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Highlights  
 

• There is substantial research infrastructure for forest monitoring globally, especially 
in temperate regions. 

• What is missing is their interconnection to enable timely assessments of, e.g., 
drought impacts. 

• We propose to connect existing infrastructures using automated, standardized linking 
methods. 

• Doing so will allow centrally processed data streams to enable near real-time 
reporting (nowcasting). 

• We call for an interdisciplinary and transnational effort towards near real-time forest 
monitoring. 
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1. Abstract  1 

Forests account for nearly 90% of the world's terrestrial biomass in the form of carbon and 2 

they support 80% of the global biodiversity. To understand the underlying forest dynamics, 3 

we need a long-term but also relatively high-frequency, networked monitoring system, as 4 

traditionally used in meteorology or hydrology. While there are numerous existing forest 5 

monitoring sites, particularly in temperate regions, the resulting data streams are rarely 6 

connected and do not provide information promptly, which hampers real-time assessments 7 

of forest responses to extreme climate events. 8 

 9 

The technology to build a better global forest monitoring network now exists. This white 10 

paper addresses the key structural components needed to achieve a novel meta-network. 11 

 12 

We propose to complement - rather than replace or unify - the existing heterogeneous 13 

infrastructure with standardized, quality-assured linking methods and interacting data 14 

processing centers to create an integrated forest monitoring network. 15 

These automated (research topic-dependent) linking methods in atmosphere, biosphere, 16 

and pedosphere play a key role in scaling site-specific results and processing them in a 17 

timely manner. To ensure broad participation from existing monitoring sites and to establish 18 

new sites, these linking methods must be as informative, reliable, affordable, and 19 

maintainable as possible, and should be supplemented by near real-time remote sensing 20 

data. 21 

 22 

The proposed novel meta-network will enable the detection of emergent patterns that would 23 

not be visible from isolated analyses of individual sites. In addition, the near real-time 24 

availability of data will facilitate predictions of current forest conditions (nowcasts), which are 25 

urgently needed for research and decision making in the face of rapid climate change. We 26 

call for international and interdisciplinary efforts in this direction.  27 
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2. Introduction 28 

2.1. Globally relevant needs for forest research 29 

Forests play an important role in regulating water, carbon, energy, and nutrient cycles, but 30 

this role is being challenged by global change such as warming, increasing frequency of 31 

severe droughts and other weather extremes, nitrogen deposition, and changing societal 32 

demands (Bar-On et al., 2018; Bonan, 2016; Braun et al., 2017; Keenan and Williams, 33 

2018). Forests host 80% of the Earth's biodiversity (Cazzolla Gatti et al., 2022) and are 34 

therefore the focus of many conservation efforts (UNEP, 2020). They provide important 35 

resources to society (timber, energy), ecosystem services (e.g., water and air purification) 36 

and recreational activities. Understanding the processes that drive and regulate forest 37 

ecosystems is also  fundamental to global efforts that aim at mitigating anthropogenic CO2 38 

emissions through carbon storage, but also to sustainably replace fossil fuel products 39 

(Cabon et al., 2022; Cook-Patton et al., 2020; Green and Keenan, 2022). To gain such 40 

understanding, carbon fluxes, storage, and residence times must be quantified with 41 

precision, which in turn depends on high quality data on forest demography, biotic and 42 

abiotic conditions in air and soil, water, and nutrient cycling, and much more (Fatichi et al., 43 

2019; Friend et al., 2014; Korner, 2015).  44 

 45 

In short, a variety of measurements and analyses are needed to assess and understand, for 46 

example, the potential of forests to act as nature-based climate solutions (Baldocchi and 47 

Penuelas, 2019; Seddon, 2022), how forests respond to climate change (Anderegg et al., 48 

2022; Fei et al., 2017; Kröel-Dulay et al., 2022; Ruiz-Benito et al., 2020), and how forest 49 

management can be promoted to build climate-smart forests (Verkerk et al., 2020). In 50 

addition, forest organisms, especially long-lived trees, require long-term observations over 51 

decades (Korner, 2015; Meir et al., 2018), but also assessments that allow us to detect and 52 

understand short-term impacts of environmental drivers (Etzold et al., 2022). Bridging these 53 

temporal scales places special demands on measurement technology, including data 54 

management, quality control, observation infrastructure, and its long-term maintenance 55 

under field conditions (Hartmann et al., 2018).  56 

 57 

Understanding fundamental ecosystem processes is crucial. Therefore, there is increasing 58 

need for the timely monitoring of forest conditions to enable researchers, decision makers, 59 

and forest users to adapt their activities and decisions to current and predicted conditions, 60 

e.g., from the effects of global warming. This can range from (re)positioning sensors for 61 

research purposes (e.g., AmeriFlux, link) to guiding administrative decisions such as 62 
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determining wildfire risk (currently based solely on meteorological data) or warning from 63 

falling branches due to drought or insect infestation. In addition, information on forest vitality 64 

provided in near real-time on attractively designed websites has tremendous potential to 65 

raise public awareness of the global importance of forest conservation and solutions at local 66 

to global scales (BayTreeNet link, EFI-NEON link) and related ecosystem services. Overall, 67 

a monitoring system like those traditionally used for weather, snow, and river runoff should 68 

also be established to track forest conditions. 69 

 70 

But does this mean that we need a novel, globally unified network of forest research 71 

infrastructures? No. Rather, this white paper calls for a meta-network that integrates existing 72 

forest monitoring infrastructures through standardized linking methods. Such an optimized 73 

network would allow data from different infrastructures to be processed and homogenized to 74 

provide the best up-to-date information on forests across scales. A key strength of this 75 

approach is that it utilizes existing infrastructure and offers the potential to scale 76 

observations from individual sites to entire regions by linking local ground-based information 77 

with remote global information (Mahecha et al., 2017). In addition, such a meta-network will 78 

provide new opportunities for cross-disciplinary research and the inclusion of sites from 79 

underrepresented areas such as the boreal or tropical regions. 80 

 81 
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 82 
 83 
Fig. 1. Forest research infrastructure. Green and black squares indicate forested and non-forested 84 
land covers (Zanaga et al., 2021). Circles indicate the location of existing forest observation 85 
infrastructure. White circles indicate forest research supersites with a high density of measurement 86 
devices and a high measurement frequency. Other-colored circles refer to smaller infrastructures with 87 
a lower density of devices (minisites) and various database update frequencies of <1 day (automatic 88 
measurements and data transmission), <1 and >1 year (manual measurements and non-automatic 89 
data transmission). The lower map includes locations where records were found in databases that 90 
were not regularly updated, e.g., wood samples, sap flow and dendrometer data sets etc.. Note that 91 
only infrastructures with easily accessible site-level coordinates are included in this figure. More 92 
infrastructure is listed in Table S1.  93 

 94 

2.2. Existing forest research infrastructure 95 

A variety of forest research infrastructures exists worldwide for monitoring forest functioning 96 

and dynamics (Fig. 1). Some of these sites are considered ‘supersites’, i.e., research sites 97 

with a high density of instruments, whereas other ‘minisites’ are equipped with only a limited 98 

number of instruments but conduct basic long-term observations that are highly replicated in 99 
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space (Salomon et al., 2022). Together, they cover a wide range of methods (observations, 100 

measurements, analytical approaches, statistical models) in the pedosphere, biosphere, and 101 

atmosphere, in different biomes and environmental conditions, and are sometimes 102 

complemented by remote sensing data from in situ instrumentation, drones, aircrafts, and 103 

satellites. In addition, there are thousands of grid points used for National Forest Inventories. 104 

Manually conducted inventories, which typically focus on quantifying forest structure and 105 

composition, generally provide information at lower temporal resolution than is provided by 106 

automated infrastructure. But due to their systematic sampling design, such inventories (e.g., 107 

National Forest Inventories) measure forest tree communities in a spatially representative 108 

manner (Fischer and Traub, 2019). A non-exhaustive list of measurement infrastructures in 109 

forests can be found in Table S1. Undoubtedly, there are many more. Nevertheless, the 110 

density of observations in forests, especially in the temperate zone, is impressive. This 111 

coverage is much sparser across forests in the boreal, tropical, or subtropical regions (Fig. 112 

1).  113 

 114 
 115 
Fig. 2. Forest observation infrastructure levels. The target of each infrastructure is to gain 116 
knowledge and reduce spatiotemporal uncertainty of structures and processes in forests, from the 117 
cellular to the ecosystem level. Knowledge gain increases and spatiotemporal uncertainty decreases 118 
with the number of methods combined (as indicated with symbols for, e.g., remote sensing, eddy 119 
covariance, temperature sensors, dendrometer, soil water potential sensor, or generally with grey 120 
boxes), the number of sites included (blue stacks of different sizes and with different methods), and 121 
the way data from the different sources are linked through a database (brown cube) to form a 122 
network. Many methods that are suitable for one specific site may be incompatible with those of other 123 
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sites, while the linking methods (colored method boxes) are standardized for all sites. Large networks 124 
can consist of substructures with several interlinked databases and processing units as indicated by 125 
the faded symbols. 126 

 127 

Each existing network has its strengths and weaknesses, depending on the infrastructure 128 

developed to address specific research or application questions. Consequently, the 129 

characteristics and specificities of existing forest research and monitoring networks are 130 

diverse, spanning across a wide range of temporal and spatial scales (Musche et al., 2019). 131 

The range of variables monitored is much more diverse than in meteorology, for example, 132 

because methods in the biosphere and pedosphere are included in addition to those in the 133 

atmosphere (Besson et al., 2022). The diversity of measurements and networks makes it 134 

difficult to link them together, and, in general, the overlap of standardized methods is not 135 

satisfactory. Thus, so far, we can obtain only fragmentary information on forest functioning 136 

and dynamics without exploring the full potential of linked forest monitoring efforts. The 137 

proposed meta-network in this white paper is an attempt to provide a concept towards a 138 

solution to this challenge. 139 

2.3. Near real-time information 140 

A critical issue for obtaining concurrent information on forest conditions is the turnover time 141 

needed to collect data, clean and process it, and make it available to the public, stake 142 

holders and scientists. The time to update most data points in a network database ranges 143 

from hours to a decade, and in some cases there is no regular updating interval of the 144 

collected data at all (Fig.1, Table S1). Moreover, even in cases where data are regularly 145 

updated at high temporal resolution, additional challenges emerge for further data 146 

processing and homogenization. This includes, for example, the selection of standardized 147 

protocols for data pre- and post-processing, data scalability, automated and standardized 148 

data processing (Heiskanen et al., 2022; Hurley et al., 2022; Knüsel et al., 2021; Peters et 149 

al., 2021; Poyatos et al., 2021), timely data sharing with third parties, as has recently been 150 

discussed for biodiversity databases (Feng et al., 2022).  151 

 152 

The conversion of current raw data into near real-time state reports, e.g., in meteorology, is 153 

referred to as nowcasting (Wapler et al., 2019). Nowcasts use models that combine 154 

information from historical data, current raw measurements (now), and real-time modeling to 155 

predict and display the current conditions (cast). We adopt this term also for a comparable 156 

use with forest observations. So far, there are only a few networks capable of producing 157 

nowcasts based on vegetation surveys (e.g., Phaenonet at a seasonal resolution, link). 158 
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TreeNet (link nowcasts) may be the only network so far that calculates daily indicators of 159 

tree growth and tree water status from tree measurements and integrates them across sites, 160 

species and regions (Zweifel et al., 2021a) or combines them with e.g. hydrological data (link 161 

NCCS). Somewhat more common is the online visualization of vegetation measurement 162 

data, e.g., of trees (link TreeWatch (Steppe et al., 2016)) or forest stand fluxes (link ICOS 163 

(Heiskanen et al., 2022)), but these data are not processed into easily understandable 164 

indicators and thus require expert knowledge to access and to interpret the measurements. 165 

Other attempts have been made to model drought stress on forests from daily 166 

meteorological data, but do not include near real-time vegetation response measurements 167 

(e.g., CatDrought). Products of satellite data are also highly promising (e.g. link Global 168 

Forest Watch, link VegScape, (Zhang et al., 2022)), but they do not include near real-time 169 

measurements of the vegetation and typically operate at a coarser temporal resolution (link 170 

EFCM, (Buras et al., 2021); link Biomass Carbon Monitor, (Wigneron et al., 2021)). 171 

However, the ability to nowcast based on diverse measurements should be one of the key 172 

features of an optimized monitoring network for the future (Besson et al., 2022; Dietze et al., 173 

2018). The success of such a network depends primarily on the availability of automated 174 

data collection, transmission, and data storage to continuously feed the underlying models 175 

(Reichstein et al., 2019). 176 

2.4. Priority for data integration and timeliness 177 

For improving forest observations, great potential lies in the availability of data, their access 178 

time (including quality control during ongoing measurements), and generally in the 179 

networking of the different infrastructures. Even if there are knowledge gaps to close and 180 

methodical improvements to make (Babst et al., 2021; Novick et al., 2022), it is most 181 

important to improve the timely integration of the existing data (Besson et al., 2022; Dietze et 182 

al., 2018). The difficulties to better integrating data are manifold, ranging from incompatible 183 

measurement and processing methods, to a lack of approaches for data homogenization, 184 

missing devices for timely data transfer, or poor data accessibility. As a result, there have 185 

been recent calls for more open-access forest data. These data should be "findable, 186 

accessible, interoperable, and reusable" (FAIR) (de Lima et al., 2022; Wilkinson et al., 187 

2016). Overall, this lack of integration and interoperability limits the potential to scale 188 

individual site results spatially and temporally. 189 
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3. Proposed network design  190 

3.1. Framework 191 

To establish a framework to overcome the current limits of data integration, we used a 192 

systems analysis approach that examines natural or artificial systems for their functionality 193 

as a result of the components and their respective interactions (e.g., (Barrier, 2003)). We 194 

thus ask, what kind of structural changes would be necessary to create an optimized (meta-) 195 

forest observation network that combines existing infrastructures, integrates new sites 196 

(preferably also in previously poorly surveyed forests, e.g., in the tropics), can provide forest 197 

nowcasts, and thus serves both the scientific community and a growing number of 198 

stakeholders.  199 

 200 

This white paper aims to provide a general impetus for a discussion of research and 201 

observation networks to improve their efficiency, find allies, and build structures that will 202 

serve a broader goal in the future than "just" the retrospective pursuit of a handful of (site-) 203 

specific research questions. The ideas emerged in the run-up to and during the 10th 204 

anniversary conference of the TreeNet network in Bad Bubendorf, Switzerland, 2022. 205 

3.2. What is our optimized network supposed to provide data for? 206 

Just as there are virtually infinite questions about forests and how they function, there are 207 

arguably infinite requirements for an adequate forest observation infrastructure. Therefore, 208 

we first identified the general stakeholders of forest information and their data needs.  209 

 210 

The main stakeholders are: (i) scientists who need high-quality data from various 211 

measurement facilities to identify relevant mechanisms from the organ to ecosystem level 212 

that define forest condition and performance, but also to quantify large-scale dynamics; (ii) 213 

forest managers and government administrators who need clear thresholds and signals to 214 

answer applied questions and to guide decision-making; and (iii) various stakeholders, from 215 

politicians to the public, who need near real-time information on forest status to respond 216 

adequately to current conditions and threats. The latter is particularly relevant as extreme 217 

events like the summer drought and heatwave experienced in 2022 in Europe receive 218 

increasing societal attention (e.g. link BBC news).  219 

 220 

Based on the above range of stakeholders, the following requirements are defined for the 221 

novel network. It needs to: 222 
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 223 

·     Deepen mechanistic understanding of forest ecosystem processes through high 224 

quality, multi-layered data.  225 

·     Provide spatially and temporally scalable data to obtain larger-scale patterns and 226 

longer-term temporal dynamics for development and implementation of models and 227 

remote sensing products to answer applied questions. 228 

·     Deliver near real-time data for nowcasting and projections to support decision makers 229 

and the public with timely information on forest condition. 230 

 231 

3.3. Key structural elements of a new meta-network 232 

The requirements defined above, and the current forest science infrastructure landscape 233 

have led us to propose the following key structural elements of a network that will better link 234 

a variety of observations, methods, and sites, promising greater knowledge gains due to 235 

integrated data processing from many sources (Fig. 2). It contains different types of research 236 

sites that are mainly differentiated by their ground-based instrumentation, complemented by 237 

remote sensing methods (e.g., drone or satellite based), the interconnection of these data 238 

sources via linking methods, high-frequency data transfer, and interacting data processing 239 

units. Figure 3 illustrates this overall structure.  240 

 241 

 242 
 243 
Fig. 3. Key structural elements of a meta-network with supersites, minisites, remote sensing, 244 
and a central data processing unit. Automated linking methods are interfaced with the database in 245 



page 10 

near real-time (bold lines), while non-automated linking methods (e.g., manually surveyed forest 246 
features) are updated less frequently (dashed lines). All intermediate forms of sites are conceivable 247 
between minisites and supersites.  248 
 249 
1. Supersites 250 

Forest ecosystem researchers that focus on understanding processes rely heavily on in-251 

depth observations and experiments with a high density of measurements and methods at 252 

supersites (Fischer et al., 2011; Mikkelsen et al., 2013), preferentially at high temporal 253 

resolution over long time periods. To meet the needs of dynamically evolving research, sites 254 

require a high degree of freedom to evolve and be structured. This may involve continuous 255 

measurements (Etzold et al., 2011; Steppe et al., 2015), novel technologies and analytical 256 

methods (Hurley et al., 2022), highly labor-intensive approaches that can only be achieved 257 

manually (Arend et al., 2021) and may involve destructive sampling (Rademacher et al., 258 

2021), or manipulation of environmental conditions through, for example, rain shelter (Grams 259 

et al., 2021), irrigation (Bose et al., 2022), forest management treatments (Sterck et al., 260 

2021), or long-term free-air carbon enrichment systems (Jiang et al., 2020). In most cases, 261 

this type of infrastructure requires additional investment for canopy access (e.g., crane, 262 

mobile elevator, scaffolding), main power supply, monitoring of gas fluxes (eddy-covariance) 263 

and soil conditions (soil profiling), or protection of central gauges and infrastructure from the 264 

weather by buildings.  265 

 266 

The high density and multi-layered measurement methods spanning from the organ to the 267 

stand level, as well as the high temporal resolution of the measurements (sub-hourly 268 

resolution), create unique infrastructures and provide the opportunity to conduct in-depth 269 

research to study forest ecosystem mechanisms. Some supersite networks have established 270 

well-defined method standardizations and quality control for all parts of the data stream to 271 

optimize the data transfer (e.g. ICOS link (Gielen et al., 2018), ICP Forests link). Supersites 272 

are essential for a fundamental mechanistic understanding of ecosystem processes but 273 

cannot be replicated sufficiently in space as often as desired due to high infrastructure costs. 274 

Such supersite infrastructure is often also very conspicuous and its strong influence on the 275 

visual appearance of a forest is likely to receive varying degrees of acceptance by the public. 276 

In a meta-network, they must therefore be integrated into a larger network with less densely 277 

equipped but more abundant minisites through standardized linking methods (Fig. 3, see 278 

points 3 and 4) to allow for the scaling of site-specific results across space and through time.   279 

 280 

2. Minisites 281 
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The second important structural element of our network are minisites with continuous (i.e., 282 

automated instruments) and episodic (i.e., field surveys/inventories) long-term 283 

measurements that provide broad spatial coverage of environmental conditions and forest 284 

ecosystem types. There are different types of minisites: those that more closely resemble 285 

traditional inventory sites (manual sample collection, no technical infrastructure) and those 286 

that have automated, permanently installed sensors. However, all levels in between and 287 

towards supersites are conceivable (Fig. 3). The more spatial variation and environmental 288 

gradients are covered, the more these minisites can help scale findings, relate them to 289 

remote sensing data, and use them for modeling. 290 

 291 

Such an optimized network should be open to new partners and grow and evolve organically 292 

with them. New partners may already have their own sites or networks and need a practical 293 

way to be included and connected while still maintaining their autonomy. Thus, an optimized 294 

network must not only cover the forest ecosystems of interest across its gradients, but also 295 

include new partners with a local focus to take advantage of synergies when, for example, 296 

supersites are combined with minisites. This leads directly to our next two key structural 297 

elements, which focus on methods for linking independent sites. 298 

 299 

3. Automated linking methods  300 

The third key structural element of our network is standardized, quality-assured, automated 301 

measurement methods (e.g., water potential measurements in air, plants, and soil, (Novick 302 

et al., 2022)) installed across as many sites as possible and thus linking the heterogeneous 303 

individual infrastructures into an optimized network (Fig. 3)(Heiskanen et al., 2022). They 304 

also allow for a better interpretation and integration of observations not made at all sites, 305 

e.g., by supersites. Not only must the measurements be recorded automatically, but the data 306 

must also be transferred independently and promptly to a central database, where it is 307 

checked for measurement quality and plausibility. This is an essential prerequisite for the 308 

application of both, near real-time models and nowcasting. 309 

 310 

We propose that these automated linking methods include data obtained in the pedosphere 311 

(e.g., soil water potential), the biosphere (e.g., point dendrometer), and the atmosphere 312 

(e.g., temperature) to capture both the abiotic conditions in the air and soil, as well as the 313 

biotic responses of the forest to these conditions. The data from these three domains will 314 

form a framework in which location-specific measurements can be scaled across space and 315 

through time. The selection of appropriate automatic linking methods depends on the 316 
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research topic. A biodiversity network may require different linking methods than an 317 

ecophysiological network (Besson et al., 2022). 318 

 319 

In any case, the automated linking methods must be robust, so that they can function reliably 320 

for years, and be designed so that power consumption and maintenance are low. The credo 321 

for selecting these methods must be, on the one hand, to have methods that are as 322 

meaningful as possible and have the potential to link many sites, and on the other hand, to 323 

minimize the investment (labor and money) and the impact on the forest ecosystem. The 324 

fewer of these standardized methods are needed and the easier they are to use, the less 325 

financial and human effort is required and the easier it is to integrate new sites, as well as 326 

existing infrastructure or new partners with limited budgets. Choosing robust, automated 327 

linking methods will determine whether networking remains a visionary idea or is actually 328 

implemented in existing infrastructure and underrepresented areas such as tropical or boreal 329 

forests. In other words, a balance must be struck between introducing numerous relevant but 330 

impractical (technically demanding, expensive, error-prone) linking methods and reducing 331 

this collection of methods to the most important and efficient ones. 332 

 333 

Table S2 lists potential automated linking methods for an ecophysiological forest network 334 

and qualifies them in terms of technical feasibility (easy to install, run, and being quality-335 

controlled), reliability (long service life in the field and high robustness), energy consumption 336 

(low energy consumption, no need for main power), data transfer (low data density), data 337 

processing (existing tools to process the raw data in an automated way), invasiveness (little 338 

harm to plants and environment), public acceptance (low visibility), and cost (low investment 339 

and maintenance costs). While there are many good options for the atmosphere and soil, the 340 

options for automated vegetation measurements that are suitable as linking methods are 341 

more limited. This is due to the general difficulty of reliably and automatically measuring 342 

biosphere responses, such as those of trees, over a period of years. Low ratings were given 343 

to methods that require AC power or depend on structures such as towers, etc. to operate, 344 

which is not compatible with the idea of an easy-to-use, automated linking method that is 345 

applicable to remote, structurally weak locations. 346 

 347 

4. Non-automated linking methods  348 

The fourth important structural element relates to the need to know the environment in which 349 

scientific investigations of any kind are conducted to interpret the data across sites. Many of 350 

the basic methods of traditional site and forest inventories that quantify a slowly changing 351 
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environment and vegetation characteristics over the long-term, such as plant composition, 352 

soil texture, etc. are manually measured and cannot be automated in any case even when 353 

using high-tech methods, for example, terrestrial lidar scanning of canopy structure (Calders 354 

et al., 2015; Eitel et al., 2013). Therefore, they are not directly applicable to the needs for 355 

nowcasting. However, some of these methods have the potential to serve as linking methods 356 

if standardized. Non-automated linking methods should ideally include atmosphere (e.g., 357 

climatic site characteristics), biosphere (e.g., tree dimension traits), and pedosphere (e.g., 358 

soil texture), as indicated for the automated ones. Table S3 lists potential non-automated 359 

linking methods and qualifies them in a similar manner to the automated ones.  360 

 361 

The frequency with which such (manual) measurements need to be repeated depends on 362 

the processes observed. While changes in soil chemistry are generally slow and only 363 

become apparent over periods of several years or decades, seasonal processes such as 364 

leaf phenology require more frequent measurements (which, in the case of leaf phenology, 365 

are also often automated by phenocams). Systematic, regular sampling and archiving of 366 

plant and soil material can also provide a database for retrospective analyses of forest 367 

functioning and dynamics. The spatial resolution of biosphere data should be mapped at the 368 

individual tree level to allow for species-specific resolution of the data. Tree-level results can 369 

then be extrapolated to larger spatial scales using, for example, remote sensing products 370 

(Kwok, 2018), process-based modeling (Mahnken et al., 2022), machine learning methods 371 

(Besson et al., 2022), or a combination thereof (Koppa et al., 2022).  372 

 373 

5. Remote sensing 374 

The fifth key element of our meta-network is remote sensing data from in situ 375 

instrumentation, drones, aircrafts, and satellites (Figs. 2 and 3). Remote sensing provides a 376 

unique birds-eye perspective and enables the measurement of spatially explicit and globally 377 

consistent indicators of forest state (e.g., forest cover and change (Hansen et al., 2013)), 378 

and processes (e.g., gross primary productivity, evapotranspiration (Mu et al., 2007; Running 379 

et al., 2004)). It thus has the potential to outperform all other ground-based linking methods 380 

mentioned above. In situ instrumentation offering high temporal resolution allows linking 381 

remote sensing (Buman et al., 2022) to detailed classical site assessments (e.g., 382 

meteorology, eddy-covariance, sap-flow). Measurement campaigns using drones and 383 

aircrafts are flexible and provide, at least for core areas around test sites, data with high 384 

spatial resolution but infrequent temporal resolution. Satellite systems offer a complementary 385 
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global coverage with limited (but ever increasing) spatial resolution and with up to several 386 

decades of spectral information (Seddon et al., 2016). 387 

 388 

Integrating remote sensing in a meta-network is mutually beneficial to link monitoring sites 389 

and scale local measurements across space, but also to advance remote sensing 390 

approaches. Satellite remote sensing can be particularly conducive as an automated linking 391 

method in an optimized network, as the information can be continuously transmitted to a 392 

data processing infrastructure and cover all ground monitoring sites with a standardized 393 

approach. Further, the combined use of satellite data and ground-based observations allows 394 

interpreting and scaling point measurements via spatial context information, can inform 395 

about observational gaps in the network, and enables up-to-date mapping of forest condition 396 

to support forest management and policy decisions, and initiate urgent responses to extreme 397 

conditions (e.g., short-term fire bans). In the past, ground-based forest observations have 398 

already played a key role in the development, calibration, and validation of remote sensing 399 

approaches from regional to global scales (e.g., FLUXNET (Baldocchi et al., 2001), U.S. 400 

Forest Service's Forest Inventory Analysis Program (Lister et al., 2020)).  401 

 402 

Despite the benefits and the potential of their combined use, there are only few cases where 403 

remote sensing is integrated into a ground-based forest monitoring network, such as NEON 404 

(link), where aerial hyperspectral and lidar surveys are conducted annually for all sites at the 405 

peak of the growing season (Kampe et al., 2010). We are not aware of any forest condition 406 

nowcasting that presently relies on combined ground and satellite data in an automated way.  407 

 408 

In our view, it is essential that a meta-network links data from both perspectives (from the 409 

ground and above) in an automated manner (Zuidema and van der Sleen, 2022). This will 410 

benefit scientific studies in forest ecology and related fields, as well as research that further 411 

develops remote sensing products for an advanced monitoring of forest conditions and 412 

complex biological processes that typically span across temporal scales and operate at the 413 

regional to global scales.  414 

 415 

6. Data storage and processing infrastructure 416 

A particularly important structural element is a data storage and processing infrastructure for 417 

the linking methods that includes numerous functions to bridge the gap between automated 418 

measurements in the field and timely processed and integrated output. Figure 4 illustrates 419 

some of the components and the data flow of such an infrastructure (see also (Zweifel et al., 420 
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2021a)). To continuously feed the data processing infrastructure, sensors in the field must 421 

be automated and installed together with a data transmission system. The Low Power Wide 422 

Area (LPWA) network protocol provides a suitable integrated approach for data acquisition 423 

and transmission in near real-time (Wikipedia link). LWPA has been developed for wirelessly 424 

connecting battery-powered devices to the internet and meets the key requirements of the 425 

Internet of Things (IoT), such as bidirectional communication, end-to-end security, 426 

localization services and low power consumption. This is based on LoRa (from "long range") 427 

radio communication technology (link Semtech), and LoRaWAN as the higher-level system 428 

architecture including the software communication protocol (link LoRa alliance). There is an 429 

increasing number of providers which make LoRa accessible in >160 countries (link LoRa 430 

alliance). 431 

 432 

 433 
Fig. 4 Data flow diagram, starting on the left with the sensors in the field, with raw data preferably 434 
transmitted wirelessly to the central data infrastructure via the required interfaces. Other sources of 435 
data are separately fed in. The central data infrastructure stores, controls data quality, cleans and 436 
processes data using standardize processing approaches. Further it consists of modeling including 437 
forest now- and forecasting. All processing units query an integrated metadata base with e.g., sensor 438 
type and location, tree species, preset processing variables, etc. to be functional. The data must be 439 
made available at various levels of aggregation and processing through the data portal to websites on 440 
the Internet, to stakeholders, and to network partners.  441 

 442 

Data interfaces need to allow for any type of data stream from different sources to be 443 

processed and forwarded to the heart of the infrastructure, the central data processing 444 
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platform. This platform not only houses the data from different processing and integration 445 

layers but must also have an integrated meta-database. Such a meta-database contains 446 

information about locations, sensors, measurement objects, methods, specific calibration, 447 

and processing parameters, and many more functionalities. 448 

 449 

In larger meta-networks, it may be advisable to have multiple data storage and processing 450 

units that perform specific tasks but are always interoperable (Fig. 2, see also the 451 

approaches of e.g., dataone, link). According to system analysis concepts, decentralized 452 

processing units facilitate operability and increase the stability of the entire network.  453 

 454 

Further it is crucial that the various recipients of data and generated information have 455 

suitable access that is as barrier-free as possible via a data portal and the respective 456 

interfaces. Internet pages displaying nowcasts must be served automatically with updates 457 

and research partners must be able to access the stored (raw and processed) data 458 

automatically or manually. In addition to technical solutions, it is advisable to develop a 459 

suitable and fair data policy for all parties involved and beyond (de Lima et al., 2022).  460 

 461 

4. Discussion and Conclusions 462 

4.1. From separated sites to a network 463 

Aristotle, a philosopher of ancient Greece, stated that the whole is greater than the sum of its 464 

parts. This historical statement is supported by scientific theories of systems analysis (e.g., 465 

(Barrier, 2003) based on an understanding of biological systems (e.g., (Maturana and 466 

Varela, 1992; Vester, 2007)) and applied to human-made systems, particularly in business 467 

(e.g., (Lundvall, 2007). In this sense, there is great untapped potential in linking existing 468 

infrastructures, methods, and research approaches, including those in forest sciences, to 469 

benefit from emerging synergies (Fig. 2). It is increasingly important to understand and show 470 

how our Earth’s climate is shaped by forests, how climate shapes the forests, how forests 471 

are connected to other (natural and artificial) systems, and how much we can learn about 472 

entire forest ecosystems from individual tree responses (Nature, 2022; Sass-Klaassen et al., 473 

2016; Zuidema and van der Sleen, 2022). We, as beneficiaries of forests globally, must learn 474 

to use forests in a sustainable manner that preserves their broad functionality (Achim et al., 475 

2022). Most importantly, to achieve this understanding, we need long-term observational 476 

infrastructure that is spatiotemporally well replicated and includes as many perspectives as 477 
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possible (Anderegg et al., 2022; Besson et al., 2022). A novel meta-network should allow us 478 

to study forests from the soil to the canopy, including their microclimate. It must also provide 479 

nowcasts on forest condition to inform and support the public and decision makers in a 480 

timely manner. 481 

 482 

We therefore call for linking the existing forest observation infrastructures and thinking about 483 

how to integrate more disciplines into a larger whole that serves to complete the picture of 484 

understanding forest ecosystems. In this way, an optimized monitoring network will emerge 485 

that promotes scientific discovery and services for society, drawing on a range of disciplines 486 

including plant physiology, ecology, geology, hydrology, microbiology, soil science, 487 

meteorology, remote sensing, socio-ecology, and many others. This optimized network may 488 

be composed of autonomously managed sub-networks (using very different linking methods) 489 

whose own dynamic developments are preserved without losing their connection to the 490 

whole.  491 

4.2. Key to an optimized network 492 

This vision is quite far from our current situation, but considering some key aspects, we are 493 

convinced that it is feasible with some coordinated effort. First, we determined that forest 494 

research must consist of methodologically diverse sites and subnetworks. This is the only 495 

way to account for the myriad aspects and questions that must be considered to understand 496 

forest ecosystems on a global, but also on a regional scale. This means that we do not have 497 

to start from scratch with building new networks, but rather link the existing infrastructure 498 

more efficiently. In our view, this is also the most practical way to build an optimized network, 499 

because many forest infrastructures have accumulated so much knowledge and valuable 500 

long-term data sets that it would not be wise to discard all of this in favor of a new 501 

infrastructure. So, we are also making a real virtue out of necessity. 502 

 503 

Second, if we consider what makes a system of any kind and how it increases its intrinsic 504 

knowledge gain, it is first and foremost the connection between the parts (Fig. 2). We have 505 

found that standardized and quality assured linking methods, additionally inserted into 506 

existing infrastructures that were previously incompatible with each other, can take on the 507 

role of these essential connections without the need to homogenize all the methods of 508 

different sites. The linking of different methods should cover the pedosphere, biosphere, and 509 

atmosphere, but should be as simple as possible to acquire, install, and operate. For our 510 

vision to be feasible, it is important to keep the barrier to the adoption of linking methods as 511 
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low as possible, so that the additional effort required to link infrastructures remains attractive 512 

and leads to a win-win situation for all potential users, including partners with budget 513 

constraints. To obtain timely information on forest condition, some of the linking methods will 514 

need to be automated, including data transmission to a central database.  515 

 516 

Third, a monitoring system needs an information center to function properly. This is where 517 

data are collected and processed. Without this center, the system would not be able to 518 

collect or output data in a timely manner. The complexity of such a data center can quickly 519 

become very large and its functionality also requires optimization or fragmentation of data 520 

storage into different sub-centers (Fig. 2). It may make sense, for example, to process data 521 

from automated linking methods in one central location, while data from non-automated 522 

sources or supersites are distributed and exchanged less frequently but on a regular basis.   523 

 524 

Fourth, it is imperative that data from remote sensing are implemented into this data center. 525 

The specific view from above provides another dimension of forest condition and contextual 526 

data with a high and unbiased spatial coverage and thus a greater potential for upscaling in 527 

contrast to ground-based measurements (Kwok, 2018). The satellite-based information 528 

should preferably be uploaded in the form of automatically created proxies that condense the 529 

amount of data to the essentials. Despite the large potential of satellite-based data alone, we 530 

are convinced that the combination of both, ground-based monitoring and remote sensing 531 

technology, is key to advance understanding of forest ecosystems. The birds eye 532 

perspective of remote sensing has limited sensitivity for the large vertical dynamic of forest 533 

ecosystems (Damm et al., 2020) and can only serve as an indicator of dynamics in the 534 

different forest layers, from the crown of the dominant trees to the understory vegetation, to 535 

the processes in the soil. Particularly the discovery of physiological processes requires 536 

sophisticated multi-scale measurements along the vertical gradient of a forest. However, the 537 

potential to use satellite remote sensing to gain insights over large areas is undisputed 538 

(Kwok, 2018). In addition, new remote sensing proxies are continuously being developed 539 

through new technologies, ranging from information about leaf area (Fang et al., 2019; He et 540 

al., 2020), photosynthetic activity (Gamon et al., 2016; Porcar-Castell et al., 2021), biomass 541 

stock (Frappart et al., 2020), radial stem growth of trees (Eitel et al., 2020), to vegetation 542 

water content (Konings et al., 2021) and many more. The information collected by ground 543 

monitoring networks serves as an invaluable data source for validating and calibrating these 544 

proxies. 545 

 546 
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In this context, it is also important to address the increasingly potent analysis methods that 547 

allow patterns to be detected in ever larger amounts of data (sometimes referred to as ‘big 548 

data’). Artificial intelligence methods such as neural networks, can be trained to identify, for 549 

example, tree species or damaged crowns from a satellite-based multispectral image of a 550 

forest (Reichstein et al., 2019). In general, the rapid development of machine learning 551 

methods is enabling entirely new models and perspectives for big data analysis, including 552 

data-cleaning and gap-filling (Lukovic et al., 2022), and the treatment of heterogeneous data 553 

sets with different data structures (Bodesheim et al., 2022; Munteanu et al., 2022). This 554 

technology, together with the linking methods of a meta-network, could also be the backbone 555 

for the interpolation of the many other variables measured in the various infrastructures. The 556 

standardized linking methods thereby form the homogeneous data grid along which other 557 

variables measured at only a few points can be interpolated and scaled. Today, machine 558 

learning algorithms are opening up increasingly powerful possibilities that could also allow us 559 

to apply supersite insights more broadly. For example, eddy covariance-based net 560 

ecosystem productivity (NEP) could be related to linking methods that measure stem growth, 561 

VPD, and soil water, which would allow for the extrapolation of NEP across all points in the 562 

meta-network. Using data from linking methods in a meta-network, machine learning could 563 

even help partially overcome the limitation of only being able to relate standardized data. 564 

 565 

4.3. Nowcasting - a link between retrospective analysis and 566 
predictions 567 

Our vision is to use forest networks for scientific data additionally also for a nowcasting and 568 

forecasting system. To be able to classify and understand current forest processes, we need 569 

long-term information as a basis for assessing the current condition and, of course, timely 570 

data to produce realistic forest response signals. Actual and adequate quantifications of 571 

forest responses to extreme (and normal) conditions should become as self-evident as 572 

weather forecasts (Dietze et al., 2018). The proposed structure of a meta-network has all the 573 

prerequisites to achieve these goals and to ensure the necessary data flow. Finding 574 

meaningful, easily maintained, and automated variables that link infrastructures is central to 575 

this (see Table S2). 576 

 577 

However, we also note that further efforts are needed to develop meaningful forest nowcast 578 

signals beyond the retrospective data analysis that is still common and important. To date, 579 

little has been done in this direction, mostly based on continuous stem radius and sap flow 580 
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data from trees, or based solely on satellite data, as in the case of the French Biomass 581 

Carbon Monitor, a platform that measures the role of forests in carbon sequestration through 582 

changes in biomass (link). Another example is TreeNet (link), a mainly Swiss consortium that 583 

calculates daily nowcasts for stem growth and water deficit of trees compared to long-term 584 

averages of individuals. The TreeNet infrastructure (Zweifel et al., 2021a) could thus serve 585 

as a prototype for how to implement the proposed meta-network. TreeNet links a handful of 586 

supersites and about 50 minisites, connecting various forest monitoring groups that have not 587 

previously collaborated on this scale. It has a fully automated data processing infrastructure, 588 

including the forest nowcasting models mentioned earlier. The automated, standardized 589 

linking methods are precision point dendrometers on trees (biosphere), air temperature and 590 

humidity sensors in the atmosphere, and soil water potential and soil temperature sensors in 591 

the soil (pedosphere). The network is thus able to provide timely information to a variety of 592 

non-scientific stakeholders but has also proven to provide data for highly regarded 593 

ecophysiological research (Etzold et al., 2022; Walthert et al., 2021; Zweifel et al., 2020; 594 

Zweifel et al., 2021b). However, this network currently lacks the automated merging of 595 

remotely sensed and ground-based data. TreeNet is focused on ecophysiological questions. 596 

Other research foci (e.g., biodiversity, ecological communities) also require other linking 597 

methods (Besson et al., 2022), so it makes sense that there will continue to be meta-598 

networks of different sizes and content that overlap. The difference from today, however, 599 

should be that the data streams are interconnected. 600 

 601 

4.4. Conclusions 602 

This white paper is a call for networking existing forest observation infrastructures to further 603 

improve science and build a system that is capable of producing forest nowcasts. We 604 

recommend implementing the simplest, quality-assured, most standardized linking methods 605 

possible on existing forest research sites that result in a meta-network with maximum 606 

potential knowledge output with minimum effort and resources. Whenever possible, linking 607 

methods should be automated. Such a meta-network has the greatest potential for capturing 608 

forest ecosystem dynamics, if it is fed in parallel with data from above (remote sensing) and 609 

below (field observations), and if the data are automated, both transmitted in near real-time 610 

and analyzed in an information center. The concept invites established networks to think 611 

outside the box and offers isolated minisites the opportunity to join a larger network at a 612 

reasonable cost. In addition, it opens up novel opportunities to integrate poorly connected 613 

areas into current ecological forest research. In addition, we call for the development of 614 
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improved nowcasting models for forests that provide not only (valuable) raw data for 615 

scientists, but also meaningful, easy-to-understand aggregated signals on forest condition. 616 

Such an optimized infrastructure could make a crucial contribution to the understanding, 617 

protection, and use of forests for scientists, forest stakeholders (forest managers and policy 618 

makers), and the public.  619 

  620 
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