
Buschmann, S., Hoffmann, P., Agarwal, A.,
Marwan, N., Nocke, T. (2023): GPU-based,
interactive exploration of large spatiotemporal
climate networks. - Chaos, 33, 043129.

https://doi.org/10.1063/5.0131933

Institional Repository GFZpublic: https://gfzpublic.gfz-potsdam.de/

https://gfzpublic.gfz-potsdam.de/


View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE | APRIL 14 2023

GPU-based, interactive exploration of large spatiotemporal
climate networks
Special Collection: Theory-informed and Data-driven Approaches to Advance Climate Sciences

Stefan Buschmann; Peter Hoffmann; Ankit Agarwal; ... et. al

Chaos 33, 043129 (2023)
https://doi.org/10.1063/5.0131933

Articles You May Be Interested In

Graphics processing unit (GPU)-based computation of heat conduction in thermally anisotropic solids

AIP Conference Proceedings (January 2013)

Interactive gpu-based acoustic walkthrough in dynamic scenes

Proc. Mtgs. Acoust (June 2013)

Interactive gpu-based sound auralization in dynamic scenes

J Acoust Soc Am (May 2013)

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0131933/16823209/043129_1_5.0131933.pdf

https://pubs.aip.org/aip/cha/article/33/4/043129/2882207/GPU-based-interactive-exploration-of-large
https://pubs.aip.org/aip/cha/article/33/4/043129/2882207/GPU-based-interactive-exploration-of-large?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/cha/article/33/4/043129/2882207/GPU-based-interactive-exploration-of-large?pdfCoverIconEvent=crossmark
https://pubs.aip.org/cha/collection/1191/Theory-informed-and-Data-driven-Approaches-to
javascript:;
javascript:;
javascript:;
javascript:;
https://doi.org/10.1063/5.0131933
https://pubs.aip.org/aip/acp/article/1511/1/1401/876590/Graphics-processing-unit-GPU-based-computation-of
https://pubs.aip.org/asa/poma/article/19/1/070097/959519/Interactive-gpu-based-acoustic-walkthrough-in
https://pubs.aip.org/asa/jasa/article/133/5_Supplement/3614/665015/Interactive-gpu-based-sound-auralization-in
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2063251&setID=592934&channelID=0&CID=754911&banID=520996571&PID=0&textadID=0&tc=1&adSize=1640x440&matches=%5B%22inurl%3A%5C%2Fcha%22%5D&mt=1681997796217286&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fcha%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0131933%2F16823209%2F043129_1_5.0131933.pdf&hc=8cb3512b1417c5ca072a34927cf5b70fad70e748&location=

Chaos ARTICLE scitation.org/journal/cha

GPU-based, interactive exploration of large
spatiotemporal climate networks

Cite as: Chaos 33, 043129 (2023); doi: 10.1063/5.0131933

Submitted: 25 October 2022 · Accepted: 27March 2023 ·

Published Online: 14 April 2023 View Online Export Citation CrossMark

Stefan Buschmann,1 Peter Hoffmann,2 Ankit Agarwal,3,a) Norbert Marwan,2 and Thomas Nocke2,b)

AFFILIATIONS

1Hasso Plattner Institute, University of Potsdam, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany
2Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
3Department of Hydrology, Indian Institute of Technology Roorkee, Haridwar Highway, Roorkee, Uttarakhand 247667, India

Note: This article is part of the Focus Issue, Theory-informed and Data-driven Approaches to Advance Climate Sciences.
a)Also at: GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
b)Author to whom correspondence should be addressed: nocke@pik-potsdam.de

ABSTRACT

This paper introduces the Graphics Processing Unit (GPU)-based tool Geo-Temporal eXplorer (GTX), integrating a set of highly interactive
techniques for visual analytics of large geo-referenced complex networks from the climate research domain. The visual exploration of these
networks faces a multitude of challenges related to the geo-reference and the size of these networks with up to several million edges and the
manifold types of such networks. In this paper, solutions for the interactive visual analysis for several distinct types of large complex networks
will be discussed, in particular, time-dependent, multi-scale, and multi-layered ensemble networks. Custom-tailored for climate researchers,
the GTX tool supports heterogeneous tasks based on interactive, GPU-based solutions for on-the-fly large network data processing, analysis,
and visualization. These solutions are illustrated for two use cases: multi-scale climatic process and climate infection risk networks. This tool
helps one to reduce the complexity of the highly interrelated climate information and unveils hidden and temporal links in the climate system,
not available using standard and linear tools (such as empirical orthogonal function analysis).

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0131933

Teleconnection analysis of climate data is an established research
field analyzing network interactions in the climate system. Fur-
thermore, the investigation over types of networks such as elec-
tricity, trading, or flight become more into focus in the context of
climate related research, with respect to both climate mitigation
and adaptation. These fields produce a multitude of complex, het-
erogeneous, geo-referenced climate related networks. Due to the
size and the different properties of such networks, their investiga-
tion is not trivial. In the sense of the counterpart to sophisticated
machine learning algorithms, visual analytics methods are crucial
analyzing these networks visually, interactively keeping the cli-
mate researcher in the investigation loop. Existing visualization
solutions can tackle the specifics of these networks only partially,
in particular, they have problems with the size, geo-reference,
their interlinkage, and the time-dependency of these kinds of
complex networks. Filling this gap, we have developed a new visu-
alization tool, which intensively uses the abilities of sophisticated
graphic card processors to process large amounts of network data
in a very fast and parallel manner. The abilities and flexibility

of the proposed approach are illustrated for a classical climate
teleconnection example and for a temperature-based infection
disease network on flight routes.

I. INTRODUCTION

With increasing the computing power of high performance
computing devices and an increasing number of measurement sen-
sors and remote sensing abilities, the amount and size of produced
datasets are ever more increasing. This is in particular true for
the Earth system and climate data, where the exploitation and
exploration of the gathered data become a major bottleneck.

An established solution addressing this challenge is the complex
network analysis of geo-spatial climate data, exploring teleconnec-
tion and other kinds of interactions within the climate system.1

These networks combine the ability to represent complex interre-
lationships in complex systems with statistical tools that can charac-
terize the topology of the interrelationship pattern. Here, a complex

Chaos 33, 043129 (2023); doi: 10.1063/5.0131933 33, 043129-1

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0131933/16823209/043129_1_5.0131933.pdf

https://aip.scitation.org/journal/cha
https://doi.org/10.1063/5.0131933
https://doi.org/10.1063/5.0131933
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0131933
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0131933&domain=pdf&date_stamp=2023-04-14
http://orcid.org/0000-0001-9854-7810
http://orcid.org/0000-0003-0198-0613
http://orcid.org/0000-0001-8572-7046
http://orcid.org/0000-0003-1437-7039
http://orcid.org/0000-0001-9811-197X
mailto:nocke@pik-potsdam.de
https://doi.org/10.1063/5.0131933

Chaos ARTICLE scitation.org/journal/cha

network is a graph G ∈ {V, E} with a set of nodes V = {1, . . . , N} and
edges E. The network can be represented by the adjacency matrix Aij,
with Aij 6= 0 if {i, j} ∈ E. The edges can have weights Aij ∈ R, then we
call it a weighted network. In an unweighted network, the edges are
represented by Aij = 1.

This branch of climate research is producing multiple kinds of
large geo-referenced networks, including temporal-evolving ensem-
ble and cross-connected multi-layered networks. Two prominent
examples are teleconnection networks of the global climate system,2,3

which have as well been studied using interactive network visual-
ization techniques for data investigation.4 For example, Boers et al.3

revealed the global coupling pattern of extreme-rainfall events and
allowed us to identify the attribution of regional weather systems
and upper-level Rossby waves on the rainfall pattern. In addition,
networks from other fields are gaining increasing relevance for
climate related studies, such as supply chain networks or flight
networks.

Here lies the entry point for our research: the visual exploration
and presentation of climate related networks (consisting of sets of
pre-calculated geo-spatially embedded nodes and edges), using 2D,
2.5D, or 3D node-link diagrams. These networks and their visual-
ization impose several challenges. In addition to their size—often
resulting in cluttered images or 3D node-link diagrams—and diverse
characteristics, climate researchers require multiple visualization
tasks to be performed. These include the overview of the spatial net-
work structure, temporal evolution of the overall edge structure in
combination with gridded climate data, subnetwork exploration in
space, scale, and time, down to the exploration of the connectivity
and the temporal behavior of individual network nodes.

General purpose network visualization solutions tackle only
parts of the solution space required and have some restrictions han-
dling the networks at hand. To provide an example, the Gephi tool
is strong in network layouts and network measure calculation; how-
ever, the options for visualizing networks with a given layout on a
geo-physical base layer are restricted. The Tulip tool provides a mul-
titude of network measures and visualization techniques as well with
geo-information, but still misses a 3D option for multi-layered net-
works. Finally, d3js provides multiple options for network visualiza-
tion including edge bundling in the geo-spatial reference, however,
is suitable for smaller networks of several thousands of edges only.

Against this background, we decided to develop a dedicated
tool providing solutions to the multitude of network data character-
istics and tasks, based on a prototype originally developed for flight
movement data, the Geo-Temporal eXplorer (GTX). This tool has
been published at www.gtx-vis.org (including the source codes). It
is based on a Graphics Processing Unit (GPU)-based visualization
pipeline that systematically applies the following principle: all input
data, i.e., the network data of nodes and edges, as well as all attributes
and additional data, are uploaded directly onto the GPU in form of
complex data, rather than geometry. It is only during rendering that
the data are processed and the geometry is generated with respect to
the visualization mode and settings currently selected by the user.

This approach has the following advantages:

• Data upload from the CPU to the GPU is required only once at the
beginning. All data processing, filtering, and geometry generation
are executed entirely on the GPU.

• An update of visualization settings by the user does not require to
re-upload large parts of the data/geometry to the GPU, only the
configuration settings need to be updated. This enables instant
modifications of the visualization.

• Geometric representations can be altered entirely from one frame
to the other, just by modifying the settings of the visualization
pipeline.

• The complex data on the GPU can also be used to spawn pro-
cessing and calculation processes on the GPU in parallel to the
visualization process. For example, the adjacency information of
nodes and edges can be easily processed in order to calculate the
k-neighborhood. The results of these additional computations are
in turn used as input data to the visualization process, e.g., to
visualize the selected edges in the k-neighborhood.

As a disadvantage of a GPU-based implementation, we see slightly
higher implementation efforts, having in mind the development of
algorithms (such as cartographic projections) from the scratch in
our case. The implementation challenges arise from the processing
and storage of heterogeneous climate network data as direct input
into the visualization pipeline, rather than from geometric primi-
tives. In addition, the main memory of the GPU is the main limiting
factor restricting the size of applicable networks.

At a glimpse, our tool contributes the following functionalities:

1. handling at a minimum 1 × 106 edges interactively,
2. browsing multiple time steps/ensemble members,
3. interactive highlighting of individual nodes and the related

subnetworks (focus and context),
4. time charts for interactively selected nodes,
5. on-the-fly change of geo-projections, and
6. multiple network layers in 3D.

The high-performance implementations of these functionalities
within GTX rely on GPU algorithms such as shader programs,
GPGPU methods, and a GPU-based processing and visualiza-
tion pipeline, which will be described and evaluated within this
paper.

For this evaluation, we present two use cases both described in
a high degree of detail for the interested physicist reader. The first
use case illustrates how an ensemble of seven large networks with
rising size and complexity (from 75 K to 526 K edges) can be visually
explored at interactive frame rates, gaining new insights from for-
mer hair-ball representations. The second use case of temperature
bridges in a flight network was selected to illustrate the flexibility
of GTX, among others allowing to combine pre-rendered temper-
ature choropleth maps with time-dependent daily sub-networks in
several geo-projections. In addition, both use cases showcase GTX’
interactive edge and node filtering as well as individual node selec-
tion functionalities enabling user-driven reductions of the network
size and complexity without losing the context of the remaining
network.

The paper is structured as follows. First, we provide a glimpse
into the related work (Sec. II). In Sec. III, we describe the GTX
tool and its components. Afterward, we describe their individ-
ual GPU implementations (Sec. IV). This is followed by two case
studies (Secs. V and VI), and a discussion and a conclusion section
(Secs. VII and VIII).

Chaos 33, 043129 (2023); doi: 10.1063/5.0131933 33, 043129-2

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0131933/16823209/043129_1_5.0131933.pdf

https://aip.scitation.org/journal/cha
https://www.gtx-vis.org

Chaos ARTICLE scitation.org/journal/cha

II. RELATED WORK

GPU-supported visualization allows rendering of complex
scenes with increased rendering performance and decreased mem-
ory consumption. Simple geometries such as lines or splats in
combination with GPU-based texturing and shading have been
applied.5,6 To enable users to explore geo-data at different levels
of complexity, visual representations in 3D geo-virtual environ-
ments basing on GPU-based techniques (supporting focus+context,
level-of-detail, and level-of-abstraction) have been developed.

The visualization of the geo-referenced network data has been
reviewed under different viewing angles: from graph drawing,7

information visualization,8 cartography,9 and with an application
perspective.10 Recently, Schöttler et al.11 have provided a design
space for visualizing and interacting with geo-spatiol networks. Sev-
eral publications survey challenges and solutions related to large
networks visualization.12,13 Tools developed to interactively visu-
alize large networks with more than 100 000 edges are Gephi
(gephi.github.io) and Tulip (tulip.labri.fr). However, they have their
limitations when it comes to the interactive handling and filtering of
several million edges.

Filling this gap, several new approaches for graph drawing and
rendering have been developed in recent years. Brinkmann et al.14

proposed a GPU implementation of the ForceAtlas2 algorithm,
which later has been extended for on multiple GPUs in a tiled dis-
play environment.15 Linsenmaier16 accelerated the Brinkmann et al.
algorithm implementation15 to a speedup of three to six times by
using an optimized version of the Barnes Hut algorithm. In addi-
tion, network algorithms have been ported to the GPU. For instance,
the GPU implementation of the KD-tree algorithm basing on a
breadth-first search strategy introduced by Zhou et al.17 allows a fast
k-neighborhood calculation.

Beyond planar network representations, interactive 2.5D visu-
alization techniques have been established using virtual globes.
Alper et al.18 propose a globe visualization “imprinting” the network
into a deformed virtual globe. Alternatively, by mapping the length
of an edge to the height of a 3D arch, short and long teleconnections
can be visually distinguished easily.19

In this work, we address the challenge of temporal/evolving and
ensembles of networks. Related visualization solutions include the
use of animation, space–time cubes,20 and temporal edge bundling.21

A tailored solution for smaller and medium sized evolving networks
is the Graph Stream library (graphstream-project.org).

Summarizing, existing visualization solutions have limitations
with respect to the size of interactively explorable networks and the
flexibility handling of the geographic/spatial context and, thus, are
only partly applicable for large climatic networks.

III. REQUIREMENTS AND DESIGN RATIONALS

GTX has been designed as a tool for the interactive visualization
of large geo-referenced network data. It supports interactive explo-
ration and presentation tasks of two- and three-dimensional, time
dependent, and multi-layer networks within their geographic con-
texts. In the following, the main design rationale of the GTX tool is
described:

Large datasets: Geographic networks are often large in size.
While the number of nodes usually ranges between 1000 and

300 000, the number of edges can easily exceed tens of millions of
edges or even more for dense networks. Time-dependent, multi-
layer, and multi-scale networks increase the size even further,
as they in fact add one full network for each layer or point in
time, respectively. Therefore, large networks of sizes up to at least
10 × 106 nodes and edges must be supported, regarding processing
and visualization at interactive frame rates.

Geographic embedding: In contrast to general graphs or net-
works, the positions of nodes in geographic networks are not arbi-
trary but carry a geographic meaning and are very important for the
interpretation of the underlying geo-physical processes and, there-
fore, need to be preserved. In order to set geographic networks into
context, a visualization has to include not only the network itself, but
also its geographic surrounding, using a visual representation such
as a geographic map or a virtual globe. As different types of networks
require different visualizations for their interpretation (e.g., global
vs. regional, 2D vs 3D), several diverse geographic projections must
be supported, and it should be possible to select and switch between
different geographic environments interactively.

Interactive filtering: To explore large networks interactively,
filtering needs to be applied. In particular, nodes and edges need to
be filtered spatially (based on their geographic position), temporally
(based on the time-attribute in temporal networks), and attribute-
based (based on the value of node and edge attributes). As filtering
is part of the user’s exploratory process (e.g., for formulating and
testing hypotheses of climatic processes), instant and interactive
filtering is required.

Interactive mapping: For the analysis of node and edge
attributes, a dynamic mapping process is needed. For example,
attribute values may be mapped to the height, size, or color of nodes
and edges. Also, different mapping configurations, such as color
gradients, need to be applied to visually distinguish between vari-
ous subgroups of the network, e.g., different layers of height may
use different color mappings. Further, interaction states, such as
selection and filtering, must be communicated using different visual
mappings.

Focus & context: Setting the focus on individual nodes and
depicting the related sub-networks in combination with keeping
information of the context enables climate researchers to study the
embedding of certain nodes within rest of the network. In particular,
this is relevant for analyzing network hubs.

Evolving temporal networks: To analyze temporal evolving
networks, their specific semantics need to be taken into account. In
time-dependent network data, not only attribute values of nodes and
edges can change over time, but nodes and edges can also be added
or removed from the networks. While it can sometimes be sufficient
to treat a network at one given point in time separately, the union
of nodes and edges over time also needs to be preserved, as to, e.g.,
analyze the development of attribute values over time, or to monitor
changes in network topology over time.

3D multi-layered networks: Multi-layered or coupled networks
are composite networks that consist of several layers, corresponding
for example with data from different atmospheric levels. There-
fore, such networks often contain a third dimension, signifying the
height of a node’s position. Each layer can either be interpreted as its
own network, which may be analyzed separately and may also con-
tain attributes specific only to that layer. But also interconnections

Chaos 33, 043129 (2023); doi: 10.1063/5.0131933 33, 043129-3

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0131933/16823209/043129_1_5.0131933.pdf

https://aip.scitation.org/journal/cha
https://gephi.github.io
https://tulip.labri.fr
https://graphstream-project.org

Chaos ARTICLE scitation.org/journal/cha

between different layers exist, which can be of high importance
for the analysis and understanding of the entirety of the coupled
network.

IV. FRAMEWORK IMPLEMENTATION OVERVIEW AND

DETAILS ON GPU-BASED MAPPING AND RENDERING

The requirements stated in Sec. III pose a lot of challenges for
an interactive system. Not only do large datasets need to be pro-
cessed and rendered at interactive frame rates, but also the visual
representations of the data need to be updated interactively, in order
to enable dynamic mapping and exploration by the users. Additional
analytic operations, such as calculating k-neighborhoods, have to
be performed interactively as well. Therefore, GTX applies a set of
GPU-based techniques that enable not only fast rendering of large
datasets but also flexible filtering, mapping, and processing of data
on the GPU. As a result, a data-driven visualization pipeline has been
implemented, which combines data processing and visualization
into a single, GPU-based rendering process.

Figure 1 shows the principle of this GPU-based visualization
pipeline. First, the network data are loaded from file and uploaded to
the GPU, represented as an attributed vertex cloud. This GPU repre-
sentation contains the original data of the network, i.e., the position
of nodes in latitude and longitude, as well as the values of all node
and edge attributes. During rendering, the dataset is processed, fil-
tered according to the current spatial, temporal, and attribute-based
filtering settings, then the geometric representations for all unfil-
tered nodes and edges are generated on the fly, taking into account
the current mapping options provided by the user. The generated
geometry then, finally, is rendered and rasterized.

Since all operations take place on the GPU during the render-
ing process, the results of user interaction are instantly visible. For
example, filtering and mapping options are represented on the GPU
as uniform shader variables, which are only a few bytes in size. User
interaction that influences filtering and mapping, therefore, only
requires these configuration values to be updated, which is accord-
ingly fast. Afterward, a rendering update is triggered, which causes
the updated visualization to be produced in the next frame. There-
fore, even seemingly large modifications to the visualization settings,
such as switching between geographic projections, which cause all
nodes and edges to be at completely different locations afterward,
can be performed instantly, as no re-processing of data and geome-
try generation on the CPU, and no uploading of data to the GPU are
required in the process.

GTX has been implemented using OpenGL 3.2 API and
shader programs. The individual components are described in
Subsections IV A–IV H.

A. GPU representation of network data

GTX provides readers for dot, graphml, and xml file formats.
Multi-variate attributes on nodes and edges can be imported. In
addition, for certain network classes, multiple networks can be
imported simultaneously, for example, representing different net-
work layers or network time series. This data are first loaded into a
CPU data structure.

Rather than generating and uploading geometric representa-
tions such as textured triangle meshes onto the GPU, as is done by
most visualization systems, the actual multi-variate input data are
uploaded to the GPU, represented in the form of vertex arrays and

FIG. 1. Principle of the GPU-based visualization pipeline.

Chaos 33, 043129 (2023); doi: 10.1063/5.0131933 33, 043129-4

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0131933/16823209/043129_1_5.0131933.pdf

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

buffer textures. These data are processed and then transformed into
actual geometry only during the rendering of a single frame.

Node geometry: Nodes are stored in a single vertex array. Each
data item contains the node ID, the position in latitude and longi-
tude, and a time stamp for temporal networks. The ID of a node also
represents an index into the attribute buffer, at which the attribute
values for that node can be retrieved.

Edge geometry: Edges are stored in another vertex array. Each
item contains the edge ID and the node IDs for the outgoing and
incoming nodes. As analog to nodes, the edge ID also serves as an
index into the attribute buffer.

Attribute data: The values of node and edge attributes are
stored in a single floating-point texture, using the texture type
GL_BUFFER_TEXTURE, which supports storing large amounts of
linear floating-point data. In this large array, the values of all
attributes of all nodes and edges are stored in a linear manner,
so given the ID of the node or edge, and the ID of the respec-
tive attribute, the attribute value can be retrieved in constant time
or O(1).

As described above, this representation of the network data
does not represent a specific geometry, such as a node-link dia-
gram of the network using spheres and lines, but it contains the
network data itself. It can, therefore, be used not only to produce
a specific visualization of the data, but also to process the data in
terms of GPGPU operations. This can be used for example, to per-
form analytic computations on the network data or to execute graph
algorithms, which are needed as part of the visualization process.

B. Visualization state

The visualization state contains the current options a user has
selected, including the state of interaction with the visualization,
such as the currently selected or hovered items. The state is commu-
nicated to the GPU visualization pipeline by setting shader uniform
variables and, in some cases, using additional buffer textures to
represent larger data.

Geographic projection: This option defines the kind of geo-
graphic mapping that is currently selected. It determines the kind
of geometry that is rendered for the geographic environment and
also which shader function is used to transform from geographic
coordinates (latitude and longitude) into the virtual 3D space when
rendering the actual network geometry.

Attribute mappings: This includes the attribute mappings for
node color, size, and height, as well as edge color and width. For
each of these, the index of the specific attribute is stored.

Filter values: For each attribute, a pair of values is stored, repre-
senting the minimum and maximum values of that attribute. These
filter data are stored in a texture, which can be used to look up
the minimum and maximum values for a given attribute ID. Also,
for temporal networks, the current minimum and maximum time
stamps are stored.

Selection-buffer: The selection-buffer contains the list of IDs
of all currently selected nodes. It has a fixed sized, so only a certain
number of nodes can be selected at one time. It is represented on the
GPU using a uniform buffer object.

Hovered node: In addition to the selected nodes list, this stores
the ID of the node currently hovered by the mouse.

K-neighborhood: This represents the current k, which defines
the size of the selected neighborhood.

Selection-texture: The selection-texture is a buffer texture,
which for each individual node contains the information if it is cur-
rently selected or within the current k-neighborhood of any of the
selected nodes.

C. Virtual environment rendering

At first, the geometry for the virtual environment into which
the network diagram will be embedded is rendered onto the screen.
This can be either a 3D virtual globe or a 2D map. Therefore,
depending on the current visualization settings, either a textured
3D sphere or a texture 2D rectangle positioned in 3D space will be
rendered.

In the case of the 3D globe, the UV texture mapping is deter-
mined by a spherical mapping of a map texture onto the globe.
In the 2D case, however, several geographic projections are sup-
ported. This is implemented in terms of shader programs: For each
pixel on the 2D plane, the reverse projection function is applied to
determine the coordinates for the texture lookup. This enables the
geographic projection to be switched on the fly: when a different
projection function is selected, only the projection function in the
shader pipeline needs to be changed for the next frame.

Also, depending on the currently selected virtual environment
and 2D projection, a shader program is selected that will later be
used to transform the geo-position of nodes and edges into the 3D
positions in the virtual environment.

D. Rendering of network data

In the next step, the actual geographic network visualization is
created by generating a three dimensional node-link diagram of the
network. This is initiated by rendering the attributed vertex clouds,
representing the network’s nodes and edges. This causes each item
to be processed in parallel on the GPU, and for each item, the entire
visualization process—filtering, mapping, and rendering—is per-
formed. During this process, the actual geometry is generated from
the input data, taking into account the current visualization state,
such as the geographic projection and attribute mapping, then the
generated geometry is rendered to the screen.

The processing of an attributed vertex cloud is triggered with a
single draw call, which draws the entire vertex array in a single step
(glDrawArrays). This enables a very efficient processing of all data
items, as the amount of draw calls is essential for the performance of
an interactive graphics application. The processing and rendering is
implemented in terms of shader programs:

Data processing and filtering: The vertex shader processes the
data item and fetches the data attributes for the node or edge, which
are stored in the attribute-texture. These attribute data are compared
with the current spatial, temporal, and attributed-based filter values,
and data that is filtered out will not be processed any further, so no
geometry is generated for them.

Geometry generation: In the geometry shader, the actual ren-
derable geometry for each data item, which have not been filtered
already is generated. In this step, the attribute data, which has been
fetched before, are applied to the visual attributes of the geometry,
such as the color or size of a node. Also, the actual 3D positions for

Chaos 33, 043129 (2023); doi: 10.1063/5.0131933 33, 043129-5

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0131933/16823209/043129_1_5.0131933.pdf

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

each data item is determined by applying the projection from geo-
graphic coordinates into the 3D space, according to the currently
selected geographic projection.

Node geometry: The nodes of the network are represented by
spheres, which are rendered using splats to improve rendering per-
formance. Splat rendering represents the 3D geometry of an object
by sampling the surface by points that come with a surface direc-
tion vector and renders them by texture shaders. “The idea is to
approximate local regions of the surface by planar ellipses in object
space and then render the surface by accumulating and blending
these ellipses in image space.”22 This enables large amounts of nodes
to be rendered in real-time with low memory consumption for the
generated geometry. The spheres provide radius and color as visual
variables onto which node attributes can be mapped.

Edge geometry: Edges are represented by lines between the con-
nected nodes. They can be either straight 2D lines or 3D arcs. Line
color, line width, and arc height are available as visual variables for
the mapping of edge attributes.

Rasterization: Finally, the generated geometry is rasterized
onto the screen. In the fragment shader, texture mapping and color
lookup are applied to determine the final color for each resulting
pixel.

E. Time series view

For the visualization of temporal networks, a planar time series
view has been implemented, depicting the temporal evolution of
user-selected node attributes (see Fig. 6). It displays the value of
a single attribute of a selected node over time, rendered as an UI
element on top of the network visualization. To generate this visu-
alization in real-time, the attributed vertex cloud of the nodes is
processed a second time, using a different set of shader programs.

Data processing and filtering: In temporal networks, the ver-
tex cloud contains each node several times, once for each recorded
time stamp. Each item has an individual item ID, which is used to
fetch the attribute data for this particular instance, but also contains
a shared node ID to identify which items represent the same node,
but at different time stamps. In the vertex shader, this node ID is
determined and compared to that of the currently selected node.
Only items which represent the selected node are processed further,
otherwise the processing is omitted at this point.

Geometry generation: For the selected node, the time stamps of
the current data point are read and mapped to the X-axis of the visu-
alization. The value of the selected attribute for that node is fetched
from the attribute data texture and mapped to the Y-axis. From these
data, a line geometry is generated in the geometry shader, which is
then rasterized onto the screen to create the actual value plot.

F. Selection and picking

In addition to the resulting color image of the visualization,
an ID map is generated during the rendering process, which con-
tains the ID of the displayed item—node or edge—for each rendered
pixel. When the mouse is moved over the visualization, the ID of the
currently hovered node is determined by looking up the pixel in this
ID map. This information is then propagated to the rendering state
to visually highlight this node.

By pressing the mouse button over the object, the user can
select and deselect the current node. This information is stored in
the selection-buffer on the GPU and used both for highlighting the
selected nodes and for calculating the neighborhood of the currently
selected nodes.

During the rendering process, the currently hovered node is
visually highlighted, as are all selected nodes. In addition, the nodes
and edges within the k-neighborhood (see Sec. G), which are con-
sidered to be in the focus of the visualization, are displayed with
a prominent rendering style, while the other nodes and edge (the
context) are visually faded out.

G. Neighborhood calculation

The k-neighborhood of the currently selected nodes is also
calculated on the GPU [K-nearest neighbors (kNNs) is a super-
vised classification algorithm that determines the classification of
a point X by using the classification of the K-nearest points of X].
This process is a shader-based implementation of Bellman Ford’s
shortest-path algorithm, modified only by allowing multiple start
vertices to exist. It is triggered whenever the selection of nodes has
been modified by the user. The neighborhood information is stored
in the selection-texture: for each node, it stores the number of steps
that is needed to get from one of the selected node to this node.

The process starts with the clearing of the selection-texture:
each element is set to a value that indicates that the node is unreach-
able (−1). Then, the value for each selected node is set to zero (0),
indicating that the node is reachable within zero steps. The neigh-
borhood is now calculated using a ping-pong strategy: a second
texture has been created with the same size as the selection-texture.
One of the textures is used as input, the other is used at the output
texture. After each step, the textures are switched.

In each iteration, the attributed vertex cloud containing the
edges of the network is rendered. In the shader program, the IDs
of the source and destination nodes are retrieved, and the current
value for the destination node is fetched from the input texture. If
that value plus one is smaller than the value of the destination node,
the new value is written into the output texture at the position of the
destination node. Otherwise, the fragment is discarded. The process
is repeated exactly k times for a selected k-neighborhood, after which
the neighborhood has been fully calculated.

H. User interface and animation

To enable user to interact with the system, we developed a
QT5-based graphical user interface (see Fig. 2). This interface con-
sists of a parameter dialog for dataset selection and import, and
controls for all parameters of the filtering and rendering process,
including the interactive node and edge filters as well as size and
color definitions.

In addition, a JavaScript-based script interface was developed.
It allows to import time-dependent or ensemble network datasets
in combination with a set of pre-calculated earth images (e.g., for
pre-rendered earth-maps in Figs. 4–6) and predefined camera path
definitions for animated videos productions.

Individual base maps in combination with sub-networks
defined for individual time steps or ensemble members can be

Chaos 33, 043129 (2023); doi: 10.1063/5.0131933 33, 043129-6

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0131933/16823209/043129_1_5.0131933.pdf

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

FIG. 2. The graphical user interface of the GTX Explorer; left: edge rendering as well as node and edge filter configuration options; right: a climate interaction network
(from Use Case 1 in Sec. V), with 526 000 edges interactively filtered by node betweeness-centrality and color-coded by edge length.

animated using either a time slider or a forward+backward key
definition applying the scripting language.

V. USE CASE 1: VISUAL EXPLORATION OF LARGE

MULTI-TIME SCALE CLIMATE NETWORKS

Using the GPU-based visualization pipeline described in this
work, an interactive visualization method for large climate networks
has been implemented. Climate networks are represented as node-
link diagrams, embedded into a geographical map (2D) or globe
(3D) for cross-referencing network data with topological or the-
matic features. Due to the embedding of climate networks into the
geographic background, node positions need to be fixed according
to their geo-position. Position-changing layout of nodes to improve
the perception of the network structure cannot be applied in this
context. Therefore, edge clutter produced by long and overlapping
edges can occur, especially in highly connected and global climate
networks. To reduce such problems, edges can be rendered as 3D
arcs. It can also improve the perception of long and short distance
edges by varying the height of arcs with their length, which is impor-
tant for understanding the main network structure and finding
spatially linked climate relevant regions (e.g., for detecting climate
teleconnections). On the other hand, the 3D visualization can also
make the perception of the visualized data more difficult. Therefore,

additional techniques such as filtering and edge bundling must be
applied to improve the visual perception of the network structure.

A. Background

The climate system can be considered as consisting of interact-
ing subparts, whose interactions determine and control the prop-
erties of the climate system. The method of complex networks is a
powerful tool to represent and investigate the topology and mech-
anisms of such systems that consist of many interacting parts. For
this purpose, spatially embedded (station-based or gridded) cli-
mate data are transformed to a complex network representation on
the basis of statistical interrelations (e.g., the Pearson correlation
between the time series of the considered stations or grid points).
Such climate networks can be used to understand the spatial con-
nections of temporal interrelations in climate related processes such
as rainfall propagation or sea surface temperature. These studies
have used network measures such as degree, clustering coefficient,
and betweenness centrality to quantify the spatial connections in
the climate system. This approach has been used to uncover climate
teleconnections and to develop prediction schemes.1,3,23

Climatic processes are generally scale-dependent processes and
exhibit certain characteristics that are related to other scales. The
scale relationship can be temporal, spatial, or both. Understanding

Chaos 33, 043129 (2023); doi: 10.1063/5.0131933 33, 043129-7

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0131933/16823209/043129_1_5.0131933.pdf

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

how these scales are connected and how the geophysical processes
evolve with the scale is vital in many applications such as disaggre-
gation, downscaling, upscaling of data, and identification of scale
specific and emergent processes. Many approaches such as fractal
analysis and self-similar behavior using moments provide insight
into the scaling behavior of the geophysical processes. However,
these methods are not capable of capturing the spatial connections
of the given climatic processes in the neighborhood. A combi-
nation of wavelet transform and complex network approach can
help to investigate the spatiotemporal relationships on different
scales. This approach is robust1 and can provide detailed insights
into the process which remain generally obscure at single scale
investigations. For instance, several studies have used wavelet trans-
form to decompose surface air temperature and global sea surface
temperature data and applied climate networks at corresponding
timescales to identify different hubs at different scales responsible
for known atmospheric circulation phenomena or to uncover long-
range connections within the climate system (teleconnections) that
were beyond the hitherto known.

B. Data characteristics

The climate network studied here is based on the global
monthly sea surface temperature (SST) data provided by US
National Oceanic and Atmospheric Administration—Earth System
Research Laboratory’s Physical Sciences Division (NOAA/OAR/
ESRL PSD). The data are freely available at https://psl.noaa.gov/data/
gridded/index.html. The data (ERSST V3b) have a spatial resolution
of 2.0◦ × 2.0◦ and are given for the time period 1979–2015. As a pre-
processing step of the SST data considered here, we have removed
1056 grid points out of total 10 512, with missing values or gaps
in the SST data, hence, in total, 9456 grid points considered in this
study. Further, we calculate anomaly series by subtracting the clima-
tological mean for each month of the time series, which significantly
reduces temporal auto-correlation in the timeseries.

C. Visualization examples

To construct the climate networks, each SST grid cell is con-
sidered as a node and edges are created between all pairs of nodes
based on statistical relationship. The similarity measure used is the
wavelet multiscale correlation (WMC).1 For the WMC, the data are
first decomposed at different timescales and then the Pearson cor-
relation between all pairs of nodes is calculated at corresponding
timescale. Finally, significance based pruning is applied to retain
only highly correlated edges in the network.

The network is constructed by applying a threshold to the
WMC values. A number of criteria have been used for thresholding,
such as a fixed amount of link density or fixed thresholds. Here, we
consider a 5% link density since it is a well accepted criteria globally
for network construction. However, here we combine it with mul-
tiple testing attempts to avoid false links by controlling the type I
error or adjusting p-values to give only significant links. Between-
ness centrality (BC) is calculated for the network nodes, which is a
measure of control that a particular node exerts over the interac-
tion between the remaining nodes. In simple words, BC describes
the ability of nodes to control the information flow in networks. To
calculate betweenness centrality, we consider every pair of nodes and

count how many times a third node can interrupt the shortest paths
between the selected node pair.

D. Results

The network visualization of the original SST data (all scales)
reveals short and long range connections between many regions
of the Earth [Fig. 3(a)]. For example, we can identify short range
links within the Indian Ocean and the tropical Pacific, which could
be related to the Indian Ocean Dipole or the El Niño/ Southern
Oscillation (ENSO). Long range connections appear between the
western Indian Ocean and the Atlantic and the tropical Pacific with
the Mediterranean Sea. However, we cannot distinguish at which
timescales these connections appear. To get a clearer picture, we
look at the scale-dependent networks.

Considering short timescales, we can attribute mainly the short
links to these timescales [Figs. 3(b)–3(d)]. At longer timescales, the
long range connections appear. At timescales of roughly a year,
mainly the tropical oceans interact with each other [Fig. 3(e)],
whereas at approximately 2 years, the global impact of the ENSO
region is obtained [Fig. 3(f)].

The GTX tool allows an easy visualization and comparison
of the connections at different scales by handling the complex-
ity of the networks data, interactive filtering of most important or
selected edges, and attributing the interrelationships at certain scales
to selected regions.

VI. USE CASE 2: VISUAL EXPLORATION OF TEMPORAL

EVOLVING CLIMATE BRIDGES IN WORLD AIR-TRAFFIC

NETWORKS

The world air-traffic network connects different regions to
each other. Within only one day, a large number of people are
able to travel around the globe across climate regimes, e.g., depart-
ing under cool and arriving under hot weather conditions and
vice versa or similar conditions on two connected airports. These
two components, climate and mobility, can affect the fast spread
of temperature related infectious diseases and pathogens.24 Against
this background and to identify critical constellations in the whole
climate-mobility-system (CMS), the idea of this use case is to ana-
lyze the “climatic” characteristics of airport nodes. Associated with
this, temporary flight connections or subnetworks can be identified
in which the prevailing temperature conditions favor the possible
survival conditions of pathogens.

A. Background

The impacts of climate change onto the spreading of infectional
diseases is co-determined by the temporal developments of climatic
factors:25

• The transmission of mosquito-borne infectious diseases is
affected by factors including temperature, humidity, and precipi-
tation. For malaria, the number of months suitable for transmis-
sion of Plasmodium falciparum and Plasmodium vivax malaria
parasites is calculated on the basis of temperature, precipitation,
and humidity.

Chaos 33, 043129 (2023); doi: 10.1063/5.0131933 33, 043129-8

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0131933/16823209/043129_1_5.0131933.pdf

https://aip.scitation.org/journal/cha
https://psl.noaa.gov/data/gridded/index.html

Chaos ARTICLE scitation.org/journal/cha

FIG. 3. Spherical three-dimensional globe representation of the short and long-range teleconnections at different timescales in the sea surface temperature network (originally
published in Ref. 1). Only nodes beyond a pre-selected betweenness centrality (BC) value are plotted. For instance, in subplot (a)–(d),(e) and (f), and (g) nodes are plotted
for BC values greater than 90 K, 57 K and 38 K respectively. Edge color represents the geographical lengths.

• Vibrio species cause a range of human infections, including
gastroenteritis, wound infections, septicemia, and cholera. These
bacteria are found in brackish marine waters and cases of infec-
tions are influenced by sea surface salinity, sea surface tempera-
ture, and chlorophyll.

The actual dissemination of pathogens in the air transporta-
tion system is hard to track based on the data. Expert interviews
and laboratory experiments26 at idealized conditions help priori-
tize potential influencing factors. Based on simplistic transmission
models and using predefined transmission rates, which are associ-
ated with air temperature and humidity, outbreak situations can be
simulated.

How quickly an outbreak spreads and reaches out to other
regions depends on the weather conditions along the flow of pas-
sengers. In a previous work, we have modeled the sensitivity of
the spread of flu infections in aviation as a function of vapor
pressure.27 The characteristics of the flight network as well as the
location and season of the outbreak largely determine the speed of a
pandemic.

Following this line of argumentation, in this use case, we inves-
tigate the properties of so-called “climate bridges” as an indicator for
infection spread risks within the global air transportation network
by interactively exploring the properties of temporally evolving
network conditions.

B. Data characteristics

In order to assess this possible influencing factor, we combine
0.5◦ × 0.5◦ gridded daily maximum temperature data over the con-
tinents (W5E5 dataset: https://doi.org/10.5880/PIK.2019.023) and
open flight data (https://openflights.org/data.html). First, we define
a reduced air-traffic network focusing on the 99 largest and most
important airports in the world. This also includes approximately
3500 daily flight connections, which are considered constant over
time. Second, we define the climate location factors at every airport
by selecting the nearest grid point in the temperature dataset. For
every day and flight connection, the temperature conditions on the
departure and destination airport are assessed.

Now, as a basis for climate bridge definition for each airport, a
weight can be defined based on its temperature conditions as

ω(Ti) =
1

1 + e−0.15 (Ti−27◦C)
. (1)

Here, −0.15 and 27◦C are constants, which determine the strength
and the position of the maximal temperature gradient. In Northern
Hemisphere mid-latitudes, this threshold is a precursor of heat stress
with impact on other human-health related aspects. Now, based on
the per airport weights ω(Ti), the strength of a connected climate
bridge ωij (network edge) can be defined by the medium weight of

Chaos 33, 043129 (2023); doi: 10.1063/5.0131933 33, 043129-9

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0131933/16823209/043129_1_5.0131933.pdf

https://aip.scitation.org/journal/cha
https://doi.org/10.5880/PIK.2019.023
https://openflights.org/data.html

Chaos ARTICLE scitation.org/journal/cha

the two airports i and j,

ωij(Ti, Tj) = 0.5
(

ω(Ti) + ω(Tj)
)

. (2)

Based on this climate bridge definition, we have calculated
node based network measures. The most relevant one in a weighted
network is the degree centrality. This measure is the sum over all
weighted edges (climate bridges) per airport. Then, the resulting pat-
terns are visualized in a network view at the nodes together with the
climate bridge strength on the edges and temperature on heat maps.

C. Visualization examples

The visualizations in Fig. 4 illustrate the full network of flight
connections in three different projections. Edges are color coded
by their climate bridge strength ωij(Ti, Tj). A 3D spherical projec-
tion [Fig. 4(a)] best illustrates the spatial distances, however, major
parts of the network are hidden. The Mercator projection [Fig. 4(b)],
on the other hand, produces much clutter, in particular, by many
overlapping long connections and by wrongly representing flight
connections of airports layouted by the projection one to the left

and the other to the right border [in Fig. 4(b): routes over the Pacific
ocean]. Avoiding some of the shortcomings of Figs. 4(a) and 4(b),
alternative projections have been integrated into GTX such as a 360◦

projection [Fig. 4(c)]. Here, with the North Pole in the center, based
on the interactivity of the view, all relevant features of the network
can be distinguished.

After selecting a suitable projection, the user can select indi-
vidual airports and their connected networks and inter-compare the
strength of climate bridges against the temperature conditions in
different seasons (see Fig. 5). For the two selected airports, Frank-
furt and Bangkok, Frankfurt shows the highest network activation
under Northern Hemispheric summer conditions. Consequently,
the degree centrality of Frankfurt is higher in summer than in win-
ter. This also changes the airport ranking across seasons taking
temperature-related flight routes into account.

As a third example, Fig. 6 represents the interactive selection
of two airports, focusing on direct connections (colored edges) and
their context (semi-transparent gray edges). In addition, the annual
cycle (June 2002 to August 2003) of the degree centrality is repre-
sented in the time series view (green color) to allow users to select

FIG. 4. Representation of the full flight network in 2003 climatic conditions, illustrating varying occlusion levels in three implemented projections. (a) 3D spherical projection,
(b) Mercator projection, and (c) 360◦ projection.

Chaos 33, 043129 (2023); doi: 10.1063/5.0131933 33, 043129-10

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0131933/16823209/043129_1_5.0131933.pdf

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

FIG. 5. Winter and summer connection network of two airports (Mercator
projection). (a) Frankfurt connections—winter, (b) Frankfurt connections—
summer, (c) Bangkok connections—winter, and (d) Bangkok connections—
summer.

time periods of interest. With the slider at the bottom of this figure,
all possible conditions and large-scale temperature patterns can be
set in relation to the selected airport and corresponding climate
bridges.

D. Results

The presented climate bridges example—indicating a possi-
ble risk factor for spreading of infectional diseases—illustrates the
potential of the GTX tool to analyze time-dependent features of
air-traffic networks. The definition of climate bridges as used here
to weight individual flight connections by climate factors can be
understood as a transmission rate in order to simulate outbreaks
as done by Refs. 27 and 28 and analyzing the speed sensitiv-
ity. The tool is highly scalable to further increase the number of
flight connections beyond the presented example sizes. The com-
bination of several visual attributes in the network view (node
color and size, edge color and transparency) in combination with
a color coded base map (with several projections) and an interac-
tive time series view provides the required flexibility for this use
case. Still, for longer time series, an improved network data handling
and more sophisticated time series visualization methods would be
desirable.

VII. DISCUSSION

Our approach implemented in the GTX explorer creates a
highly interactive visualization system, as update costs to modify the
visualization are nearly zero. Even large changes to the visualization,
such as switching between 2D or 3D, selecting a different geograph-
ical projection, or even switching between a time series diagram and
a node-link 3D view, can be achieved between one frame and the
other, without detectable delay for the user.

The GTX explorer is running on two parallel nodes on a
SUSE Linux Enterprise Server 12 system with a NVIDIA Tesla K40c
graphic cards with 12 GB memory size. It is accessible using Virtu-
alGL on an HPC system for more than 200 climate scientists. We
tested its performance with several of the data subsets of use case 1
(see Table I). For the largest one with 9456 nodes and 526 000 edges
with a 1300 × 1050 resolution display in a setting where all nodes
and edges are not filtered and visible, the system still allows fluent
interaction during zooming, panning, and earth rotation with a min-
imum of 17 MPixel/s and 14 frames/s. Up to a million edges can be
loaded and concurrently processed in this hardware setting, limited
only by the graphic card main memory.

However, the data processing on the GPU has as well a dis-
advantage: as the data are processed just on the GPU, it cannot
be pre-filtered on the CPU to reduce the amount of data. For
very large datasets, a limit to this approach, therefore, lies in the
amount of data that can be uploaded to the GPU in terms of mem-
ory. Also, since processing and filtering takes place on the GPU,
and each user interaction can completely change which items are
visualized in which way, every data item has to be processed each
time, even if it is then filtered out. This may impact the render-
ing performance on very large datasets. Also, since the generated
geometry can also change drastically from frame to frame, the
geometry is constantly regenerated, also impacting the rendering

Chaos 33, 043129 (2023); doi: 10.1063/5.0131933 33, 043129-11

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0131933/16823209/043129_1_5.0131933.pdf

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

FIG. 6. The full flight network (context) and highlighted connections of Frankfurt and Los Angeles (focus); interactively selected time frame (blue); the line chart represents
betweenness the daily development of the centrality of Frankfurt for two concurrent years.

performance. These disadvantages could be overcome by regenerat-
ing the geometry only after visualization modes have been modified
(e.g., transform-feedback or similar GPU approaches). Finally, all
processing and analysis functions on the data need to be imple-
mented on the GPU as shader programs. For complex analytic
algorithms, this may not always be feasible.

We are very aware that CUDA (Compute Unified Device
Architecture) has become the state of the art over GPGPU imple-
mentations for network calculations such as k-neighborhood. Using
CUDA for that would of course be possible, but is not straightfor-
ward to implement in conjunction with OpenGL. For that reason,
we think it still makes sense in a visualization-focused application
to implement everything with shaders (vertex, fragment, geome-
try, compute shaders), which have exactly the same capabilities as
CUDA but are integrated directly into the visualization pipeline. We
acknowledge that this comes with some implementation challenges
but is possible for the skilled programmer.

Nevertheless, the tool allows a simple handling of multi-
dimensional complex network data (temporally evolving, many

TABLE I. Performancemeasurement of the interaction with four representative layers

of use case 1.

Total throughput Frame rate
Number edges [MPixel/s] [f/s]

75.000 50 41
171.000 41 34
312.000 25 21
526.000 17 14

node attributes, different scales), becoming more important in the
study of climate related observation and model data.

VIII. CONCLUSION

This paper introduces the interactive network exploration tool
GTX, which has been designed for the visualization of large geo-
referenced networks. It contributes a GPU-based implementation
that enables the interactive handling of more than 107 edges by
executing all parts of the visualization pipeline, i.e., filtering, pro-
cessing, mapping, and geometry generation, during the rendering
process. This enables the implementation of highly interactive, use-
case specific visualization components, such as spatial and temporal
filtering and exploration, selection and highlighting, and temporal
focus+context for temporal evolving networks. GTX enables users
to choose an appropriate geo-projection just-in-time (e.g., to reduce
clutter induced by standard layouts) and provides additional com-
ponents, such as k-neighborhood computation, in real-time. Two
examples from the climate science background have illustrated the
applicability of the proposed tool.

The pre-processing of climate network measures in a parallel,
very flexible python environment controlled by climate scientists is
a very well-established workflow before entering the visualization
session itself. However, for future work, a CUDA-based in situ calcu-
lation of network measures and/or algorithms directly on the GPU
seems to be a promising direction.

For future work, we plan to extend the flexibility and perfor-
mance of the tool handling temporal and ensemble networks and
to update the GPU-based implementation based on current and
emerging technologies (e.g., compute shaders might simplify the
handling of GPGPU-based methods and re-implementation based
on Vulkan could increase the flexibility and performance of the

Chaos 33, 043129 (2023); doi: 10.1063/5.0131933 33, 043129-12

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0131933/16823209/043129_1_5.0131933.pdf

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

system). In addition, we see potential extending the tool to the
requirements of further types of networks and applications (e.g.,
trading networks).

ACKNOWLEDGMENTS

The authors would like to thank HPI for enabling the research
and development of this tool. The research was supported by the
Federal Ministry of Education and Research of Germany in the
framework of InfectControl2020: https://www.infectcontrol.de/en/
(Project No.: 03ZZ0812D), in the framework of climXtreme:
https://www.climxtreme.net/, in project PIK_Change (Grant No.
01LS2001A), and the DFG research training group (GK 2043)
“NatRiskChange.” A.A. and N.M. were also supported by the
COPREPARE project funded by DAAD and UGC.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Stefan Buschmann: Conceptualization (equal); Formal anal-
ysis (equal); Methodology (lead); Software (lead); Validation
(equal); Visualization (lead); Writing – original draft (lead). Peter
Hoffmann: Data curation (equal); Formal analysis (equal); Investi-
gation (equal); Validation (equal); Visualization (equal); Writing –
original draft (equal). Ankit Agarwal: Data curation (equal);
Formal analysis (equal); Investigation (equal); Validation (equal);
Writing – original draft (equal). Norbert Marwan: Formal analysis
(equal); Funding acquisition (equal); Investigation (equal); Method-
ology (supporting); Supervision (equal); Validation (equal); Visu-
alization (supporting); Writing – original draft (equal). Thomas
Nocke: Conceptualization (lead); Formal analysis (lead); Method-
ology (supporting); Project administration (supporting); Software
(supporting); Supervision (equal); Validation (equal); Visualization
(equal); Writing – original draft (lead).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1A. Agarwal, L. Caesar, N. Marwan, R. Maheswaran, B. Merz, and J. Kurths,
“Network-based identification and characterization of teleconnections on differ-
ent scales,” Sci. Rep. 9, 8808 (2019).
2J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, “The backbone of the climate
network,” Europhys. Lett. 87, 48007 (2009).
3N. Boers, B. Goswami, A. Rheinwalt, B. Bookhagen, B. Hoskins, and J. Kurths,
“Complex networks reveal global pattern of extreme-rainfall teleconnections,”
Nature 566, 373–377 (2019).
4C. Tominski, J. F. Donges, and T. Nocke, “Information visualization in climate
research,” in 2011 15th International Conference on Information Visualisation
(IEEE, 2011), pp. 298–305.
5C. Stoll, S. Gumhold, and H.-P. Seidel, “Visualization with stylized line
primitives,” in Proceedings of IEEE Visualization 2005 (Vis’05) (IEEE, 2005),
pp. 695–702.

6V. Petrovic, J. Fallon, and F. Kuester, “Visualizing whole-brain DTI tractogra-
phy with GPU-based tuboids and LoD management,” IEEE Trans. Vis. Comput.
Graph. 13, 1488–1495 (2007).
7A. Wolff, “Graph drawing and cartography,” in Handbook of Graph Drawing and
Visualization, edited by R. Tamassia (CRC Press, 2013), pp. 697–736.
8“Methods for multilevel analysis and visualisation of geographical networks,” in
Methodos Series, edited by C. Rozenblat and G. Melançon (Springer, 2013), Vol.
11.
9P. Rodgers, “Graph drawing techniques for geographic visualization,” in Explor-
ing Geovisualization, edited by J. Dykes, A. M. MacEachren, and M.-J. Kraak
(Elsevier, 2005), pp. 143–158.
10T. Nocke, S. Buschmann, J. F. Donges, N. Marwan, H.-J. Schulz, and C. Tomin-
ski, “Review: Visual analytics of climate networks,” Nonlinear Process. Geophys.
22, 545–570 (2015).
11S. Schöttler, Y. Yang, H. Pfister, and B. Bach, “Visualizing and interacting with
geospatial networks: A survey and design space,” CoRR abs/2101.06322 (2021).
12T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. van Wijk, J.-D.
Fekete, and D. Fellner, “Visual analysis of large graphs: State-of-the-art and future
research challenges,” Comput. Graph. Forum 30, 1719–1749 (2011).
13Y. Hu and L. Shi, “Visualizing large graphs,” Wiley Interdiscip. Rev.: Comput.
Stat. 7, 115–136 (2015).
14G. G. Brinkmann, K. F. Rietveld, and F. W. Takes, “Exploiting GPUs for fast
force-directed visualization of large-scale networks,” in 2017 46th International
Conference on Parallel Processing (ICPP) (IEEE, 2017), pp. 382–391.
15G. Brinkmann, K. Rietveld, F. Verbeek, and F. Takes, “Real-time interactive
visualization of large networks on a tiled display system,” Displays 73, 102164
(2022).
16H. Linsenmaier, see https://medium.com/rapids-ai/large-graph-visualization-
with-rapids-cugraph-590d07edce33 for “Large Graph Visualization with Rapids
Cugraph” (2020) (accessed 3 December 2020).
17K. Zhou, Q. Hou, R. Wang, and B. Guo, “Real-time KD-tree construction on
graphics hardware,” ACM Trans. Graph. 27, 1–11 (2008).
18B. Alper, S. Sümengen, and S. Balcisoy, “Dynamic visualization of geographic
networks using surface deformations with constraints,” in Proceedings of the
Computer Graphics International Conference (CGI) (IEEE Computer Society,
2007).
19Y. Yang, T. Dwyer, B. Jenny, K. Marriott, M. Cordeil, and H. Chen, “Origin-
destination flow maps in immersive environments,” IEEE Trans. Vis. Comput.
Graph. 25, 693–703 (2018).
20B. Bach, E. Pietriga, and J.-D. Fekete, “Graphdiaries: Animated transitions and
temporal navigation for dynamic networks,” Trans. Vis. Comput. Graph. (TVCG)
20, 740–754 (2013).
21C. Hurter, O. Ersoy, S. Fabrikant, T. Klein, and A. Telea, “Bundled visualization
of dynamicgraph and trail data,” IEEE Trans. Vis. Comput. Graph. 20, 1141–1157
(2014).
22M. Botsch, M. Spernat, and L. Kobbelt, “Phong splatting,” in Proceedings of the
First Eurographics Conference on Point-Based Graphics, SPBG’04 (Eurographics
Association, Goslar, 2004), pp. 25–32.
23N. Boers, B. Bookhagen, H. M. J. Barbosa, N. Marwan, J. Kurths, and J. A.
Marengo, “Prediction of extreme floods in the eastern Central Andes based on
a complex networks approach,” Nat. Commun. 5, 5199 (2014).
24L. M. Casanova, S. Jeon, W. A. Rutala, D. J. Weber, and M. D. Sobsey, “Effects of
air temperature and relative humidity on coronavirus survival on surfaces,” Appl.
Environ. Microbiol. 76, 2712–2717 (2010).
25N. Watts, M. Amann, N. Arnell, S. Ayeb-Karlsson, K. Belesova, M. Boykoff, P.
Byass, W. Cai, D. Campbell-Lendrum, S. Capstick, and J. Chambers, “The 2019
report of the Lancet Countdown on health and climate change: Ensuring that the
health of a child born today is not defined by a changing climate,” The Lancet 394,
1836–1878 (2019).
26A. C. Lowen, S. Mubareka, J. Steel, and P. Palese, “Influenza virus transmission
is dependent on relative humidity and temperature,” PLoS Pathog. 3, e151 (2007).
27F. Brenner, N. Marwan, and P. Hoffmann, “Climate impact on spreading of
airborne infectious diseases,” Eur. Phys. J. Spec. Top. 226, 1845–1856 (2017).
28F. Brenner and N. Marwan, “Change of influenza pandemics because of cli-
mate change: Complex network simulations,” Rev. d’Epidemiol. Sante Publique
66, S424 (2018).

Chaos 33, 043129 (2023); doi: 10.1063/5.0131933 33, 043129-13

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0131933/16823209/043129_1_5.0131933.pdf

https://aip.scitation.org/journal/cha
https://www.infectcontrol.de/en/
https://www.climxtreme.net/
https://doi.org/10.1038/s41598-019-45423-5
https://doi.org/10.1209/0295-5075/87/48007
https://doi.org/10.1038/s41586-018-0872-x
https://doi.org/10.1109/TVCG.2007.70532
https://doi.org/10.5194/npg-22-545-2015
https://doi.org/10.1111/j.1467-8659.2011.01898.x
https://doi.org/10.1002/wics.1343
https://doi.org/10.1016/j.displa.2022.102164
https://medium.com/rapids-ai/large-graph-visualization-with-rapids-cugraph-590d07edce33
https://doi.org/10.1145/1409060.1409079
https://doi.org/10.1109/TVCG.2018.2865192
https://doi.org/10.1109/TVCG.2013.254
https://doi.org/10.1109/TVCG.2013.246
https://doi.org/10.1038/ncomms6199
https://doi.org/10.1128/AEM.02291-09
https://doi.org/10.1016/S0140-6736(19)32596-6
https://doi.org/10.1371/journal.ppat.0030151
https://doi.org/10.1140/epjst/e2017-70028-2
https://doi.org/10.1016/j.respe.2018.05.513

