brede et al., 2017). 182 

 183 

6. Airborne Laser Scanning (ALS)  184 

Small footprint lidar ALS data were acquired by CzechGlobe in summer 2018 and remeasured in 185 

summer 2021. Lidar-derived products include terrain topography, forest height, and AGB estimates. 186 

Lidar-derived forest height is shown in figure 5.  187 

 188 
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 189 

Fig. 5. Canopy Height Model (CHM) as derived from ALS data.  190 
 191 

Spatial maps of forest AGB were produced by CzechGlobe based on data from the 80 forest census 192 

plots and corresponding AGB estimates derived using allometric equations based on analysis of TLS 193 

data (as described in section 4). The analysis was complemented by including information from 194 

additional 100 forest census plots from a previous study in the Silesian Beskids area at the border 195 

between Czech Republic and Poland, which is characterized by a similar species composition as in 196 

Kermeter. This choice was made to extend the biomass variability towards the low end, which is not 197 

well represented in Kermeter. Afterwards, plot data were partitioned into a training and validation sets, 198 

and used to train the coefficients of a number of predictors derived from ALS data through machine 199 

learning techniques (Brovkina et al., 2022). The top ten best performing models were averaged and the 200 

final robust meta-model was applied on predictors extracted in a regular grid to produce an AGB map 201 

in 10 m resolution. 202 

 203 

7. SAR flights 204 

SAR acquisitions were carried out by MetaSensing in July 2020 (P-band), September 2020 (L-band) 205 

and in November 2020 and October 2021 (C-band). All data were acquired by flying up to 30 times 206 

along two opposite headings (North-West and South-East), to provide vertical resolution capabilities 207 
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from two opposite views. L- and C-band data were acquired in bistatic mode by flying two identical 208 

SAR sensors onboard two aircraft. In so-doing, we obtained for each flight heading a mono-static (same 209 

sensor operated as transmitted and receiver) and a bi-static (one sensor as transmitter and the other as 210 

receiver) data-set. All data were collected in fully polarimetric mode, resulting in the collection of 211 

approximately one thousand SAR images. 212 

All flights were performed using one or two Cessna 208 Grand Caravan, see figure 6, equipped with 213 

GPS antennas and a power supply panel. SAR calibration was supported with two 5 m trihedral 214 

reflectors for P-band installed by FOI, and two 75 cm ones for higher frequencies. 215 

 216 

 217 

Fig. 6. The two Cessna 208 Grand Caravan used for the SAR flights.  218 

 219 

P-Band trajectories were flown with constant altitude for the first 10 passes, and by progressively 220 

lowering the trajectory in the subsequent 10 passes. Trajectories at L- and C-Band were planned so that 221 

the second aircraft (Slave) follows the first one (Master) at a safe distance, reducing its altitude 222 

progressively at each flight. The relative position of the Slave aircraft w.r.t. the Master is referred to in 223 

jargon as baseline, and is commonly described in terms of its along-track and across-track components, 224 

as represented in figure 7.  225 
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 226 

 227 

Fig. 7. Tomographic baselines. Master height is approximately 2000 m above the test site. 228 

 229 

Unfortunately, the flight formation described above was not exactly implemented in 2020, resulting in 230 

the across-track baselines to be substantially larger than planned. At L-Band, the impact of large 231 

baselines was mitigated by the long wavelength, resulting in several single-pass interferograms where 232 

the signal associated with forest scattering is clearly detected and can be used for tomographic analysis. 233 

This was not the case at C-Band, and it was decided to fully re-fly the trajectories in October 2021 to 234 

ensure the presence of properly small and large baselines.  235 

In all bistatic flights, safety conditions did not allow to fly at the planned along-track distance of 20 m. 236 

This resulted in an actual along-track distance between the two aircraft ranging from 50 m to 150 m, 237 

corresponding to a net delay between the images acquired by the two aircraft ranging from 0.5 s to 1.5 238 

s. Relevant data parameters are summarized in Table 1 below.  239 

 240 

 241 

 242 

 243 

 244 
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 P-Band L-Band C-Band 

Polarization Full-pol Full-pol Full-pol 

Bandwidth 30 MHz 50 MHz 100 MHz 

Along-track 

resolution 

≈ 1 m ≈ 1 m ≈ 0.6 m 

Flight heading North-West and 

South-East 

North-West and 

South-East 

North-West and 

South-East 

Number of passes per 

heading 

28 monostatic 30 monostatic  

30 bistatic 

17 monostatic  

17 bistatic 

Vertical resolution in 

the main area of 

interest 

≈ 5 m to 10 m  < 5 m  < 5 m  

Bistatic along track 

baseline 

Not applicable 50 to 150 m 50 to 150 m 

Table 1. Summary of SAR data 245 

 246 
8. SAR processing and derived products 247 

Radar processing was aimed at producing “tomographic cubes”, i.e.: 3D voxels representing the 248 

complex scattering coefficients in 3D, with the height direction being relative to terrain topography 249 

(Tebaldini et al. 2017). To achieve this goal, several processing steps were needed.  250 

In the first place, SAR data acquired along any single flight were focused by MetaSensing) directly in 251 

ground-coordinates, using terrain topography derived from ALS data and information about the 252 

platform trajectory from navigational data. The focusing processor corrects for amplitude factors related 253 

to distance variations and the antenna radiation pattern, in such a way as to directly associate image 254 

intensity with the backscatter coefficient (𝜎𝜎0) in all polarizations. Despite that, however, the data had 255 

to be re-calibrated polarimetrically to fix some inconsistent features ascribed to the Radar system, which 256 

showed up mostly as offsets affecting the polarimetric phase and magnitudes in different flights. This 257 

problem was interpreted as being related to triggering and stopping the acquisition in each pass. 258 
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Accordingly, it was corrected under the assumption of a single distortion matrix per overpass, following 259 

the approach in (Villa et al., 2015). Afterwards, the polarimetric signature appeared to be uniform across 260 

all passes, and consistent with the expected features of forested areas.  261 

Subsequent processing activities consisted in interferometric calibration and 3D focusing. As in most 262 

interferometric and tomographic campaigns, large part of calibration activities was aimed at correcting 263 

for mispositioning and phase errors due to inaccuracies of navigational data on the scale of a fraction 264 

of a wavelength (Tebaldini et al., 2016). This result was achieved in two steps. The first step consisted 265 

in the correction of azimuth shifts between different images, which was implemented following the 266 

multi-squint procedure proposed in (Reigber et al., 2006). The second calibration step was necessary to 267 

finely correct unwanted residual phase terms due to residual motion, which was implemented following 268 

the phase center double localization approach in (Tebaldini et. al, 2016). Calibrated SAR images were 269 

processed as described in (Yu et al., 2020) to generate 3D tomographic cubes. For an evaluation of the 270 

resulting imaging quality we refer the reader to section 8.1. 271 

 272 

8.1 Tomographic imaging 273 

We report a few examples to comment on the quality of TomoSense tomographic data. Figure 8 shows 274 

a tomographic transect, or tomogram, of the Kermeter forest as obtained by taking a vertical section 275 

from a P-Band tomographic cube (North-West heading, HH) and normalizing such that the sum over 276 

height is unitary for visualization purposes. The tomogram is visibly well focused, as it allows for a 277 

clear detection of the forest canopies and its lower envelope is very well correlated with ALS terrain 278 

topography (black line). The same transect is shown at HH and HV polarization in figure 9, where the 279 

vertical axis is now relative to ALS terrain elevation (i.e.: terrain topography is found at 0 m in each 280 

column). It is evident that the upper envelope of both tomograms is in very good agreement with ALS 281 

canopy height (white line). Interestingly, one can observe that ground scattering is dominant at HH, 282 

whereas canopy scattering is better detected at HV, consistently with observations in other forest biomes 283 

(Tebaldini et al., 2019). 284 

 285 
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 286 

Fig. 8. P-Band tomography: vertical section (HH) in absolute coordinates. The black line overlaid 287 

denotes terrain topography from ALS data.  288 

 289 

 290 

Fig. 9. P-Band tomography: vertical sections (HH and HV) w.r.t. terrain elevation (i.e.: terrain 291 

topography is found at 0 m in each column). The white lines overlaid denotes canopy height from ALS 292 

data. 293 

 294 

L-band mono- and bi-static tomograms are shown in figure 10. Canopy scattering is dominant as 295 

compared to P-Band, consistent with the physics of forest scattering. It is interesting to note that 296 

scattering from the terrain level (at 0 m in figure 10) is weaker in the case of bi-static data (quantitative 297 

analysis on the whole area shows an average decrease of about 4 dB w.r.t. mono-static data). This is 298 

consistent with the finding in (Mariotti et al., 2013) that scattering from the ground level is largely 299 
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contributed by double-bounce interactions between the trunks and the terrain, resulting in large part of 300 

the scattered energy to return to the transmitter. 301 

Figure 11 shows a comparison between L-Band bistatic Tomography and TLS at five plots sampled by 302 

with TLS. TLS data are represented by the average Plant Area Volume Density (PAVD), associated 303 

with the green curves, whereas tomographic data are represented by the average profile and are 304 

associated with the red curves. TLS and TomoSAR profiles are observed to exhibit a good agreement, 305 

especially for plots 1452, 1478, 1479. In plot 1399, the main peak is correctly detected by TomoSAR, 306 

but the understorey seems to be underestimated w.r.t. to the TLS profile. Viceversa, the top of the 307 

canopy is not detected by TomoSAR in plot 1330. Such discrepancies are to be ascribed to the use of 308 

radically different wavelength and vertical resolution. Another factor to account for is that the graphs 309 

in figure 11 are only representative of the average profiles within each plot, whereas more information 310 

could be retrieved by analysing the spatial variability of TomoSAR vertical profiles, as in (Pardini et 311 

al., 2018b). 312 

 313 

Fig. 10. L-Band tomography: vertical sections (mono-static and bistatic) w.r.t. terrain elevation. The 314 

dashed lines overlaid denotes canopy height from ALS data. 315 

 316 
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 317 

Fig. 11. Comparison between TLS and SAR Tomography at the five plots. Green curves: Plant Area 318 

Volume Density (PAVD, m2/m3) from TLS. Red curves: normalized tomographic profile from bistatic 319 

HV L-Band data (average over each plot). 320 

 321 

Differently from L-Band, the signal from canopy scattering could not be detected in C-Band repeat pass 322 

data due to temporal decorrelation resulting from the time elapsed between consecutive flights (on the 323 

order of few minutes). A partial detection of the forest canopies is achieved by processing only image 324 

pairs acquired in the same pass (Tebaldini and Ferro-Famil, 2017), see figure 12. In this case, temporal 325 

decorrelation is only induced by the time lag between mono- and bi-static images from the same flight, 326 

which is slightly larger than the decorrelation time of canopy scattering at C-Band (Monteith and 327 

Ulander, 2022). Interestingly, the ground signal is here well detected, which demonstrates some 328 

penetration capabilities at C-Band as well. 329 

 330 

Fig. 12. C-Band tomography: vertical sections w.r.t. terrain elevation. The white lines overlaid denotes 331 

canopy height from ALS data. 332 

 333 
9. Sensitivity to forest AGB 334 

Figure 13 shows the L-band HV vertical reflectivity profiles for spruce and beech forest from the NW 335 

track bistatic acquisition. The profiles are based on 0.5 ha averages, i.e. the intensity is averaged over 336 

0.5 ha in the horizontal for each height plane, which are then averaged over 20 t/ha AGB intervals. The 337 

curves are colored from low AGB (blue) to high AGB (red), to illustrate the AGB dependence. The 338 
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changing profiles for spruce and beech show a distinct difference when moving from low to high AGB. 339 

For spruce, the maximum intensity from the canopy is located at about 15-20 m and increases with 340 

AGB. For beech, on the other hand, the location of the maximum intensity increases from about 15 m 341 

to almost 30 m for increasing AGB, whereas the maximum value is almost constant.  342 

The results using one AGB estimation method for temperate forest (a mix of all forest types) at P- and 343 

L-band NW track acquisition is shown in Figure 14. This method uses the fraction of the intensity in 344 

the 20 to 30 m height canopy layer to the total intensity of the vertical profile, for each 0.5 ha data point. 345 

Note that this is a normalized measure, allowing for comparison between points without absolute 346 

intensity calibration. The AGB is estimated through an exponential fit model, 𝐴𝐴𝐺𝐺�𝐵𝐵 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎0 + 𝑎𝑎1𝐼𝐼𝑑𝑑𝑑𝑑) 347 

with parameters a0 and a1, estimated using the ALS AGB for half of the points as AGB reference data, 348 

i.e. training data, and the performance is evaluated using the remaining data points. . As seen, the results 349 

at L-band show an R2 of 0.47 and an RMSE of 39.9 t/ha (15.6 %), while the results at P-band show an 350 

R2 of 0.50 and an RMSE of 33.3 t/ha (12.7 %). 351 

 352 

Fig. 13. Spruce and beech forest average L-band HV vertical reflectivity profiles for 0.5 ha points in 20 353 

t/ha AGB intervals, from the NW track bistatic acquisition. 354 
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 355 

Fig. 14. P- and L-band NW track HV TomoSAR temperate forest (mix of all forest types) AGB 356 

estimation plotted against the reference ALS AGB, using every second point (shown in green) for 357 

training the exponential fit model. This is using the canopy layer fraction method (input is the fraction 358 

of the intensity in the 20 to 30 m canopy layer to the total intensity in the vertical reflectivity profile of 359 

each point). 360 

 361 

With more than 500 data points used for the AGB retrieval at both P- and L-band, the RMSE and R2 362 

measures are considerably stable. Although, the density of data points is higher at high than at low 363 

AGB, pushing the mean AGB to the higher side of the covered interval. It should also be noted that the 364 

retrieval model tends to weight the estimate towards the mean AGB of the training data points for less 365 

than perfect correlation, minimizing the overall RMSE while overestimating low AGB and 366 

underestimating high AGB. This effect is apparent in the figures, in combination with the fact that a 367 

higher density of high than low AGB data points cause the model to fit high AGB better, in order to 368 

minimize the overall RMSE 369 

 370 

10. Conclusions 371 

The TomoSense experiment was conceived to provide key elements in support of the research on future 372 

SAR Missions focused on remote sensing of forested areas, such as the BIOMASS, NISAR, and 373 
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candidate bistatic missions like Tandem-L. To do that, an extensive data-set was collected comprising 374 

P., L-, C- Band data acquired in mono- and bi-static configurations, complemented by detailed 375 

terrestrial and aerial Lidar data and forest inventory. Results shown in this paper are only preliminary. 376 

Yet, they advocate for the vast range of analysis allowed by this data-set. It was shown that TomoSense 377 

provides accurate tomographic imaging of the vegetation at different wavelengths, polarizations, and 378 

observation modes, resulting in the possibility to compare Radar and Lidar observables and assess the 379 

retrieval of biophysical parameters on a quantitative basis. The entire dataset is free and openly available 380 

through ESA for research purposes and can be accessed at https://earth.esa.int/eogateway/catalog. 381 

Importantly, data are provided in a format that can be directly understood and used by researchers 382 

outside the Radar community. For this reason, we deem that TomoSense represents a unique 383 

opportunity for the scientific community to better understand the connection between forest biophysical 384 

parameters and Radar observables, and use this knowledge for the development of Earth Observation 385 

of forested areas. 386 
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