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Abstract
As most eukaryotic genomes are yet to be sequenced, the mechanisms underlying 
their contribution to different ecosystem processes remain untapped. Although ap-
proaches to recovering Prokaryotic genomes have become common in genome biol-
ogy, few studies have tackled the recovery of eukaryotic genomes from metagenomes. 
This study assessed the reconstruction of microbial eukaryotic genomes using 6000 
metagenomes from terrestrial and some transition environments using the EukRep 
pipeline. Only 215 metagenomic libraries yielded eukaryotic bins. From a total of 447 
eukaryotic bins recovered 197 were classified at the phylum level. Streptophytes and 
fungi were the most represented clades with 83 and 73 bins, respectively. More than 
78% of the obtained eukaryotic bins were recovered from samples whose biomes 
were classified as host- associated, aquatic, and anthropogenic terrestrial. However, 
only 93 bins were taxonomically assigned at the genus level and 17 bins at the spe-
cies level. Completeness and contamination estimates were obtained for a total of 
193 bins and consisted of 44.64% (σ = 27.41%) and 3.97% (σ = 6.53%), respectively. 
Micromonas commoda was the most frequent taxon found while Saccharomyces cer-
evisiae presented the highest completeness, probably because more reference ge-
nomes are available. Current measures of completeness are based on the presence of 
single- copy genes. However, mapping of the contigs from the recovered eukaryotic 
bins to the chromosomes of the reference genomes showed many gaps, suggesting 
that completeness measures should also include chromosome coverage. Recovering 
eukaryotic genomes will benefit significantly from long- read sequencing, develop-
ment of tools for dealing with repeat- rich genomes, and improved reference genomes 
databases.
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1  |  INTRODUC TION

Microbial eukaryotes play critical roles in ecosystem processes by 
decomposing organic material (e.g., decomposition processes by 
fungi in soil) (Baldrian et al., 2012), predating on other microbes, 
or producing organic compounds from inorganic compounds 
(Bik et al., 2012; Bulan et al., 2018; Lind & Pollard, 2021; West 
et al., 2018). An estimated 8.7 million eukaryotic species inhabit our 
planet (Sweetlove, 2011), but as of 7 November 2022, only slightly 
more than 37,500 eukaryotic (fungi, invertebrates, plant, protozoan, 
mammalian vertebrates, and other vertebrates) taxonomy ids exist 
in RefSeq (O'Leary et al., 2016) Release 215 (ftp://ftp.ncbi.nlm.nih.
gov/refse q/relea se/relea se- stati stics/). However, recent studies 
have predicted more than six million species of fungi alone (Baldrian 
et al., 2021) which suggests that the total counts of eukaryotes 
greatly exceed previous estimations.

Despite current efforts, most microeukaryotes remain difficult 
to isolate and sequence. Further, the recovery of their genomes from 
metagenomes is limited compared to prokaryotes (West et al., 2018). 
Nevertheless, recent tools such as EukRep (West et al., 2018) and 
EukDetect (Lind & Pollard, 2021) aim to improve eukaryotic genome 
reconstruction from environmental metagenomes (Peng et al., 2021). 
However, EukRep only uses a subset of the 477 single- copy genes in 
their database to perform taxonomic classification, while EukDetect 
uses 214 marker genes. Taxonomic assignment of contigs and bins 
generated from metagenomic libraries can also be performed by 
the CAT/BAT tool (von Meijenfeldt et al., 2019). However, their ho-
mology search approach is time- consuming and requires extensive 
databases that are currently lacking a good representation of micro-
bial eukaryote genomes (Pronk & Medema, 2022). Other tools, such 
as BUSCO (Waterhouse et al., 2017) and EukCC (Saary et al., 2020) 
are employed to measure the quality (completeness and contamina-
tion) of microeukaryotic metagenome- assembled genomes (MAGs). 
However, BUSCO only provides completeness measures and does 
not ascertain contamination. The reconstruction of eukaryotic ge-
nomes from metagenomes also faces additional challenges com-
pared to prokaryotes. For example, eukaryotes are present in lower 
abundance when compared to prokaryotes (Lind & Pollard, 2021). 
To reconstruct less abundant species from metagenomes, increased 
sequencing depths are required. Additionally, the low number of 
reference genomes in databases used for taxonomy assignment lim-
its our ability to obtain a realistic overview of eukaryote diversity 
(Pawlowski et al., 2012). Other challenges in the recovery of eukary-
otic genomes include the existence of multiploidy and the share of 
repeat regions (Delmont & Eren, 2016).

Large- scale metagenomic studies usually do not include the re-
construction of microbial eukaryotes (Nayfach et al., 2019, 2020; 
Parks et al., 2017; Tully et al., 2018; Zhu et al., 2019), even in environ-
ments where they are key players such as in soil and host- associated 
biomes. This bias towards prokaryotes may lead to incorrect or in-
complete assertions on the contribution of microbes to ecosystem 
processes. Also, the study of microeukaryotes is usually associated 
with human (Nguyen & Kalan, 2022; Parfrey et al., 2011), animal 

(Kittelmann et al., 2015), and plant (Sapp et al., 2018) hosts, as well 
as in marine environments (Chen et al., 2017; Santi et al., 2021) and 
constructed ecosystems (Zahedi et al., 2019) due to their integral 
role in ecosystem processes. For example, in plant- associated bi-
omes, microbial eukaryotes influence nutrient uptake (Rodriguez 
Jr et al., 2009), while in human- associated microbial eukaryotes 
influence host immune system responses via the gut microbiome 
(Laforest- Lapointe & Arrieta, 2018). In aquatic and anthropogenic 
(e.g., wastewater treatment plants) biomes, microbial eukaryotes 
contribute to energy production (Matsubayashi et al., 2017; Trench- 
Fiol & Fink, 2020). Thus, studies including all domains of life and 
across all biomes would provide better insights into the role and ef-
fect of microbiomes in environmental and human health. Further, 
the inclusion of eukaryotes would also benefit studies that aim to 
catalogue, at the genome level, all of Earth's microbiomes (Nayfach 
et al., 2020). In this study, we aim to (1) assess our ability to recover 
eukaryotic genomes from environmental metagenomes, and (2) 
compare the quality of the best Eukaryotic MAGs from this study to 
reference genomes.

2  |  MATERIAL S AND METHODS

The complete workflow used in this study is shown in Figure 1.

2.1  |  Metagenome data set

A total of 6000 curated metagenomes were collected from the 
Collaborative Multi- domain Exploration of Terrestrial metage-
nomes (CLUE- TERRA) consortium (https://www.ufz.de/index.
php?en=47300). The first task of the curation process was to 
filter for true whole genome shotgun (WGS) libraries since non-
metagenomic libraries in the Sequence Read Archive (SRA) can 
be wrongfully annotated as metagenomic. This was achieved 
by using PARTIE (Torres et al., 2017) with default parameters. 
Next, metagenomes with sequence quality scores below 70%, 
obtained via SRA- Tinder (https://github.com/NCBI- Hacka thons/ 
SRA_Tinder) using default parameters, were discarded. To maxi-
mize the comparability of the obtained metagenomes, only those 
sequenced using the Illumina sequencing platform and with a mini-
mum of eight million paired- end reads per library were kept. Lastly, 
the consortium's focus on terrestrial environments excluded all 
libraries containing coordinates or terms for sea or ocean envi-
ronments. However, our data set also includes transition environ-
ments such as rhizosphere and estuaries. Furthermore, given the 
dominance of eukaryotic organisms in the large- size fraction of 
metagenomes collected from the Tara Oceans project (Alexander 
et al., 2022) certain aquatic environments, such as lakes and riv-
ers, were kept to improve our chances of recovering microbial eu-
karyotes. We used the definition of biomes and sample sources 
determined by Buttigieg and collaborators (Buttigieg et al., 2013). 
The exact definitions for terms used can be found in the Ontology 
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Lookup Service (https://www.ebi.ac.uk/ols/index) provided by 
the European Molecular Biology Laboratory (EMBL).

2.2  |  Preprocessing and library assembly

For each metagenomic library, the raw reads were quality- controlled 
using metaWrap (Uritskiy et al., 2018) with default parameters. 
Trimming of raw reads was performed using TrimGalore (https://
github.com/Felix Krueg er/TrimG alore) with the default settings. 
High- quality reads from each metagenomic library (using default 
Phred scores from TrimGalore) were aligned to potential host ge-
nomes using bmtagger (Rotmistrovsky & Agarwala, 2011) using 
the human build 38 patch release 12 database (GRCh38.p12). This 

alignment aims to remove human contamination and read pairs with 
only a single aligned read from the metagenomic libraries.

We used metaSpades (Nurk et al., 2017) to assemble the differ-
ent samples using default parameters.

2.3  |  Binning, taxonomic classification and 
quality assessment

Before binning, we used EukRep (West et al., 2018) to separate eu-
karyotic contigs from prokaryotic ones. Next, each eukaryotic as-
sembly was binned using CONCOCT (Alneberg et al., 2014). Bins 
with size below 2 Mb were removed. Bin quality was assessed using 
the EukCC (Saary et al., 2020) and BUSCO (Waterhouse et al., 2017) 

F I G U R E  1  Workflow used in this study. Briefly, (1) samples were selected from the Terrestrial Metagenome Metadata Database (https://
webapp.ufz.de/tmdb/), which is connected to the Collaborative multi- domain exploration of terrestrial metagenomes (CLUE- TERRA) 
consortium. Biomes and sample sources were defined based on the ENVO terms available at https://www.ebi.ac.uk/ols/index. (2) Next, 
the selected metagenomic libraries were downloaded from the Sequence Read Archive (SRA). (3) The sequencing reads were quality- 
controlled using metaWrap (Uritskiy et al., 2018) with default parameters. Furthermore, the reads were trimmed using TrimGalore (https://
github.com/Felix Krueg er/TrimG alore) with the default settings. Human host contamination was assessed and removed with bmtagger 
(Rotmistrovsky & Agarwala, 2011) using the human build 38 patch release 12 database (GRCh38.p12). (4) Contig assembly was performed 
using metaSpades (Nurk et al., 2017) with default parameters. (5) Binning of eukaryotic contigs was performed using CONCOCT (Alneberg 
et al., 2014) with default parameters. Bin quality was assessed using the EukCC (Saary et al., 2020) and BUSCO (Waterhouse et al., 2017) 
pipelines with default parameters. (6) Taxonomic classification of each generated bin was performed using taxator- tk (Dröge et al., 2015) 
using default parameters. (7) Genes were predicted using the GeneMark- ES model (Besemer et al., 2001) and annotated using MAKER2 
(Holt & Yandell, 2011) with the RepBase gene database (Bao et al., 2015). Next, the gene sequences predicted by MAKER2 were submitted 
to GhostKOALA (Kanehisa et al., 2016) for functional annotation. (8) Medium and High- quality microeukaryote bins were assembled into 
chromosomes (9) using Chromosomer (Tamazian et al., 2016) with default parameters. (10) Microbial eukaryote genome recovery was also 
assessed according to biome. (11) The assembled chromosomes of the recovered microeukaryotic bins were aligned to the chromosomes of 
the reference genomes using Minimap2 (Li, 2018) with default parameters. (12) Lastly, the divergence rates were calculated based on the 
pairwise sequence alignments generated from Minimap2 using the pafr R package, with default parameters (https://rdrr.io/githu b/dwint er/
pafr/).
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pipelines. Taxonomy was assigned to each bin using taxator- tk 
(Dröge et al., 2015) using default parameters.

Coverage refers to the average number of reads aligned to 
known reference bases. Here, we calculated coverage by multiply-
ing the number of mapped reads by the average length of reads in 
the libraries, then dividing by the size of the bins into base pairs 
(Equation 1).

The quality score of eukaryotic bins was assessed as deter-
mined by (Parks et al., 2017) (Equation 2) using the complete-
ness and contamination values determined by EukCC (Saary 
et al., 2020).

Eukaryotic bins were classified as high quality if their quality 
score was greater than 50 and presented a completeness value 
greater or equal to 60.

2.4  |  Mapping of species- level, high- quality 
eukaryotic bins

To assess genome completeness, the high- quality eukaryotic bins 
(classified to species level) were assembled into chromosomes. 
This was achieved using Chromosomer (Tamazian et al., 2016) with 

default parameters. Next, the assembled chromosomes were aligned 
to the chromosomes of the reference genomes using Minimap2 
(Li, 2018) with default parameters. The divergence rates were cal-
culated based on the pairwise sequence alignments generated 
from Minimap2 using the pafr R package, with default parameters 
(https://rdrr.io/githu b/dwint er/pafr/) (Table 1).

2.5  |  Gene prediction and functional annotation

Genes were predicted using the GeneMark- ES model (Besemer 
et al., 2001) and annotated using MAKER2 (Holt & Yandell, 2011) 
with the RepBase gene database (Bao et al., 2015). The functions of 
interest in this study are based on the work by Kieft and collabora-
tors (Kieft et al., 2018) involving carbon and nitrogen cycling. Genes 
of the reference genomes Bathycoccus prasinos and Micromonas com-
moda involved in carbon fixation (Tables S1 and S2, respectively) and 
nitrogen metabolism (Tables S3 and S4, respectively) were extracted 
from Kyoto Encyclopedia of Genes and Genomes (KEGG) (release 
100, 1 October 2021).

To demonstrate the potential contribution of eukaryotes to car-
bon fixation and nitrogen cycling, we selected the bins CTeuk- 1331 
(B. prasinos) and CTeuk- 1332 (M. commoda) since they were recov-
ered from the same metagenomic libraries used in Kieft and col-
laborators' study and presented the highest quality scores in their 
taxa. Next, we submitted the gene sequences predicted by MAKER2 
to GhostKOALA (version 2.2) (Kanehisa et al., 2016) to determine 
their function and reconstruct KEGG pathways. The mapping of 

(1)coverage = mapped reads∗average read length∕size of bin (bp)

(2)Quality score = completeness − (5∗contamination)

TA B L E  1  Gap and divergence rates of reconstructed eukaryotic bins to the reference chromosomes (number of gaps, average gap size 
and average per base divergence) and genomic information of the reference genomes (genome size, number of chromosomes and average 
chromosome size) (σ = standard deviation).

EukBin Species
Genome 
sizea (mb)

No. of 
chromosomes

Average 
chromosome 
size (mb)

No. of 
gapsb Average gap size (bp)c

Average 
per base 
divergenced

CTeuk- 1831 Komagataella phaffii 9.22 4 2.31 523 190.7266 (σ = 65.24) 0.0166

CTeuk- 1331 Bathycoccus prasinos 14.96 19 0.79 2066 167.4468 (σ = 85.23) 0.024

CTeuk- 1324 Micromonas commoda 20.97 17 1.23 1709 182.5044 (σ = 59) 0.151

CTeuk- 1325 Micromonas commoda 20.97 17 1.23 1902 163.3701 (σ = 57.63) 0.154

CTeuk- 1329 Micromonas commoda 20.97 17 1.23 1753 180.7028 (σ = 60.78) 0.154

CTeuk- 1332 Micromonas commoda 20.97 17 1.23 1851 163.8736 (σ = 57.59) 0.152

CTeuk- 1336 Micromonas commoda 20.97 17 1.23 1765 178.34 (σ = 60.91) 0.155

CTeuk- 1341 Micromonas commoda 20.97 17 1.23 1696 181.01 (σ = 59.12) 0.156

CTeuk- 1342 Micromonas commoda 20.97 17 1.23 1641 183.2572 (σ = 59.82) 0.155

CTeuk- 1743 Pichia kudriavzevii 10.81 5 2.16 554 209.78 (σ = 766.18) 0.036

CTeuk- 1741 Saccharomyces cerevisiae 12.07 16 0.75 452 179.8009 (σ = 54.20) 0.012

CTeuk- 1822 Saccharomyces cerevisiae 12.07 16 0.75 607 204.3904 (σ = 33.31) 0.041

CTeuk- 1829 Saccharomyces cerevisiae 12.07 16 0.75 1127 205.0852 (σ = 36.29) 0.033

aSize of the genome in megabases.
bNumber of gaps in the genome.
cAverage size of the gaps found in base pairs.
dDivergence rates of bases between the query and reference sequences.
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functional orthologues (K numbers) to each gene was saved in tab-
ular format.

3  |  RESULTS

From the original 6000 metagenomes, only 215 yielded eukaryotic 
bins (from a total of 447 bins). The complete number of eukaryotic 
bins and sample attributes is shown in Tables S5 and S6. Almost 
80% of all eukaryotic bins were obtained from host- associated (136), 
aquatic (122), and anthropogenic terrestrial (94) biomes (Table S6). 
Completeness and contamination measurements using EukCC 
(Saary et al., 2020) were only obtained for 193 bins. The average 
completeness and contamination were 44.64% (σ = 27.41) and 3.97 
(σ = 6.53), respectively. Completeness measurements using BUSCO 
(Waterhouse et al., 2017) were only obtained for nine bins aver-
aging 31.21% (σ = 37.24). Only five of the nine bins with BUSCO 
completeness measures also presented completeness values using 
EukCC. Differences in completeness values between the two pipe-
lines ranged from 8.41% to 0.42%. The remaining four BUSCO com-
pleteness values without corresponding measures using EukCC 
were below ~20%. Due to BUSCO's low number of bins and average 
completeness values, only the results obtained with EukCC were 
used in further analyses.

A total of 153 eukaryotic bins were classified to family level 
(Table S6). Our data had a total of 51 medium/high- quality bins (Quality 

score ≥50) of which only 14 were classified to species level (spanning 
5 unique taxa). The most frequent species- level taxonomy assigned 
to bins was Micromonas commoda (7) recovered from estuary sam-
ples. The second most frequent species- level assigned taxonomy was 
Saccharomyces cerevisiae (3) recovered from synthetic and fermentation 
metagenomes. Eukaryotic bins classified as S. cerevisiae also presented 
the highest genome coverage in the respective genomic libraries, rang-
ing from ~29 to 192 times coverage. In contrast, Bathycoccus prasinos- 
classified bins showed only approximately six times coverage in their 
samples (Table S6). The frequencies of each taxon, at different levels as 
well as per biome are shown in Figure 2. The pairwise alignments of the 
species- level, medium/high- quality bins were reassembled into chro-
mosomes and mapped to the chromosomes of the reference genomes 
as stated in the materials and methods.

The pairwise alignments for each reassembled eukaryotic bin 
are shown in Table S7. Assembled chromosomes with the high-
est divergences (per base differences between a query and tar-
get sequence) to the reference chromosomes were found in bins 
classified as M. commoda (average 0.154, σ = 0.012) (Figure 3a). In 
contrast, the assembled chromosomes of bins classified as S. cer-
evisiae showed the lowest divergences compared to the reference 
chromosomes (average 0.029, σ = 0.017) (Figure 3b). The complete 
set of results of divergences between assembled and reference 
chromosomes is shown in the Table S8. Additionally, the mapping 
of the bins' chromosomes to the reference genomes is shown in 
Figures S1– S13.

F I G U R E  2  Sankey plot showing the taxonomic distribution of the recovered Eukaryotic bins and heatmap showing the number of 
eukaryotic bins recovered per Biome (retrieved from https://webapp.ufz.de/tmdb/ and manually curated based on the sample data).
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Annotation of eukaryotic bins yielded, on average, 4106, 4435, 
4573, 4619, and 4150 protein- encoding genes in S. cerevisiae, 
Komagataella phaffii, Pichia kudriavzevii, M. commoda and B. prasi-
nos, respectively. However, the predicted genes in M. commoda and 
B. prasinos bins only accounted for 45.57% and 52.54% of their ref-
erence genomes, respectively (Table S9).

Functional annotation of CTeuk- 1331 (B. prasinos) revealed 
the presence of 10 genes involved in nitrogen metabolism and 32 
genes involved in carbon fixation (Table S10). Functional annotation 
of CTeuk- 1332 (M. commoda), revealed the presence of two genes 
involved in nitrogen metabolism and 34 genes in carbon fixation 
(Table S11).

Annotation of the species- level, high- quality eukaryotic bins is 
available in Table S12.

4  |  DISCUSSION

The recovery and quality assessment of eukaryotic bins from 
metagenomes involve a sequence of computational steps, including 
the major steps of read assembly, contig binning, and gene predic-
tion. Compared to prokaryotes, eukaryotes generally have larger 
genomes and a more complex gene structure (Keeling, 2019). Our 
results demonstrate that, despite current efforts, our ability to 

F I G U R E  3  Mapping of assembled chromosomes for a eukaryotic bin (query) to the chromosomes of the reference genome. (a) 
Micromonas commoda (CTeuk- 1336). (b) Saccharomyces cerevisiae (CTeuk- 1741). [1] Vaulot D. et al., 2004, The Roscoff Culture Collection 
(RCC): a collection dedicated to marine picoplankton. Nova Hedwigia 79:49– 70; [2] https://commo ns.wikim edia.org/wiki/File:Sacch aromy 
ces_cerev isiae_YGC_colon ies_50.jpg

(a)

(b)
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reconstruct high- quality Eukaryotic genomes from metagenomes 
is in its early stages of development. Both quality and taxonomic 
assignments of the metagenome- assembled eukaryotic bins are 
substantially lower when compared to prokaryotes. There are multi-
ple possible reasons: First, larger eukaryotic genomes require more 
sequencing reads (i.e., higher sequencing depth) to obtain genome 
coverage (Keeling, 2019). Second, multiploidy can cause a problem 
for read assemblers as very similar but not identical contigs can be 
generated from more than one allele with various similarities (Zhang 
et al., 2020). Thus, multiploidy, together with eukaryotes' generally 
larger genome size, requires a higher sequencing depth to assemble 
high- quality genomes. This is supported by the observation that dif-
ferences in genome recovery seem to be highly linked to genome 
size (Alexander et al., 2022).

The quality of reconstructed genomes from metagenomes is 
usually calculated by the presence and number of single- copy genes 
in a bin (Saary et al., 2020), which are compared to known refer-
ence genomes. The low number of reference genomes compared 
to prokaryotes thus also influences the quality measures (Saary 
et al., 2020; Waterhouse et al., 2017). Furthermore, to detect single- 
copy genes from bins, contigs need to be assembled and binned 
and genes called. The detection of single- copy genes thus relies on 
the quality of assembly and the quality of the subsequent calling of 
genes. The gene structure, that is, exon- intron sequences, in eukary-
otic genomes interfere with gene calling (Roy & Penny, 2007), and 
gene calling is difficult due to frequent gene or genome duplication 
events (Kaltenegger et al., 2018). Furthermore, intron presence and 
number vary across eukaryotic species, making it harder to predict 
genes in some species accurately. For example, Aspergillus fumigatus 
has 18,293 introns compared to the 266 found in Saccharomyces cer-
evisiae (Roy & Penny, 2007).

The two genome quality assessment tools we chose for this 
study use single- copy genes to estimate the quality of eukaryotic 
genomes. However, the single- copy gene sets used by each tool dif-
fer in composition and application (e.g., BUSCO requires the user 
to define which sets of single- copy genes to use). The more unique 
and nonrepeated single- copy genes in a bin, the higher the quality 
determined by either tool. However, even in high- quality bins such 
as CTeuk- 1741 (95% completeness and 0.34 contamination) (classi-
fied as S. cerevisiae), significant parts of each chromosome can be 
missing or contain misplaced reads (Figure S1), which may also be 
connected to its high number of chromosomes (16). The genome as-
sembly of P. kudriavzevii composed of five chromosomes revealed 
fewer missing or misplaced reads (Figure S12). Chromosome assem-
bly is challenging due to repeat regions, especially in the telomeres. 
For instance, the human reference genome is the most accurate 
vertebrate genome but still lacks the characterization of some chro-
mosomes (Miga et al., 2020; Nurk et al., 2022). A study by Wang 
and collaborators (Wang et al., 2021), proposed a strategy for the 
complete assembly of two ciliates. Both studies suggest that high 
coverage and ultra- long nanopore sequencing may yield a better as-
sembly of genomes.

Most genome annotations studies use short- reads and quality 
assessment tools such as BUSCO (Waterhouse et al., 2017) and 
EukCC (Saary et al., 2020). Short reads usually have high quality 
but also have several drawbacks concerning the assembly process. 
First, good coverage is necessary to assemble long contigs. Second, 
the presence of sequence repeats in the genome cannot be solved 
using short- read sequencing technologies (De Bustos et al., 2016). 
Nevertheless, even with long- read sequencing, repeat- rich genomes 
yielded more fragmented assemblies (Sevim et al., 2019). While tools 
have been developed specially for improved scaffolding of large, 
repeat- rich eukaryotic genomes (Gao et al., 2016; Miga et al., 2020; 
Wang et al., 2021), several long- read metagenomic data sets already 
exist (Corrêa et al., 2020; Kasmanas et al., 2021; Nata'ala et al., 2022). 
Since short reads tend to assemble into shorter contigs compared 
to long reads, short- read sequencing can influence the accuracy 
of gene predictions by not covering a gene's total length (Pearman 
et al., 2020), and single- copy genes may not provide a realistic mea-
sure of the completeness of complex organisms such as eukaryotes.

In this study, all metagenomes were sequenced using short 
reads, which might explain the low number of species- level clas-
sifications (five unique taxa) in high- quality eukaryotic bins. The 
pairwise alignments of the reassembled eukaryotic bins to their 
respective reference genomes revealed that it is possible to re-
construct a large amount of the genome using short- read se-
quencing when a high number of reference genomes exist (e.g., 
Saccharomyces cerevisiae). We also observed a similar relation be-
tween assemblies and reference genomes when calculating diver-
gence rates. Genome reconstruction exhibited higher divergence 
rates in species with fewer reference genomes, such as M. com-
moda. Our data showed many gaps when we mapped the eukary-
otic bins to the reference chromosomes, which may be linked to 
intron presence. Introns may also play a role in accurately pre-
dicting genes, as shown by the low number of predicted genes 
in B. prasinos and M. commoda eukaryotic bins (Table S4). Thus, 
new sequencing technologies that provide longer continuous se-
quences (e.g., Oxford Nanopore or PacBio sequencing) might be 
necessary to facilitate the recovery of high- quality Eukaryotic ge-
nomes from metagenomes (Amarasinghe et al., 2020). More work 
needs to be done to experimentally combine the advantages of 
long and short- read sequencing and develop tools that can han-
dle both for improved assembly into long contigs. Additional im-
provements at the technical (e.g., improving sampling and DNA 
extraction kits and the use of long reads), molecular (e.g., enrich-
ment techniques combined with molecular tagging or pulldown or 
hybridization, which would decrease sample complexity), and bio-
informatic level (e.g., inclusion of eukaryotic taxa/branch specific 
detection pipelines) are also recommended.

The low taxonomic diversity is evident in Figure 2, where we 
exhibit the frequency counts of taxa across all libraries containing 
medium to high- quality eukaryotic bins. Given that current metag-
enomic methods rely on comparisons to known genomes, a higher 
number of eukaryotic reference genomes will improve eukaryotic 
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species identification from metagenomes (e.g., Earth BioGenome 
Project, Human Microbiome Project, and Tara Oceans Project) 
(Loeffler et al., 2020). As expected, the highest number of micro-
eukaryotes were obtained in host- associated, aquatic, and anthro-
pogenic biomes since most studies involving microeukaryotes focus 
on their parasitic life form and their influence on the host rather 
than as free- living microbes (Aslani et al., 2022; Chen et al., 2017; 
Nguyen & Kalan, 2022; Parfrey et al., 2011; Santi et al., 2021; Sapp 
et al., 2018).

In terms of metagenomic studies, we recommend including re-
sults from eukaryotic genome recovery to avoid missing potential 
key players in ecosystem processes, especially because of the in-
creased focus on interactions between microbial eukaryotes and 
bacteria/archaea (De Gruyter et al., 2020; Piwosz et al., 2020). Our 
results revealed the presence of B. prasinos and M. commoda in the 
metagenomes collected from estuaries (BioProject PRJNA320136). 
Collado- Fabbri et al. (2011) showed that M. commoda and B. prasinos 
had varying degrees of contribution to picophytoeukaryotic carbon 
biomass in upwelling ecosystems (such as estuaries) depending on 
the season. The carbon provided by B. prasinos benefits the growth 
rates of M. commoda since it increases the supply rates of ammonia to 
the nitrogen assimilation pathway (Cuvelier et al., 2017). Functional 
annotation of the B. prasinos and M. commoda bins revealed the 
presence of multiple genes involved in carbon fixation and nitrogen 
metabolism. However, nii genes, responsible for converting nitrite 
to ammonia, were missing, unlike the reference genomes. The miss- 
annotation of genes present in B. prasinos and M. commoda highlights 
the challenge of reconstructing near- complete eukaryotic genomes 
due to insufficient reference genomes in genome repositories. 
Nevertheless, including the reconstruction of eukaryotic genomes 
to studies involving carbon and nitrogen cycling in aquatic environ-
ments may provide a more complete picture of carbon and nitrogen 
cycling (Kieft et al., 2018).

A more recent study by Alexander et al. (2022) developed 
a new tool for eukaryotic metagenome- assembled genome re-
covery (EukHeist) and tested it using data from Tara Oceans 
(Carradec et al., 2018). EukHeist performs similarly to EukRep (West 
et al., 2018) in that it attempts first to separate prokaryotic from 
eukaryotic contigs. However, the assembly using EukHeist requires 
coassemblies in contrast to EukRep, which does not. The workflow 
employed in the study by Alexander and colleagues is similar to ours, 
which comprises assembly, binning, quality control, filtering, and tax-
onomic annotation. Their study recovered 485 eukaryotic from 94 
coassemblies with a BUSCO completeness score of at least 30%. We 
recovered a total of 121 eukaryotic bins in our study with a minimum 
completeness value of 30% (using EukCC) applied. The difference in 
the number of recovered eukaryotic bins between both studies can 
be derived from the co- assembly strategy employed by Alexander 
and colleagues and the reported dominance of eukaryotic organisms 
in the Tara Oceans samples (Alexander et al., 2022). Future research 
should consider applying the approach proposed by Alexander and 
colleagues to other ecosystems that are not dominated by eukary-
otes, but this was outside the objectives of this study.

To help other researchers attempt the recovery of microeukary-
otes from metagenomes, we came up with recommendations and 
points of action to improve microeukaryote genome recovery. First, 
sampling strategies and extraction of high- quality DNA need im-
provement. Second, community efforts are needed to generate more 
reference genomes. Third, experimental design should consider the 
use of short-  and long- read sequencing technology. Further, tools 
should be developed and improved to integrate short and long reads. 
In addition, alternative genome quality measures such as chromo-
some coverage should be considered when determining high- quality 
metagenome- assembled genomes.

5  |  CONCLUSIONS

Our study demonstrates that performing single- domain genome 
reconstruction from environmental metagenomes leads to an in-
complete overview of microbial communities' diversity and func-
tional potential. To obtain accurate representations of all species 
present in an ecosystem, substantial efforts in tool development 
to identify species in all domains are still required. Eukaryotes 
play vital roles in ecosystems ranging from complementing the ac-
tivities of other microbes to performing phototrophic and sapro-
trophic processes and predation (del Campo et al., 2020). Despite 
their importance, very few metagenomic studies attempted 
to reconstruct and annotate eukaryote genomes due to major 
methodological limitations. Increasing the number and quality 
of reference genomes in public databases and developing tools 
for intron identification may result in better genome reconstruc-
tions. Additionally, removing the identified introns may also im-
prove gene predictions. A possible avenue to achieve this goal is 
to promote long- read sequencing technologies. While we did re-
construct almost 447 eukaryotic bins, only 14 were of high quality 
and classified to species level. Still, the identified species showed 
promise in adding layers of information to the original studies. 
Thus, reconstructing more high- quality bins will bring us closer to 
a more realistic overview and understanding of biodiversity and 
how Eukaryotes contribute to different ecosystem processes.
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