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1. Introduction 1 

A wide range of applications involving planning, design, and management of water resources systems at 2 

small spatial scales relies on rainfall data with high temporal, for instance hourly, resolution (Breinl and Di 3 

Baldassarre, 2019; Pui et al., 2012). However, high-resolution rainfall measurements are generally scarce 4 

(Gutierrez-Magness and McCuen, 2004), especially for rural and remote regions. The precipitation gauging 5 

network operated by the German Weather Service (DWD), for example, includes roughly 5,700 stations 6 

with daily rainfall observation history spanning back more than 100 years. Compared to this, only about 7 

1,200 stations record rainfall at subdaily resolution and an even smaller number has publicly available 8 

data covering more than 30 years (Lisniak et al., 2013). 9 

One way to overcome this shortcoming is to derive fine-resolution data from the widely available coarser- 10 

resolution (e.g. daily) data through data transformation procedures, generally referred to as rainfall 11 

disaggregation (Gutierrez-Magness and McCuen, 2004; Koutsoyiannis and Onof, 2001; Sharma and 12 

Srikanthan, 2006). Temporal disaggregation is often used for scenario-based hydrological simulations 13 

when combined with regional weather generators (Mezghani and Hingray, 2009; Winter et al., 2019). For 14 

instance, Winter et al. (2019) estimated 100-year design floods in 16 catchments in Vorarlberg, Austria 15 

with a continuous hydrologic modelling approach with hourly resolution, driven by a multi-site weather 16 

generator providing daily precipitation and air temperature in combination with a temporal 17 

disaggregation procedure.  18 

Numerous disaggregation models have been proposed in the literature based on diverse concepts. These 19 

include: (1) Bartlett–Lewis/Neyman–Scott rectangular pulse models based on point process theory (Khaliq 20 

and Cunnane, 1996; Lu and Qin, 2014; Pui et al., 2012); (2) random cascade models based on scale-21 

invariance theory (Anis and Rode, 2015; Müller and Haberlandt, 2018); and (3) the nonparametric method 22 

of fragments (MOF) inspired from analog principle (Carreau et al., 2019; Li et al., 2018; Lu et al., 2015; 23 
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Sharma and Srikanthan, 2006; Westra et al., 2012). Pui et al. (2012) compared these temporal rainfall 24 

disaggregation models at single sites and found that the nonparametric MOF outperformed the point 25 

process-based and cascade models in matching the observed hourly intensity-frequency relationship, in 26 

particular for extreme rainfall characteristics. 27 

MOF achieves temporal disaggregation by employing the subdaily distribution of analog days, also 28 

known as fragments, to distribute daily precipitation totals into subdaily intervals. In the daily-to-hourly 29 

disaggregation procedure, the fragments are the rainfall amounts (or fractions of the daily rainfall 30 

amount) of the 24 hours of one day (Sharma and Srikanthan, 2006).  Analog days are defined as days 31 

that are similar in terms of a number of features (Carreau et al., 2019). Often the only feature used to 32 

determine analog days is the daily rainfall total at a given location (Sharma and Srikanthan, 2006; 33 

Westra et al., 2012). Recently, modifications were introduced to MOF to improve the model’s ability in 34 

reproducing the hourly rainfall. These modifications include the consideration of the wet-dry state of 35 

the days preceding and following the target day (Breinl and Di Baldassarre, 2019; Westra et al., 2012), 36 

other climate variables like temperature, relative humidity and air pressure (Rafatnejad et al., 2021), 37 

spatial information such as inter-site correlation or neighboring information (Carreau et al., 2019; Müller 38 

and Haberlandt, 2018), and the category of daily rainfall amount (classified in 5 mm bins) (Li et al., 39 

2018). The features introduced in these modifications to better filter the analog days are generally daily 40 

variables. Hence, it is implicitly assumed that these daily features allow to condition the precipitation 41 

distribution on the subdaily scale (Carreau et al., 2019). 42 

The basic assumption of the MOF rainfall temporal disaggregation is stationarity, i.e. that the daily-43 

subdaily rainfall relationship from the analog period remains unchanged in the period for which the 44 

disaggregation is performed. This assumption is particularly questionable when the disaggregation is 45 

performed for future climate change projections. In order to account for dynamic changes in the 46 

atmosphere, circulation patterns (CPs) can be used to condition the selection of analog days for MOF. 47 
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CPs describe the atmospheric circulation at any given moment in time, and CP classifications are applied 48 

to simplify the physical reality by identifying a small number of representative patterns to which the 49 

instantaneous patterns are assigned (Huth et al., 2008). One of the goals of CP classification is to 50 

improve the description of effects the atmospheric circulation has on surface climate, like precipitation 51 

formation (Huth et al., 2016). Conditioning the rainfall temporal disaggregation on CPs allows to 52 

consider climate change effects related to changes in frequency, persistence, and seasonality of these 53 

weather patterns on the link between daily and hourly rainfall distributions. However, possible within-54 

type changes, in particular due to increasing temperature and (Super-) Clausius-Clapeyron-scaling, may 55 

strongly determine the link between daily and hourly rainfall distributions (Lenderink et al., 2017). If 56 

such changes occur, they will not be represented by a CP-based disaggregation. Besides the capability to 57 

consider climatic changes – at least to some extent, a CP-based disaggregation may also be preferable as 58 

different CPs may be associated with different precipitation types (e.g., large-scale, long-lasting events 59 

vs. small-scale, short-duration events), which may have different subdaily distributions (Kronenberg et 60 

al., 2012; Lisniak et al., 2013). Hence, we hypothesize that MOF conditioned on CPs can better represent 61 

the rainfall generation mechanisms and provides a more robust link between daily and subdaily rainfall 62 

in the context of climate change than a standard MOF procedure. 63 

In this study, we develop a rainfall temporal (daily to hourly) disaggregation procedure by conditioning 64 

the method of fragments on circulation patterns for multisite applications. The performance of this CP-65 

based disaggregation procedure is evaluated against the standard MOF procedure in the Rhine river 66 

basin. The sensitivity of the MOF to the number of CPs and seasonal stratification is further analyzed 67 

and discussed.   68 
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2. Research area and data  69 

2.1 Research area 70 

The Rhine River basin with a drainage area of about 185,000 km2 is situated in northwestern Europe, 71 

covering 9 countries (Figure 1). With a length of about 1,320 km, it flows from the Swiss Alps through 72 

middle mountain ranges and lowlands and drains into the North Sea in the Netherlands (see Ullrich et al. 73 

(2021) for a detailed description). The Rhine river and its tributaries are often affected by flooding 74 

caused by persistent precipitation, heavy rainfall or snowmelt. In July 2021, a record-breaking flood hit 75 

west Germany, Belgium, Luxembourg and the Netherlands and in particular the left-side Rhine 76 

tributaries Ahr, Erft and Ruhr, causing more than 200 fatalities and tremendous socio-economic impacts 77 

(Mohr et al., 2022). Hydrological analysis of such floods in small-scale catchments require hourly 78 

precipitation time series, which are rarely available. Long-term precipitation series are often available at 79 

daily time scale and need to be disaggregated. We select the rainfall gauges located in the German part 80 

of the Rhine basin to develop the rainfall disaggregation model and to compare it to existing methods 81 

given the availability and accessibility of hourly rainfall data in this region.   82 
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 83 

Figure 1 Research area (German part of the Rhine river basin) and the associated hourly rainfall observation network with 134 precipitation 84 
gauges and an exemplary gauge (Nürburg-Barweiler).  85 

 86 
2.2 Hourly precipitation observations 87 

The hourly rainfall observations are collected from the Climate Data Center of the German Weather 88 

Service (DWD, https://www.dwd.de/, last access: 26th of February, 2022). These observations are quality 89 

controlled measurements from DWD stations and legally and qualitatively equivalent partner stations. 90 

There are in total 1,038 stations across Germany, most of which provide hourly rainfall observations 91 

since 2000. 134 rainfall stations located in the German part of the Rhine basin are selected with at least 92 

15 years (2006-2020) of hourly rainfall records and with no more than 2% missing data in each year 93 

(Figure 1).  94 

2.3 Circulation patterns  95 

We classify circulation patterns using daily values of the mean sea-level pressure field of the ERA5 data 96 

set for the period from January 1979 to July 2021. ERA5 is the fifth generation ECMWF atmospheric 97 

https://www.dwd.de/
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reanalysis of the global climate (Hersbach et al., 2020). We smoothed the original ERA5 data by 98 

interpolating it to a regular 1°x 1° grid. The classification is conducted using the objective classification 99 

algorithm SANDRA (Simulated ANnealing and Diversified RAndomization) (Philipp et al., 2007). It is 100 

based on k-means and minimizes the within-cluster variance of the Euclidian distance between the 101 

cluster elements and the cluster centroid. The problem of a conventional k-means approach is that it 102 

often converges to a local optimum. SANDRA avoids this problem and searches for the global optimum 103 

by introducing random reassignments of cluster elements. The number of classes in CP classification 104 

affects its ability to stratify the surface climate variable of interest (Huth et al., 2016; Vallorani et al., 105 

2018). Therefore, 5 different numbers of CP classes (4, 5, 6, 7, and 8) are generated and the sensitivity of 106 

the disaggregation performance to the number of classes is examined.   107 

3. Methods 108 

3.1 Multisite rainfall disaggregation with method of fragments 109 

The method of fragments (MOF) is a non-parametric disaggregation technique. The idea is to resample a 110 

vector of fragments that represents the relative distribution of subdaily to daily rainfall (Pui et al., 2012). 111 

The number of fragments corresponds to the subdaily temporal resolution used, i.e. if the disaggregation 112 

is conducted from daily to hourly resolution, the relative distribution of subdaily values consists of 24 113 

relative weights that sum up to 1. In the simulation, variability is introduced by a k-nearest neighbor 114 

algorithm. The proposed non-parametric multisite MOF model works as follows: 115 

(i) Obtain the daily rainfall vector  �𝑅𝑅𝑡𝑡,1,𝑅𝑅𝑡𝑡,2,⋯ ,𝑅𝑅𝑡𝑡,𝑛𝑛� to be disaggregated where t represents the date of 116 

the day, and 𝑛𝑛 denotes the number of rainfall sites in the observation network. 𝑅𝑅𝑡𝑡,𝑠𝑠 (s indicates individual 117 

rainfall site, with the value ranging from 1 to 𝑛𝑛) can be obtained from the observed daily rainfall or from 118 

other sources, such as daily weather generators (Nguyen et al., 2021; Winter et al., 2019) and General 119 

Circulation Models (GCMs) (Rafatnejad et al., 2021).  120 
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(ii) Use the observational hourly records, 𝑅𝑅𝑖𝑖,𝑚𝑚,𝑠𝑠, to build daily time vectors 𝑅𝑅𝑖𝑖,𝑠𝑠, where i denotes the day, 121 

m is the hourly time step and s is a site of the rainfall observation network. 122 

 𝑅𝑅𝑖𝑖,𝑠𝑠 = � 𝑅𝑅𝑖𝑖,𝑚𝑚,𝑠𝑠

24

𝑚𝑚=1
 (1) 

Form a time series of vectors with hourly to daily ratios, which are so-called fragments. 123 

 𝑓𝑓𝑖𝑖,𝑚𝑚,𝑠𝑠 = 𝑅𝑅𝑖𝑖,𝑚𝑚,𝑠𝑠 𝑅𝑅𝑖𝑖,𝑠𝑠⁄  (2) 

(iii) To consider the seasonal variability, the standard MOF based disaggregation procedure builds a 124 

window with l days around the target day t from which to sample the fragments vectors (Westra et al., 125 

2012; Pui et al., 2012). For example, if t represents the 15th of April and l = 14, all days between the first 126 

(1st) and last (29th) day of April from all available years are considered for disaggregation. This standard 127 

disaggregation procedure, usually with a time window width l=14, is further called monthly-based 128 

disaggregation procedure.  129 

In this study, the MOF conditioned on circulation patterns is proposed and termed CP-based 130 

disaggregation procedure. To this end, the days with the same CP class as the target day t are selected 131 

into the candidate pool for fragments sampling instead of imposing a monthly window. Additionally, 132 

circulation patterns and candidate days are stratified into winter (November 1st – April 30th) and summer 133 

(May 1st – October 30th) seasons. 134 

(iv) Filter the candidate pool obtained in Step (iii) based on the wet (rainy)-dry (non-rainy) status of the 135 

target day. Only days with the same wet-dry status as the target day t will be selected to obtain possible 136 

nearest neighbors; here 𝑁𝑁 denotes the number of possible neighbors.  137 

(v) Before calculating the distance between target day and candidate day, the daily rainfall amounts are 138 

standardized, which is a preferable operation for positively skewed random variables such as rainfall 139 

(Breinl and Di Baldassarre, 2019).  140 
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In this study, the Manhattan distance (the sum of absolute differences) is used as a measure to quantify 141 

the similarity of multisite daily rainfall vectors between target day t and candidate day i. The Manhattan 142 

distance has been shown to work well with nearest neighbor algorithms for rainfall disaggregation (Breinl 143 

and Di Baldassarre, 2019; Breinl et al., 2017). The distance 𝑑𝑑(𝑅𝑅𝑡𝑡,𝑅𝑅𝑖𝑖) is calculated as: 144 

 
𝑑𝑑(𝑅𝑅𝑡𝑡,𝑅𝑅𝑖𝑖) = ��𝑅𝑅𝑡𝑡,𝑠𝑠 − 𝑅𝑅𝑖𝑖,𝑠𝑠�

𝑛𝑛

𝑠𝑠=1

 (3) 

(vi) Identify the 𝑘𝑘 nearest neighbors, with 𝑘𝑘 = √𝑁𝑁. The distances are sorted for all j = 1,2, …, k and the 145 

highest probability is assigned to the neighbor with the smallest distance to the target day. The probability 146 

(𝑝𝑝𝑗𝑗) is computed as: 147 

 
𝑝𝑝𝑗𝑗 =

1 𝑗𝑗⁄
𝑃𝑃𝑡𝑡

,𝑃𝑃𝑡𝑡 = �1 𝑗𝑗⁄
𝑘𝑘

𝑗𝑗=1

 (4) 

(vii) Sample a candidate day by applying the inverse cumulative distribution function of Eq. (4) and using 148 

random numbers between 0 and 1 sampled from a uniform distribution. The date of the sampled day is 149 

used and the corresponding hourly fragments (𝑓𝑓𝑖𝑖,𝑚𝑚,𝑠𝑠) are applied at each site in the disaggregation. The 150 

hourly time series 𝑅𝑅𝑖𝑖,𝑚𝑚,𝑠𝑠 of the target day t are then derived using daily rainfall series (𝑅𝑅𝑡𝑡,𝑠𝑠) as: 151 

 𝑅𝑅𝑡𝑡,𝑚𝑚,𝑠𝑠 = 𝑅𝑅𝑡𝑡,𝑠𝑠 × 𝑓𝑓𝑖𝑖,𝑚𝑚,𝑠𝑠 (5) 

 (viii) Repeat Step (i) to Step (vii) for each day t until the entire daily records are disaggregated. 152 

3.2 Experimental setup 153 

To evaluate the CP-based disaggregation procedure developed in this study and to investigate its 154 

sensitivity towards the number of CP classes and towards the consideration of seasonality, three 155 

disaggregation experiments are performed (Table 1). To make full use of the limited hourly 156 

observations, we perform a leave-one-out cross-validation. Each single year of the hourly observations is 157 

selected and aggregated to the daily scale to be subsequently disaggregated using the remaining 14 158 

years. The original hourly data for each year is then used to test the performance of the disaggregation 159 
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procedure in the different experiments. A total of 30 Monte-Carlo (MC) runs, given the computational 160 

constraint, with the same length (15 years) as the observed precipitation records are generated to 161 

explore the sampling variability of the nearest neighbor candidate date.  162 

Table 1 Overview of the disaggregation experiments. CLA4 to CLA8 and SW_CLA4 to SW_CLA8 abbreviations denote the experiments with 4 163 
to 8  164 

Experiment Scheme Classes Conditional variable 
Month Standard monthly-based MOF 

disaggregation procedure 
12 (months) Month 

CLA {4, 5, 6, 7, 8} MOF disaggregation procedure 
conditioned on circulation 
patterns 

Number of CPs 
{4, 5, 6, 7, 8}  

CP 

SW_CLA {4, 5, 6, 7, 8} Disaggregation procedure 
conditioned on circulation 
pattern classification, considering 
two seasons (summer and winter) 

Number of CPs 
2×{4, 5, 6, 7, 8}   

CP and season 

 165 

3.3 Performance evaluation 166 

The performance evaluation of the different rainfall disaggregation experiments employs the following 167 

indicators, as suggested by previous studies (Breinl and Di Baldassarre, 2019; Li et al., 2018; Pui et al., 168 

2012). The performance in reconstructing standard rainfall statistics includes mean value, standard 169 

deviation, fraction of wet (rainy) hours, and lag-1 autocorrelation. The mean wet/dry spell length is 170 

selected to reflect the model performance in simulating the wet and dry features in the rainfall temporal 171 

disaggregation. The skill in maintaining the spatial correlation structure is indicated by inter-site Pearson 172 

correlation coefficients. Finally, the performance of the disaggregation procedures to meet the extreme 173 

percentiles (95th, 97th, 99th and 99.5th) of hourly rainfall is evaluated. The metrics for disaggregated 174 

precipitation relate to the median of the 30 MC runs and are compared against the indicators of the 175 

original records.  176 
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4. Results 177 

4.1 Standard metrics 178 

According to the different experiments (Table 1), the simulated hourly rainfall series at the 134 rainfall 179 

stations in the German part of Rhine river basin are compared with the observed counterparts, and the 180 

statistical metrics reflecting the disaggregation performance in reproducing key hourly rainfall 181 

characteristics are calculated. Figure 2 summarizes the model performance with regard to mean value, 182 

standard deviation (std), lag-1 autocorrelation coefficient (lag1auto) and fraction of wet hours. All 183 

disaggregation models tend to underestimate the mean hourly rainfall values, which results from the 184 

overestimation of the number of wet hours in disaggregation procedures as the same daily precipitation 185 

totals are distributed to more wet shares. The monthly-based MOF shows a slightly better performance 186 

in reproducing the mean value than the CP-based procedures, but the difference in mean value between 187 

monthly-based and CP-based approaches with seasonal stratification and high number of classes (like 188 

SW_CLA8) is not large. All model variants perform well with respect to standard deviation. Lag-1 189 

autocorrelation is underestimated by the monthly-based MOF and overestimated by the CP-based MOF, 190 

whereas the seasonally stratified CP-based procedure performs best. Generally, the seasonally stratified 191 

CP-based procedure outperforms the one without stratification for all four indicators. With increasing 192 

number of CP classes, the performance improves.  193 
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 194 

 195 

Figure 2: Comparison of mean, standard deviation (std), lag-1 autocorrelation (lag1augo), fraction of wet hours, mean length of wet and dry 196 
spells (average duration of precipitation events) between disaggregated hourly rainfall in different experiments (see Table 1) and observations 197 
(obs). SW and nonSW denote the results from CP-based disaggregation with and without considering season stratification respectively. The 198 
boxplots cover the median of metrics from 30 MC runs in 134 stations, where the middle solid line marks the median and the box represents 199 
the interquartile range. The black dashed lines represent the mean values of statistics for observed hourly rainfall, while the circles denote the 200 
mean values of the simulated counterparts. 201 

All disaggregation procedures consistently underestimate the dry spell duration compared to 202 

observations (Figure 2). The mean length of the simulated dry spells is approximately 20 hours 203 

compared to the observed 23 hours. Such underestimation is also demonstrated in Figure 3 (b) and (d) 204 

and the difference among different disaggregation experiments is nearly indistinguishable. In terms of 205 

mean length of wet spells, the CP-based models perform better than monthly-based procedure, 206 
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especially for longer wet spells (see Figure 3 a and c) which is largely underestimated by the monthly-207 

based disaggregation procedure. We suggest that CP-based disaggregation pools days with long and 208 

short duration wet spells which may correspond to frontal and convective rainfall, respectively, in a 209 

better way than monthly-based disaggregation.  The discontinuity of rainfall events between days could 210 

play a role as well, as the disaggregation procedure does not consider the wet-dry status in the 211 

preceding and following days of the target day. 212 

 213 

 214 

Figure 3 Comparisons of the cumulative distribution probability curves (shown as logit-scaled) of length of wet (a and c) and dry (b and d) 215 
spells for the example station Nürburg-Barweiler (see Figure 1) for five disaggregation procedures (month, CLA4, SW_CLA4, CLA8, and 216 
SW_CLA8) and observations 217 
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4.2 Spatial correlation 218 

The pair-wise inter-site Pearson correlation coefficients of hourly rainfall series are given in Figure 4 to 219 

assess the spatial connections of precipitation across station locations. The deviations between 220 

simulated and observed correlation coefficients versus inter-site distance are given in Figure 5. All 221 

disaggregation procedures reproduce the spatial correlation well, with most absolute deviations 222 

between simulated and observed coefficients lower than 0.1. The monthly-based MOF performs best in 223 

terms of spatial correlation. The CP-based disaggregation procedure without seasonal stratification 224 

tends to slightly overestimate the inter-site correlations, whereas considering the seasonality (Figure 5) 225 

clearly reduces the bias. The number of CPs does not affect the performance for this characteristic. 226 

 227 

Figure 4 Comparison of inter-site correlation coefficients for different disaggregation procedures and observations 228 

 229 
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 230 

Figure 5: Deviation in inter-site correlation coefficients vs inter-site distance between simulated and observed hourly rainfall series. The 231 
distances between gauges are computed by using the Haversine formula.  In the CP-based experiments (CLA4-8), the red and blue circles, 232 
together with the corresponding dash lines, denote the results from disaggregation with and without considering seasonal stratification, 233 
respectively.  234 

4.3 Precipitation extremes 235 

To examine the disaggregation performance in reproducing the hourly rainfall extremes, several high 236 

percentiles are calculated and compared with observations (Figure 6). In addition, the cumulative 237 

distribution functions for the example station Nürburg-Barweiler are given in Figure 7. For less extreme 238 

precipitation (95th percentile) the monthly-based MOF outperforms the CP-based disaggregation. For 239 

more extreme precipitation (97th, 99th, 99.5th percentiles), however, the monthly-based procedure 240 

overestimates, the CP-based without seasonal stratification underestimates and the CP-based with 241 

seasonal stratification largely matches the observed percentiles. This is also demonstrated in Figure 7 242 

(for the example rainfall station) that the probability curves from 30 runs of SW_CLA8 disaggregation 243 

can better envelope the observation one (black dashed line). The number of CP classes does not play a 244 

strong role, though the classification with four classes performs worst.   245 
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  246 

Figure 6: Comparison of extreme hourly rainfall percentiles for different disaggregation procedures and observations.  247 

 248 

Figure 7 Comparisons of the cumulative distribution functions (shown as logit-scaled) of hourly rainfall for the example station Nürburg-249 
Barweiler (Figure 1) for five disaggregation procedures (month, CLA4, SW_CLA4, CLA8, and SW_CLA8) and observations.  250 
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5. Discussion  251 

In this study, we demonstrate that the temporal rainfall disaggregation based on MOF is improved in 252 

reproducing hourly rainfall extremes when conditioned on circulation patterns along with seasonal 253 

(winter/summer) stratification. We assume that the additional information injected by CPs and 254 

seasonality better describes precipitation formation mechanisms and hence the link between daily sums 255 

and hourly precipitation distributions. Additionally, the number of CP classes also plays a role. Models 256 

with more CP classes and seasonality considered perform better in rainfall temporal disaggregation and 257 

the SW_CLA8 disaggregation procedure shows the best performance in extreme hourly rainfall 258 

simulation (Figure 6 and Figure 7). It is expected that increasing the number of classes in CP stratification 259 

improves the performance in explaining the rainfall variability, as shown in Beck and Philipp(2010) and 260 

Huth et al. (2008), and further improves the performance of the disaggregation model. However, 261 

increasing the number of CP classes is computationally more demanding and also each class becomes 262 

less populated since the length of time series is limited, which will inevitably introduce more uncertainty 263 

in candidate days sampling. Another concern is related to the underestimation of hourly rainfall mean 264 

values in all disaggregation experiments, which results from the overestimation of fraction of wet hours 265 

in the fragments sampling procedure. Although monthly-based standard MOF shows lower 266 

underestimation (Figure 2), the difference between monthly-based model and CP-based approach with 267 

seasonal stratification and high number of CP classes (like SW_CLA8) is rather small. Apparently, all 268 

models underestimate precipitation in the range between 50th  and 95th percentiles (Figure 7). CP-based 269 

models perform similarly to the monthly-based approach. However, for higher percentiles above 95th 270 

the monthly-based approach strongly overestimates precipitation compared to the CP-based one 271 

(Figure 6). Hence, the monthly based approach compensates the underestimation for lower percentiles 272 

with overestimation for higher percentiles resulting in a better mean. We thus consider the CP-based 273 

approach to be better particularly with regards to disaggregation of extreme precipitation, which plays 274 
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an important role in many practical applications in water management, such as flood design estimation 275 

and risk analysis.  276 

The major limitation of the CP-based disaggregation is the stationarity assumption of the link between 277 

daily sums and subdaily distributions in each CP class. This assumption is challenged by the 278 

thermodynamic changes in the atmosphere, in particular increasing water vapor with increasing air 279 

temperature (Lenderink et al., 2017). The CPs in this study are classified by using only daily mean sea 280 

level pressure and seasonality (summer/winter), which does not account for this thermodynamic effect.  281 

Westra et al. (2013) examined the daily-to-subdaily disaggregation performance of MOF conditioned on 282 

a range of atmospheric covariates, such as air temperature and relative humidity, where the 283 

atmospheric covariates with the greatest influence on the sub-daily rainfall temporal pattern were 284 

identified by fitting a generalized additive model (GAM).  They found that the temporal distribution of 285 

subdaily rainfall is sensitive to changes in atmospheric temperature. The maximum intensity of short-286 

duration rainfall increased by 4.1 – 13.4% per degree change in air temperature for the maximum 6 min 287 

burst, and by 3.1 – 6.8% for the maximum 1 h burst. Rafatnejad et al. (2021) evaluated climate change 288 

impacts on extreme subdaily rainfall amounts by using MOF with inclusion of air temperature and other 289 

weather variables as influential factors, where the distances between target and candidate days were 290 

weighted by the correlation coefficients between conditional variables and rainfall series. Their results 291 

indicated an increase in the extremes, for instance in the mean and standard deviation of the 95th 292 

percentile. Therefore, one approach to further improve the CP-based rainfall temporal disaggregation 293 

model in reproducing subdaily rainfall extremes is to include additional conditional variables, in 294 

particular air temperature, into the CP classification, which is expected to represent the thermodynamic 295 

effect of climate warming on the link between daily rainfall totals and subdaily distributions. On the 296 

contrary, Breinl and Di Baldassarre (2019) used both precipitation and air temperature in a single matrix 297 

to compute the distances between the target day and candidate days and this approach delivered 298 
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poorer performance with regards to subdaily rainfall extremes and inter-site correlation.  So, the 299 

question remains, how to optimally incorporate additional weather variables to circulation patterns into 300 

the MOF disaggregation procedure and can be addressed in future research. 301 

6. Conclusions 302 

In this research, a multisite method of fragments-based rainfall temporal disaggregation model 303 

conditioned on circulation pattern (CP) classification is developed and applied for the German part of 304 

the Rhine river basin. Its performance in simulating standard rainfall statistics, spatial correlation, wet 305 

and dry spells features and extremes is examined and compared with the standard disaggregation 306 

procedure (monthly-based). The CP-based disaggregation shows good performance in representing 307 

standard rainfall statistics, including standard deviation, lag-1 autocorrelation, and fraction of wet hours, 308 

although the monthly-based method of fragments disaggregation performs slightly better with regard to 309 

mean. Both disaggregation procedures underestimate the mean duration of dry spells, while the CP-310 

based models outperform monthly-based one in wet spell length estimation. The spatial correlation 311 

structure in terms of the inter-site correlation coefficients is well maintained by both procedures. 312 

The CP-based rainfall disaggregation procedure significantly improves the simulation of rainfall 313 

extremes, especially for high percentiles. The performance gain may be explained by the improvement 314 

of CP classification in stratifying extreme rainfall features. It could be shown that model performance 315 

increases with the number of CP classes; this comes, however, at the costs of higher computational 316 

demands and higher uncertainty. The superior performance for rainfall extremes is a valuable 317 

improvement for many practical applications in water management, such as flood design estimation and 318 

risk analysis. In addition, the CP-based approach opens up the possibility of including climate change 319 

effects in generating subdaily rainfall series.  320 
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