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Abstract

Numerous borehole logging datasets gathered for commercial and scientific purposes are available
around the globe. However, studies valorising the chronostratigraphic potential of these datasets
through time series analyses remain sparse despite the excellent completeness of downhole logging
data retrieved in a fast and high-resolution fashion. The major reason for this is the complexity of such
approaches and potential pitfalls that may discourage non-experienced users. Here we provide an
overview that summarizes the most relevant properties of borehole logging measurements for time
series analysis and cyclostratigraphy. Further, we provide a brief introduction of most relevant time
series analyses methods, including several examples of borehole logging cyclostratigraphy. Compared
to analyses and interpretations of data from cores or exposures, it is important to be aware of borehole
logging data specific pitfalls. These include environmental corrections like the effect of variation in
borehole diameter, the effects of drilling fluids, and that presented logs may consist of merged results

logged in several depth sections.

1. Introduction

Borehole logging, also known as well-, wireline- or downhole logging, is the practice of measuring the

physical, chemical, and structural properties of the drilled geological underground using geophysical
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tools that are lowered into a borehole on a wireline cable (e.g., Pierdominici and Kiick, 2021; Rider and
Kennedy, 2011). In this contribution, we focus on conventional downhole logging measurements
acquired in semi vertical boreholes, though similar datasets may be acquired through logging-while-

drilling and logging-while-tripping.

Downhole logging data provide a continuous record that delivers in-situ information on the
sedimentologcial/lithological properties and changes with a precision of commonly decimetres to few
centimetres. These include the physical properties of the strata and possibly contained fluids (Wilke et
al., 2016). Through investigating petrophysical characteristics as a function of depth, downhole logging
is frequently used in combination with seismic reflection data to create geological models. In addition,
the combination of downhole logging data and petrophysical datasets from drill cores are often
essential to construct a composite of core depths (e.g., Shackleton et al., 1999; Wilke et al., 2016),
especially where cores are either incomplete or expanded due to decompaction. Application of time
series analysis, cyclostratigraphy, and derivation of paleoclimate and paleoceanographic information
(e.g., Bahk et al., 2016) from borehole logging data are not a recent development (e.g., Fischer and
Roberts, 1991; Goldhammer et al., 1994; Huang et al., 2010; Weedon et al., 2004, 1999; Yang and
Baumfalk, 1994), but we see an increase in such applications. Because time series analyses are mostly
carried out in sediments with the aim of understanding climate-related signals, we focus on such
applications on Milankovitch time scale here (and not on very short quasi-cycles as e.g., warves, and

not on cyclic systems of non-climatic origin as e.g. tidal rhythmites).

1.1.Time series, time series analyses and astrochronology in Earth sciences
1.1.1. Geological time series are commonly depth series

The term “geological time series” means geological depth series that represent time. These can be
determined in an exposure, a drill core, or derive from borehole logging data (Figs. 1 and 2).
Stratigraphic depth is related to deposition time, and accumulation/sedimentation rates commonly
vary in complex ways (Weedon, 2003). Such depth series may be brought onto a geological time scale
in different manners, but these time scales will never perfectly represent time (though layer-counted
archives with annual resolution, varves, come close allowing for missing laminae and occasional
multiple laminae in a year) due to changing sedimentation rates and a limited amount of unambiguous
points in depth for which time is known with little uncertainty. This means that while sampling may be
uniform in depth, the same sampling may be highly inconsistent in time. In addition, gaps in
sedimentation or layers with immediate deposition in the form of slumps or volcanic deposits may be

present in a stratigraphic sequence. To eliminate the extreme variations in sedimentation rate implied,
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such instantaneously-deposited layers need to be removed from stratigraphies for time series analyses

(Fig. 3).
1.1.2. Translating stratigraphy to time

Sediments represent series of deposition over time. The continuity, homogeneity and sedimentation
rate depends on the sedimentary system and on the considered scale. Generally, systems which have
a quasi-continuous sedimentation over ‘long’ or relevant time spans are natural targets for time series
analyses. The more uniform sedimentation rates are, the better. Such milieus typically prevail e.g. in

the (deep) ocean and in large lakes.

The construction of geological time series from stratigraphical depth series may be achieved through
a set of direct dates and interpolation or modelling in between these (e.g., De Vleeschouwer and
Parnell, 2014; Telford et al., 2004; Trachsel and Telford, 2017; Zeeden et al., 2018a). Further, layer
counting can give precise ages between such dated positions (e.g., Czymzik et al., 2015; Obreht et al.,
2020). In astrochronology, not layers but the intricate patterns of eccentricity, obliquity and precession
are used (either together or individually) to obtain information on the relative timing in a stratigraphic
succession (e.g., Hilgen et al., 2015; Hinnov, 2000; Hinnov and Hilgen, 2012). Also this astrochronologic
non-exact information on the duration between dated layers is used in combination with dated layers

(e.g., De Vleeschouwer and Parnell, 2014; Meyers et al., 2012; Rivera et al., 2011).

Note that an equally spaced sampling in depth will result in a non-uniform sampling rate once the
stratigraphic domain is translated into a time domain. Therefore, a higher-than-necessary sampling

resolution in depth is generally advised, as shown in a modelling study by Martinez et al., (2016).

When applying any methods transferring geological depth to age, experienced earth scientists check
typical sedimentation rates for the respective depositional system, and the change in sedimentation
itself against the model outcome. Rapid changes in sedimentation rate may be considered suspicious
and the result of over-tuning data. Ideally, an integrated stratigraphical approach relying on
information from several dating methods should be applied, where astrochronology may provide the

highest resolution (Hilgen et al., 2015).

1.1.3. Astrochronology with emphasis on application to borehole logging data

Understanding the reaction of Earth’s system to astronomical and orbital insolation forcing is a
relevant aspect for several disciplines in Earth sciences. The reaction of the climate system to insolation
is clearly complex (e.g., Friedrich et al., 2016; Hagelberg and Pisias, 1990; Liebrand et al., 2017; Meyers,
2019; Yi et al., 2017), and also sedimentary systems react to this forcing in complex ways (e.g., Fischer
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et al., 1991; Husing et al., 2009; Vaucher et al., 2021). One may ask the question if any sedimentary
system is unaffected by changing insolation. The need to understand the response of climate and
sedimentary systems to quasi-cyclic variations in insolation (Laskar et al., 2004; Milankovitch, 1941)
led to a suite of time series analysis techniques being applied and developed for this purpose (e.g.,
Meyers, 2019 and references therein). Most published data related to paleoclimate originate from
exposures and drill cores (e.g., Cheddadi and Rossignol-Strick, 1995; Colman et al., 1995; Hodell and
Channell, 2016; Kaboth-Bahr et al., 2020; Liebrand et al., 2017; Martinez et al., 2013; Trauth et al,,
2009; Vinnepand et al., 2022; Yang and Ding, 2014), among others from the International Ocean
Discovery Program (IODP) and the International Continental Scientific Drilling Program (ICDP)
campaigns. However, additionally borehole logging data contributes valuable data for understanding
Earth history (Figs. 3, 4; e.g., Baumgarten et al., 2015; Fischer and Roberts, 1991; Goldhammer et al.,
1994; Li et al., 2019b; Morgans-Bell et al., 2001; Read et al., 2020; Sierro et al., 2000; Ulfers et al., 2021,
2022b).

1.2.Borehole logging data in comparison to core data

In the industry the main reason for generating borehole logging data is the efficient recovery of
hydrocarbons and other resources. In contrast, applications of borehole logging have become more
important and diversified since the 1990s in earth sciences. Worthington (1990) discusses the potential
and resolution limits of borehole logging data and suitability for detecting astronomical climate forcing
in logging data. Among others, Fischer (1995) suggests “combining geophysical, geochemical and
geobiological data” in the context of logging data and cyclostratigraphy. Early users of logging data for
cyclostratigraphy include (Molinie and Ogg, 1990; Shackleton et al., 1999). Shackleton et al., (1999)
used well logging data to tie core-and log data together and established a stratigraphy and time frame
for Oligocene-Miocene parts of ODP Leg 154 sites from the Ceara Rise in the western equatorial
Atlantic. Several successful and valuable cyclostratigraphic analyses of downhole logging data from
sedimentary sequences (e.g., Baumgarten et al., 2015; Shackleton et al., 1999; Voigt et al., 2008;
Wonik, 2001) have brought logging data more and more into the awareness of cyclostratigraphers.
One reason for this is the uninterrupted length over 10s to 1000s of metres of high resolution
(decimentres to centimetres) logging data that renders them advantageous, compared to core data.
The latter may not comprise a complete stratigraphy (due to core loss) and may be biased through

effects caused by drilling and recovery procedures.

Further, the fast availability of logging data during, or directly after the operations allows for valuable
first impressions of sedimentary structures including the (non)presence of quasi-cyclic alterations
(commonly before cores are opened). In addition, it is generally accepted that logging data have a good
depth scale, which can be used to bring core material and physical properties thereof onto the same
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most accurate logging-derived depth scale (e.g., Morgans-Bell et al., 2001; Weedon, 2003). Depth for
cores is often more challenging to determine in detail due to factors such as core loss and

decompaction of soft sediment.

Downhole logging data may not always have the depth- and temporal- resolution to reconstruct all
relevant sedimentary cycles (Worthington, 1990) e.g. they may allow the detection of ~100 kyr
eccentricity cycles, but not the shorter ~20 kyr precession cycles. Care must be taken to have sufficient

sampling and data resolution (Martinez et al., 2016).

An increasing suite of studies applies cyclostratigraphy and time series analysis to downhole
logging datasets (e.g., Baumgarten et al., 2015; Giaccio et al., 2019; Nowaczyk, 2001; Radzevicius et
al.,, 2014; Read et al., 2020; Sierro et al., 2000; Ulfers et al., 2021; Worthington, 1990), not always
describing and discussing the dataset’s origin and acquisition in detail. This may not be an issue, but
we generally consider it relevant to be aware of possible shortcomings. Here, we summarize most

relevant properties of logging data for geological time series analysis and cyclostratigraphy.

2. Specific properties of borehole logging data: chances and challenges

This section describes aspects of downhole logging practise, with a special focus on relevant
information that allow critical assessment of the quality of resulting data. The borehole itself, and its
properties directly influences logging results. In this context, drilling fluids can enter the sediment in
different amounts depending on the fluid and rock properties, affecting logging measurements. For
example, intrusion of a clay-rich drilling fluid into a quartz sandstone will lead to higher magnetic
susceptibility and lower porosity. The shape of the borehole wall (caliper) can be of importance, and
is dependent on lithology, e.g., with little wider diameters in unconsolidated layers (Fig. 1). Further,
the borehole shape can be influenced by the stress field and the fracture intensity. Connecting parts
of the drill string may influence the borehole wall, and possibly induce an artificial cyclic pattern

through equally spaced larger borehole diameters around these pipe connectors.
2.1.Downhole logging on site

Downhole logging operations start during drilling breaks or when the drilling of a hole is finished.
Depending on the borehole properties, logging may be performed in an open hole or through a casing.
Plastic casings are not an issue for geophysical methods based on gamma radiation, and
electromagnetic properties as the magnetic susceptibility and induction/conductivity and seismic
properties. Conversely, metal casings effectively prevent most tools from being useful (with exceptions

of gamma ray measurements, salinity, temperature and seismic velocity investigations). In practice,
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not all logging probes can be tied to a single logging string, and different tools may acquire data during
consecutive logging runs. Depth-synchronization can then be achieved through adding the same
sensor(s) to all logging runs (often a gamma ray probe). However, despite this, logging datasets from
multiple tools may not be perfectly depth-synchronized. In this context, depth differences can be
expected to be small, but may be relevant for consecutive (multivariate) statistical analysis. Because
only few boreholes remain open and accessible after drilling campaigns, data acquired on-site
sometimes constitute the only possible continuous dataset to retrieve. Therefore, careful planning of
which measurements to apply, and which resolution and logging speed to implement is essential. The
logging speed depends on the used tools/sensors, and together with the sampling interval influences
on the data quality. Typical logging speeds are between 60 m/h and 600 m/h (Wilke et al., 2016), but

reduced logging speed can be useful for highest-resolution logging.

Continuous datasets can often be generated, but sometimes logging takes place for different depth
intervals individually as drilling pipes are being tripped out in steps to ensure an open hole. In these
cases, logging datasets actually represent composite records — often but not always with overlap (Fig.

2; e.g., Baumgarten et al., 2014; Ulfers et al., 2021).
2.2.Technical aspects

Borehole logging records data in the sediment/rock unit itself (in-situ) and is not prone to issues of
decompaction and core loss. This means that borehole logging data provide more reliable depth
information than core data, but may have less depth resolution than data obtained through high-
resolution core scanning. The vertical and radial extent of an investigated volume investigated through
downhole logging tools is influenced by several factors including the borehole diameter, the properties
of the borehole including fluids (mud weight), the position of the tool in the borehole (e.g. centralized
or decentralized), and the design of the tool itself (detector size, transmitter-receiver spacing, volume
of influence). Thus, each tool has a characteristic depth resolution and an average radial area of
investigation at specific conditions (Wilke et al., 2016). The advantage of in-situ measurements may be
counteracted by the effects of drilling fluids or cementations that affect the signal of especially porous
rocks. Boreholes commonly do not have a perfectly constant diameter, but caliper measurements may
be used to assess comparability and correct for changing diameters (e.g., Lehmann, 2010, and
references therein). The content of drilling fluids, drill pipes, casing, and infill between a casing and the
borehole wall affect logging data. Thick metal casing will attenuate gamma ray signals. Also any infill
between borehole wall and casing will influence logging properties, e.g. a clay-rich infill may lead to
higher gamma ray signals and suggest more clay-rich strata than is actually present. A suite of
correction methods has been compiled for different logging conditions. Several models and concepts
can be applied to eliminate biases (e.g. chartbooks: Schlumberger, 2013; Weatherford, 2007). The
6
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effects of tool joints within the drill string or casing can change logging results and need to be

considered (e.g., Lehmann, 2010).
2.3.Selected physical properties

A large suite of relevant physical and chemical parameters can be measured using logging devices.
Rider and Kennedy (2011) provide a good overview on this topic (see also table 1 for parameters and
their applications in cyclostratigraphy). Here, we focus on parameters which commonly reflect changes
in the paleo-environment and are therefore sedimentologically meaningful, and which have a rather
high vertical depth resolution, making them especially useful for geological time series analysis and
the detection of high frequency oscillations in the record. However, care must be taken not to over-
interpret the resolution of logging datasets (Worthington, 1990), because the reported data resolution
may be higher than the actual resolution between two independent measurements due to sensor
properties. Some logging sensors require a longer than preferred depth interval (cm-m) and do not
provide fully independent data points with high depth resolution. While higher data resolution (=
sample rates) can be achieved, such data are commonly smoothed and integrate a longer depth
interval (and large 3-dimensional volume) than the sampling rate may suggest. The best way to obtain
high resolution data is a combination of a high sampling rate and a slow run of logging tools. Although
deconvolution based on the tools’ properties may help to increase resolution, such mathematical

procedures are often not applied in order to avoid the introduction of artefacts.

In the following sections, we focus on most relevant downhole logging methods, although other
logging datasets may be useful for cyclostratigraphy. Yet, their depth resolution is generally lower, and
therefore high sedimentation rates are required for obtaining a good signal also of high frequency
components. As we aim to provide an overview, we refrain from discussing existing special lithologies,

where an uncommon sedimentology may require different interpretations.
2.3.1. Gamma radiation logging

A record of gamma ray (GR) emission in sediments reflects the presence of naturally occurring
radiogenic elements. Radiogenic isotopes of the elements potassium (*°K), uranium (*38U), and thorium
(332Th) are the dominant sources of gamma rays in sedimentary rocks (see Fig. 5; e.g., Ruffell and
Worden, 2000). The spatial and temporal distribution of radiogenic elements in sedimentary
sequences may reflect multiple sources of sediments, as well as various environmental conditions

affecting sedimentary materials before and after sedimentation (e.g., Sardar Abadi et al., 2022).

While K is commonly associated with feldspars, micas, and clays, U may be concentrated in organic-
rich intervals (redox processes), but is also part of some heavy minerals and may be bound to clay. The

Th content may be associated with clays and volcanic ash layers. Because the spectral gamma ray (SGR)
7
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components are related to K, U, and Th, also element ratios are interpreted (e.g., Hunze et al., 2013;
Ruffell and Worden, 2000; Schnyder et al., 2006). Therefore, the Th/U ratio may help to detect ash
layers (Li et al., 2019b; Ruffell and Worden, 2000). Due to its clear relation to lithology, GR is commonly
used for correlation between logs, cores and for core-log integration (Lofi et al., 2016). Yet, magnetic
susceptibility sondes allow for higher resolution signal acquisition, and are therefore preferred where

this variable is a useful proxy (Weedon et al., 1999).

Relatively high GR data are often associated with the terrestrial clastic influx of clay and coarser
materials, while relatively low GR values may correspond to sedimentation of biogenic carbonate,
organic carbon, or silica (e.g., Rider and Kennedy, 2011) both in lacustrine and marine environments.
However, the combination of other proxies from downhole logging data such as magnetic susceptibility

can help in defining the detrital origin of GR signals.

GR can be logged in pipes and through drill strings, although these dampen the signal. In such cases,
care needs to be advised not to interpret the high attenuation effect of logging pipe connectors as a

quasi-cyclic signal.

An example showing the paleo-environmental relationship of GR is the sediment succession of the 1.36
million year old Lake Ohrid in North Macedonia/Albania (Fig. 4, Wagner et al.,, 2014). During
interglacials, the supply and deposition of carbonates is enhanced due to an active karst system. In
glacials, when the karst system is less active, the relative proportion of terrestrial clastic input is
increased. The periodic alternation between high GR values in cold periods and low GR values in the
carbonate-rich sediments of warmer periods is well established in the downhole records of Lake Ohrid

(Alexander Francke et al., 2016; Ulfers et al., 2022b; Vogel et al., 2010).

GR data from offshore drilling in Portugal related to the Mediterranean outflow and associated
contourites have been found to be driven by a combination of several impacting factors (Lofi et al.,
2016). Terrestrial influx of clay minerals is driven by glacial/interglacial sea level changes with low sea
level providing more terrestrial flux (higher GR). Also precession-driven runoff from the Iberian
Peninsula provides clay minerals and enhances GR in phases of high insolation. Further, sandy
contourite beds (low GR) are related to Mediterranean outflow dynamics and represent arid and low

insolation phases (Lofi et al., 2016).

Also because of the mostly straightforward interpretation of GR logs, these are commonly used targets
for astrochronology (e.g., Baumgarten et al., 2015; Huang et al., 2020; Liu et al., 2020, 2001; Lofi et al.,
2016; Ochoa et al., 2018, 2015; Read et al., 2020; Ruffell and Worden, 2000; Ulfers et al., 2022b; Wonik,
2001; Table 1).
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2.3.2. Magnetic susceptibility logging

The magnetic susceptibility (MS) is defined as the reaction of a sample to an applied (alternating)
magnetic field. It can easily be measured in the field, in the laboratory and also using well logging tools.
Minerals can be divided into those having ferromagnetic, paramagnetic and diamagnetic properties.
Ferromagnetic minerals as e.g., magnetite can store magnetic field properties. Magnetite has a
naturally high MS, and often dominates magnetic signatures even if present in small quantities.
Hematite and goethite are also ferromagnetic but have considerably lower MS. Paramagnetic minerals
have a low positive magnetic susceptibility, but cannot store properties of magnetic fields. Clay
minerals are the most common paramagnetic minerals. Diamagnetic minerals have a low negative

magnetic susceptibility, examples are quartz and feldspar.

When organic material is buried with sediments, often ferromagnetic components are removed by
dissolution through HsS in the pore waters during burial. In such anoxic conditions, iron oxides can be
reduced to iron sulphides, erasing an original signal during (early) diagenesis. When this happens, the
remaining MS signal is dominated by (paramagnetic) clay minerals. In such cases, logging data are often
spiky due to generally low MS, but some spikes where iron sulphide or iron carbonate nodules are part

of a MS reading.

Consequently the MS signal often varies inversely with contents of authigenous bioproduction such as
carbonate, silica or organic matter. MS (and other magnetic properties as e.g. the isothermal remanent
magnetization) often traces terrigenous input vs. authigenic bioproduction, and MS is a frequently
applied and valuable proxy (e.g., Da Silva et al., 2015 and references therein; Table 1). In marine
environments, MS generally traces the influx of terrestrial material, and high MS relates to high fluvial
or dust influx. Also in lacustrine environments, MS is often a tracer for the relative proportions of
authigenic production (of carbonate, organic carbon and silica) and the influx of ferrigenous materials.
Both GR and MS values are often related to changing amounts of detrital input into systems. This clastic
input may be of aeolian or fluvial origin, the separation of such components (if more than one is
relevant) may be done in the laboratory through more complex mineral magnetic analyses, but is not

possible from logging (MS, GR) data.

MS measurements are commonly affected by temperature effects, and the measured MS is dependent
on the temperature of the electronics (“Magnetic Susceptibility Sonde (MSS-B),” 2021) which can be
corrected for. MS is a valuable method for assessing stratigraphic alternations because the
measurement is non-destructive, quick, inexpensive, and repeatable. Additionally, different lithologies

often have different MS signatures (e.g., Expedition 340T Scientists, 2012).
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For the above mentioned reasons, MS is generally useful for correlation (e.g., Markovi¢ et al., 2015;
Necula et al., 2015; Zeeden et al., 2018b), and also cyclostratigraphic studies from downhole logging
or also core- and exposure data (e.g., Da Silva et al., 2013; Ulfers et al., 2021; Zeeden et al., 2016).
Laboratory measurements of the MS can normalize MS over mass, which is generally less noisy than

volumetric data from logging and field probes, because different pore volumes can be accounted for.

MS measurements can have a high vertical logging resolution of one to several cm, because some
decentralized tools push a reading device against the borehole wall and measure the local MS. MS
measurements in a borehole investigate a specific volume, and in fine grained sediments such
measurements are very useful. In contrast, in coarse sediments as gravels, MS can be dominated by
individual clasts with high MS, generally leading to noisy signals which are very difficult to interpret.
Further, different pore volumes will influence the volumetric MS readings — which is especially

important in coarse clastic materials and karstified rocks with dissolution effects.

An example of MS from downhole measurements reflecting paleo-environmental conditions is the
tropical Lake Towuti on the island of Sulawesi, Indonesia (Fig. 3; Russell et al., 2016; Ulfers et al., 2021).
During the last about one million years, the lake experienced repeated lake level shifts and associated
changes in the oxygenation state of its bottom water. The result is an alternation of sideritic clay with
increased MS deposited during cooler/drier climate, and organic rich clay with low MS from warm/wet
periods. The underlying processes are likely driven by both orbital-scale changes related to eccentricity
and continental ice volume (Russell et al., 2020; Ulfers et al., 2021). In this case, a suite of event layers

was omitted from the dataset before applying cyclostratigraphy (Fig. 3).
2.3.3. Borehole Images

Although acoustic and electric image logging has been establishing for several decades, the resulting
high-resolution datasets with resolution in (sub)cm spacing have not been widely used for assessing
quasi-cyclic components, although valuable applications exist (see Table 1; e.g., Huang et al., 2010;
Paulissen and Luthi, 2011; Reuning et al., 2006). In our opinion there remains untapped potential for

investigations of the high-frequency components and their meaning and origins.

Borehole image probes provide a continuous oriented image with high resolution of the borehole
walls. Figure 6 provides an illustration. Images can be gained from acoustic, electrical and optical tools
(e.g., Pierdominici and Kiick, 2021; Rider and Kennedy, 2011), and the originally truly circular images
are usually unwrapped to a 2-D image. An acoustic image probe generates an image of the borehole
wall by transmitting ultrasonic pulses from a fixed transducer with rotating mirror and records the

amplitude and travel time of the signals reflected at the interface between borehole fluid and the
10
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formation (borehole wall) (Zemanek et al., 1969). The acoustic two-way travel time (TT) provides
information on borehole shape (acoustic caliper), and acoustic amplitude (AMPL) is related to the
acoustic reflectivity of the borehole wall which depends on the roughness and shape of the borehole
wall and its acoustic properties. These AMPL and TT images are commonly displayed in color code
reflecting their value range. In the AMPL image bright colors (high) indicate a strong signal (good
reflection, strong contrast) and dark colors (low) are for weak to missing signals (scattered or
absorbed). In the TT images, bright colours refer to short time period (fast) for the impulse to go from
the transducer and back to the receiver, while dark colours indicate long time period (slow) due to the
widened size of the hole. TT and AMPL signals are visualized as 360° images of the borehole wall and
provide full coverage of the borehole wall, oriented using built-in triaxial accelerometers and
magnetometers. A harder borehole surface translates to higher amplitude recorded by the tool,

whereas softer surfaces, fractures, and void spaces are recorded at a lower relative amplitude.

The electric imager (i.e. Formation Microlmager, FMI; Formation MicroScanner, FMS) provides real-
time microresistivity formation images and dip data in water-based mud (conductive borehole fluid).
This probe has pads and flaps contain an array of button electrodes at constant potential and they are
directly in contact with the borehole wall. Each pad injects current into the rock/sediment formation,
the current flow is received at a return electrode located in the upper part of the tool. The tool,
therefore, has a high-resolution capability in measuring variations from button to button (between
electrodes). The resistivity of the interval between the button-electrode array and the return electrode
gives rise to a low-resolution capability in the form of a background signal. This sonde yields a
continuous, high-resolution electrical image of a borehole and the values are color-coded such that
highly resistive material appears in bright colours and conductive material is set to dark colours. The
sonde is magnetically and gravitationally oriented, allowing orientation of data. FMI and FMS imager
data are the most commonly used image tool for cyclostratigraphy (Table 1).

The optical borehole imager (OBI) tool generates a continuous true high- resolution colour image of
the borehole wall using a downhole camera. This tool operates only in transparent fluid in liquid-filled
holes (fresh clear liquid). This requirement has limited the application of downhole cameras. A built-in
high precision orientation package incorporating a 3-axis magnetometer and 3-axis accelerometer
allows orientation of the images to a global reference and determination of the borehole’s azimuth

and inclination.

The borehole image log provides a map of the borehole walls based on specific properties which are
translated to colour code for interpretation. Colour maps related to electrical, acoustic or optical
contrasts reflect properties and attributes of the rock/sediment. Their analysis help to reconstruct

depositional and/or tectonic history of the formation. Due to the different nature of the targeted
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physical properties, features visible in one of the three imager types are not necessarily visible in the

others because of their different physical properties.

The image data records have a strong potential to be exploited in combination with other downhole
logging measurements, such as GR, SGR and MS, for cyclostratigraphic investigations and
sedimentation rate estimates. An increasing number of studies (e.g., Baumgarten et al., 2015; Hunze
etal,, 2013; Huret et al., 2011; Ulfers et al., 2022b; Williams et al., 2002) use spectral analysis methods
applied to borehole log data to assess the frequency content of geological time-series, assisting in
detailed quantitative cyclicity analysis (e.g., Li et al., 2018; Meyers, 2015; Zeeden et al., 2015). For
borehole images, this type of borehole measurements are commonly analysed for structural studies
such as natural and induced fractures, breakouts, structural dips but they can become also a valuable
tool in sedimentary environment for identification of beddings, laminations, cross-beddings, grading,
lithological boundaries, stylolites, turbidites or slumps deposits, conglomerate, viscicles, vugs and
volcanic facies (e.g., Jerram et al., 2019; Pierdominici et al., 2020; Rider and Kennedy, 2011; Trice,
1999). The identification of the aforementioned features on image logs are often combined with visual
inspection of drill cores (e.g., Donselaar and Schmidt, 2010; Jerram et al., 2019) to corroborate and

refine the analysis and interpretation (Fig. 6).

The great advantage of the borehole images is the much higher vertical resolution (4 mm to 10 mm)
than the resolution of GR and SGR (about 200 mm), allowing to discretize even extremely thin
beds/layers covering a short time periods making this type of measurement potentially eligible for
cyclostratigraphic analysis also for high-frequency signals such as sub-Milankovitch signals including
half-precession signals (e.g., Ulfers et al., 2022a). Generally, sandstone layers show yellow-light
colours, whereas siltstones and mudstones show dark-yellow and dark colour respectively in resistive
borehole images. Furthermore, variation in lithology, such as from clay to carbon-rich clay, can be
detected by FMS based on different resistivity values: low resistivity is registered to clay intervals
whereas higher resistivity correlates with organic carbon-rich clay (Huang et al., 2010; Rider and
Kennedy, 2011). Counting and marking the different layers along the stratigraphic sequence
intersected by the borehole should facilitate distinguishing cycles and assigning each of them an
average duration in order to estimate the age of the sediments using cyclostratigraphic methods (see

section 2.6.).

The distinction of individual layers on borehole images in combination with in particular GR and MS
log, usually used for cyclostratigraphic analyses, is expected to recognize cycle-stacking patterns (e.g.,
Muniz and Bosence, 2015; Rider and Kennedy, 2011; Ruffell and Worden, 2000). Image logs can
provide detailed information on paleoclimatic changes and can represent another effective method
for cyclostratigraphic analyses based on both image-logging derived proxy data and recognized cycle-
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stacking patterns through the use of ultra-high-resolution images. Yet, this potential is hardly tapped,

and few publications use image logs for cyclostratigraphy (e.g., Williams and Pirmez, 1999).

3. Downhole logging data analysis

3.1.Suitability of proxy data and sampling rates

A key criterion in the choice of a measured proxy parameter for cyclostratigraphic investigations is a
close correlation with sedimentology, and an understanding how climate and/or paleoenvironments
are reflected in the proxy of choice. Further, the ability to measure a parameter with adequately fine
resolution in a useful time- and cost framework is important when acquiring data for time series
analysis. This requires measurements at a point, and not average values that cover a long depth/core
interval. In marine and lacustrine systems, both the MS and especially the SGR (see section 3.3.) have
proven to be powerful well logging proxies which often record environmentally-driven changes in
sedimentation. Both proxies may provide information on the authigenic production in a system vs.
influx of sediment, and SGR can provide a differentiated picture through its (K, U, Th) components and

their relationships (Fig. 5).

The depth-resolution of logging data is often reduced compared to high-resolution core analysis,
although deconvolution (inversion based on knowledge of the logging tool pick-up depth) may
ameliorate this effect (Huret et al.,, 2011). It needs to be mentioned that many borehole probes
integrate over a considerable depth interval and although measurements may be taken at high
resolution, these may not be fully independent. Yet, given not too slow sedimentation rates, borehole
logging data is proving a suitable target for cyclostratigraphic investigations. Imaging (section 3.3.3)

can provide mm-scale datasets over km of boreholes.

Sedimentation rate may be slow, sometimes increasing the need for measurements at the highest
possible resolution to allow for detection of sedimentary patterns and cycles, especially those cycles
with shorter durations (e.g., Huret et al., 2011; Worthington, 1990). For example, at a sedimentation
rate of 10 cm/kyr, and a typical sample interval of 10 cm one obtains a data point every kyr on average.
This allows reconstructing cyclicity with a maximum resolution of 20 cm wavelength or 2 kyr period
according to the Nyquist-Shannon sampling theorem. However, this assumes perfectly equally spaced
sampling in depth and time, no gaps and zero changes in sedimentation rate, which is not the case in
real geosystems. Therefore, the highest resolution cyclicity will in reality have longer wavelengths

(Martinez et al., 2016).
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Generally, borehole logs are considered suitable targets for astrochronology and also direct orbital
tuning (e.g., Baumgarten et al., 2015; Ochoa et al., 2015; Sierro et al., 2000; Ulfers et al., 2022b),

especially because of the continuous measurements (Ochoa et al., 2018).
3.2.Data preparation

Logging data may require depth-adjustment to a single common depth scale if the data were gathered
in different logging runs (Figs. 2 and 3; Morgans-Bell et al., 2001; Weedon et al., 1999). This may be
facilitated by one (usually GR) probe being connected to all runs. If logging was done in several depth
intervals separately, which is usually done with considerable overlap to facilitate robust splicing,
establishing a composite record in a next step is necessary. For logging datasets usually only few
logging run datasets need to be tied together, in contrast to core data, where splicing is a major task
and will need to assess every core and may lead to different splices based on available data (e.g., Drury
et al., 2018; Wilkens et al., 2017; Zeeden et al., 2013). However, only some literature report on the

borehole condition (e.g., Bahk et al., 2016; Radke et al., 2022; Rampino et al., 2000).

For time series analysis, data are commonly prepared to avoid unwanted artefacts. Logging data may
require detrending, especially in unconsolidated sediments where recent sedimentation is ongoing. In
such circumstances, the sediment surface and upper part commonly show e.g. low GR intensity (or
MS) values due to high porosity, high water content and therefore rather low content of detrital
material carrying a GR (and MS) signal (see data e.g. by Bahk et al., 2016; Baumgarten et al., 2015;
Ulfers et al., 2021). Therefore, in unconsolidated sediments, detrending can be considered useful for
many (if not all) applications of cyclostratigraphy. Further effects may induce trends in datasets
because the interaction of drilling fluids with the borehole wall can be expected to increase with time
of exposure to fluids (Ulfers et al., 2021). In contrast to many other data acquisition techniques,
borehole logging data are almost always equally spaced in depth, and do not require re-sampling
before analysis, or applying specific methods tailored to non-equally spaced datasets (see Trauth et

al., 2007 and references therein).

Logging and core depths may differ to some extent (e.g., Giaccio et al., 2019; Morgans-Bell et al., 2001;
Weedon et al., 1999), and such differences commonly increase with depth. Here, logging depth is
commonly referred to as a better representation of true depth, because no issues of incomplete core

recovery or sediment expansion through decompaction are expected.

Corrections for borehole diameter are useful to omit effects caused by varying diameters (Lehmann,
2010 and references therein). As for core- and sample data, outliers and possibly specific layers are

useful to exclude from further analyses: tephra and turbidites are usually regarded as not useful to
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include in datasets for cyclostratigraphic investigations (Ulfers et al., 2021) due to their fast deposition

independent of the climate regime. The effect of removing event layers is exemplified in Fig. 3.
3.3.Time series analysis and cyclostratigraphy applied to downhole logging data

A suite of numerical methods is available to assess quasi-cyclic data in sedimentology and Earth
sciences. Among others, Trauth et al. (2007) and Weedon (2003) provide helpful overviews of signal
processing and time series analysis for geoscientific purposes and specifically cyclostratigraphy. Time
series analysis initially assesses the presence of (different) cyclic components in datasets, and some
methods analyse their distribution over depth or time and differentiate between intervals with and

without specific cyclic components.

Cyclostratigraphy ties cyclic variability in sediments and derived (borehole logging) proxy data to well
established changes in insolation (Laskar et al., 2004). This is used to derive a relative time scale (e.g.,
Hilgen et al., 2015; Hinnov, 2000; Meyers, 2019, and references therein). Many cyclostratigraphic
methods have been applied to borehole logging data, generally with the purpose of establishing
relative time scales and assessing sedimentation rates. In certain geologic settings, independent age
control points are available in the record. Relative ages attached to these points can result in a robust

age-depth model for the entire sequence.

Spectral analysis is a widely applied and powerful tool that analyses the mean cyclicity over a whole
record (Fig. 4a). It provides the intensity of specific frequencies/periods within a record. Several strong
peaks generally indicate a clear climate imprint and a rather constant sedimentation rate because
changes in sedimentation rate will smear out cyclic signals in the depth/time domain. Power spectra
provide an invaluable method for detecting the regular cycles that forms the basis of astrochronology.
However there are several critical issues associated with the correct identification of the spectral peaks
as indicative of regular cyclicity rather than noise, as discussed in recent papers (e.g., Meyers, 2019;

Weedon, 2022).

These cyclic components, together with their frequency relationships, allow for testing whether a
dataset (and its relevant frequencies) can be matched to an (orbital) target signal (Martinson et al.,
1982). Formalization of this approach was achieved by (Meyers and Sageman, 2007), who calculate an
‘astronomical spectral misfit’ between significant frequencies in a power spectrum from geological
data and an astronomical reference for a suite of sedimentation rates. This includes associated

confidence in an orbital origin of significant frequencies of a spectrum.

Assessing specific frequency ranges is very useful to extract the intensity of such signals, including
amplitude relationships of e.g. precession and its eccentricity amplitude or short (~100 kyr) eccentricity

and its longer term eccentricity amplitudes (Meyers, 2015, 2019; Shackleton et al., 1995; Zeeden et al.,
15



490
491
492

493
494
495
496
497
498
499
500
501
502

503
504
505
506
507

508
509
510
511
512
513
514
515
516
517
518

519
520
521
522

2015). Assessment of individual frequency components can be performed through applying filters to
datasets (e.g., Melnyk et al., 1994; Weedon, 2003; Zeeden et al., 2018c). Filtering results are especially

informative when comparing filters of specific frequency ranges to the underlying dataset.

In cyclostratigraphy, (evolutive) power/amplitude spectra or spectrograms (Fig. 4b; see e.g., Locklair
and Sageman, 2008; Molinie and Ogg, 1990; Read et al., 2020; Ulfers et al., 2021; Wonik, 2001;
Worthington, 1990) and wavelet analysis (e.g., Chen et al., 2019; Prokoph and Agterberg, 1999; Wu et
al., 2014) are commonly used to assess the depth/time evolution of cyclicity in a dataset. Plotting either
an evolutive power spectrum or a wavelet analysis is standard in cyclostratigraphy, and visualizes the
cyclic components of a dataset efficiently. For some logging datasets, which are particularly long
(several km), such approaches are especially important, because orbital signals have sometimes
changing characteristics. As an example, during the Mid Pleistocene Transition many geoarchives show
a clear shift from ~40 kyr obliquity cycles to ~100 kyr eccentricity cycles. This can nicely be visualized

using evolutive approaches (e.g. Fig. 4).

An evolutive (sliding window) correlation between data- and orbital template spectra to search for the
most suitable sedimentation rate(s) was established by (Martinson et al., 1982). It was formalized by
(Li et al., 2018), and its value for constructing time scales was highlighted. It is now increasingly used
in cyclostratigraphy, and also on logging data (e.g., Du et al., 2020; Gong, 2021; Li et al., 2019a; Read
et al., 2020; Zhang et al., 2020).

Several methods use the precession or eccentricity amplitude patterns in combination with power
spectral properties to investigate the presence of insolation-driven sedimentary cycles, and test a
multitude of different sedimentation rates for a useful fit between precession amplitude and
eccentricity or short eccentricity and its amplitude patterns (Meyers, 2019, 2015). The timeOpt and
timeOptTemplate methods as implemented in R (Meyers, 2019, 2015, 2014; R Core Team, 2022) are
especially useful in tying logging data to time (Figs. 2e and 7). This is because the amplitude patterns
are more diagnostic for an orbital imprint than frequency patterns (Hilgen et al., 2015; Shackleton et
al., 1995; Zeeden et al., 2019, 2015). The possibility to test a suite of sedimentation rates (timeOpt)
and at the same time also trends in sedimentation rate (timeOptTemplate) allows the assessment of
best fits of precession or eccentricity amplitudes and their modulating eccentricity/long eccentricity

components.

The timeOptTemplate method has been successfully applied to downhole GR data from e.g., Lake
Ohrid to estimate average sedimentation rates (Ulfers et al., 2022b). In this publication, the
sedimentation model is compared to an independently developed sedimentation rate model that is

based on the correlation of borehole-GR data to the LRO4 benthic stack from (Lisiecki and Raymo,
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2005a) and a linear trend of these. Both models include the same initial data, but use different
methods that resultin very similar sedimentation rates (Fig. 7). For methods such as TimeOptTemplate,
the quality of recorded orbital cycles in the output data is apparently of crucial relevance; already
(Shackleton et al., 1995) clearly indicating its dependency on data quality and associated limitations
(cf. Ulfers et al., 2022b). The limitations of the method are evident at drill sites in Lake Ohrid which

contain only a weak precession signal (Ulfers et al., 2022b).

3.4. Multivariate methods for paleoclimatic investigations

To construct continuous lithological profiles, cluster analysis based on borehole logging data is a most
powerful tool. Detrending logging data may be applied before cluster analysis to counter trends in the
dataset that are related to compaction or fluid intrusion into the sediments of the upper borehole.
Clearly, the more logging data available, and the more aspects of lithology these logging data
encompass, the more differentiated the result of such a cluster analysis can be (Figs. 2d, 8). Thereby,
cluster analysis may base on logging data only (e.g., Blicker et al., 2000; Fresia et al., 2017; Hunze and
Wonik, 2009, 2007), or a combination of logging- and core- data (e.g., Baumgarten et al., 2014). Such
a quantitative approach of establishing a stratigraphic description is less commonly applied based on
core- or exposure data, although such studies exist (e.g., Szabéd et al., 2019). This is probably due to
the fact that for cores and exposures, semi-quantitative descriptions and visual impression along with

experience are often considered more valuable although less reproducible.

Although logging data include information about the physical properties of sediments, they
cannot always directly be related to lithology; however, appropriate measurements can provide clear
evidence of lithology. While logging data can provide clues to lithology, the ideal evidence of lithology
is a visible rock or core that can be assessed by eye and analysed using methods tailored to specific
qguestions. Generally, the more logging information available and the better the geology of a region is
understood, the more robust the interpretation of the sediment/rock type based on logging data.
When specific sediment/rock types are expected and the geological background is known, one or few
logging parameters may characterize a dataset, and allow for correlation between logs and exposures

(e.g., Broding et al., 1952; Prokoph and Agterberg, 1999; Read et al., 2020).

The quality of results of a cluster analysis improves with increasing contrast in the physical properties
of the (sedimentary) rocks. In Lake Ohrid, for example, there are primarily two types of sediment which
clearly differ from each other in their physical properties (Fig. 8). Besides several other parameters, GR
is an important proxy in this context. The results of the cluster analysis demonstrate a high level of

similarity compared to the core description (Fig. 8). Cluster analysis can be applied to other sites in the
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Ohrid Basin, and provides additional information about parts in the sediment succession where core

loss occurred (Ulfers et al., 2022b).

3.5.Example of integrating exposure, core- and downhole logging with cyclostratigraphy

The Rapid Global Geological Events (RGGE) project (Gallois, 2000) is taken as example of downhole
logging, time series analysis and cyclostratigraphy here. The project involved logging of the type
locality of the Kimmeridge Clay in Dorset/UK, including exposure MS measurements and portable GR
logging in the field (Morgans-Bell et al., 2001). Two boreholes were drilled near the exposure cliffs, and
a full suite of downhole logs were generated (Gallois, 2000; his Table 1) in addition to continuous coring
of this mudrock formation. Weedon et al., (1999) could show that the MS time series from the
exposure, core and downhole could be correlated in detail (Weedon et al., 1999; their Fig. 9). Weedon
et al (2004) then used the core MS on the common depth scale, combined with downhole Photoelectric
Factor and Total GR logs from the boreholes, to demonstrate regular cyclicity linked to Milankovitch
cycles. A dominant frequency was assigned to obliquity, also because of a secondary cyclic component
with about half its wavelength (Weedon et al., 2004). Based on this realization, Weedon et al. (2004)
then provided the first estimate of the duration of the Kimmeridgian Stage from cycle counting to be
3.6 Ma for the Early Kimmeridgian, and 3.9 Ma for the Late Kimmeridgian. They also provide durations
for a suite of Ammonite zones. Later, Huang et al (2010) used FMS micrologging from the RGGE
downhole logging to re-examine the cyclicity, and essentially confirmed the astrochronology of
Weedon et al (2004). They, however, used mainly the longer 405 kyr cycle, and suggested an almost
identical duration of the Lower Kimmeridgian, and a somewhat shorter duration (3.32 Ma) for the

Upper Kimmeridgian — a close fit given the Jurassic time ~150 Ma ago.

4. Summary

Here we review properties of borehole logging data and time series analysis which are relevant for
geoscientists with a broad range of expertise. Especially, we point out some relevant differences to
core data. Logging data can encompass 10s to 1000s of meters of equally-spaced data in high
resolution, a most desirable goal for many scientists working on geological time series analysis. An
increasing suite of studies shows the value of borehole logging data in the context of sedimentology,
stratigraphy and paleoclimatology. Especially for Quaternary and not fully consolidated sediments,
detrending is useful and can ease relating depth-derived properties to astronomical properties.
However, datasets often represent composites, especially when derived from unconsolidated
sediments. Multivariate logging datasets generally cannot be perfectly synchronized, but deviations
from synchrony can be expected to be small. Several downhole logging data proxies are often related
to lithology and paleoclimate, and are therefore valuable targets for astrochronology; these include

SGR and MS. Further, we suggest that the value of image data is not yet fully tapped for time series
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analyses, and we will test these data in future for their value of revealing quasi-cyclic sediment
alterations. We highlight that borehole logging data have the potential to contribute more to the fields
of sedimentology and Earth science in general. This is supported by the increasing number of studies

using imaging logs to assess short term sediment- and climate variability.
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Figures and Table:

Table 1: Extensive overview on studies using borehole logging data for cyclostratigraphy. While most
of the cited studies here apply cyclostratigraphy, few focus on technical/computational aspects.

Type of downhole logging

data

Formation/Location

Reference

Conductivitylog ~ Meuse/Haute-  UpperJurassic ~ (lefrancetal,2008)

Conductivity log

Electrical Image Log

Formation  Microlmager
resistivity log

Formation  Microlmager
tools

Formation MicroScanner
log

Formation MicroScanner
log

Formation MicroScanner,
Resistivity logs
Gamma ray log

Gamma ray log
Gamma ray log
Gamma ray log
Gamma ray log

Gamma ray log

Gamma ray log

Gamma ray and Density
logs

Gamma ray and Density
logs

Gamma ray and Density
logs, Sonic transit time
Gamma Ray and Neutron
logs

Gamma ray and Sonic
velocity logs

Gamma ray and Sonic
velocity logs

Gamma ray log
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Meuse/Haute-
Marne, France
Vienna
Austria

ODP Leg 166, SE of
Florida/USA
Niobrara Formation,
USA

ODP Site 978B,
Mediterranean
Kimmeridge
Formation, UK
Cismon Valley,
northern Italy

Foz do Amazonas
Basin, Brazil

Basin,

Clay

South China Sea
Gulf of Suez, Egypt
Bohai Basin, China
Pinghu Formation,
China
Mediterranean,
Egypt

Lake Ohrid, Balkan

Juggar Basin, China

Zakeen Formation,
Persian Gulf

Dalan  Formation,
Persian Gulf
Paradox
strata, USA
Green River
Formation, USA
Rotliegend  Group
offshore,
Netherlands
Western Canada
Basin, Canada

Basin

Upper Jurassic
Miocene
Miocene
Upper Cretaceous
Quaternary
Late Jurassic
Cretaceous
Cretaceous
Eocene
Miocene
Paleogene
Paleogene

Pliocene

Quaternary

Permian
Devonian

Late Permian
Carboniferous
Eocene

Permian

Albian, Cretaceous

(Lai et al., 2018)
(Williams et al., 2002)

(Locklair and Sageman,
2008)
(Goldberg, 1997)

(Huang et al., 2010)

(Malinverno et al,,
2010)
(Boulila et al., 2020)

(Cao et al., 2016)
(Farouk et al., 2022a)
(Xia et al., 2020)
(J. Zhang et al., 2020)

(Farouk et al., 2022b)

(Baumgarten et al,
2015; Ulfers et al,
2022b)

(Tang et al., 2022)

(Falahatkhah et al,
2020)

(Falahatkhah et al,
2021b, 2021a)
(Goldhammer et al,
1994)

(Fischer and Roberts,
1991)

(Yang and Baumfalk,
1994)

(Prokoph and
Agterberg, 1999)



Gamma ray log

Gamma ray log

Gamma ray log
Gamma ray log

Gamma ray log
Gamma ray log
Gamma ray log

Gamma ray log

Gamma ray log

Gamma ray log

Gamma ray log

Gamma ray log

Gamma ray log
Gamma ray log
Gamma ray log
Gamma ray log

Gamma ray log
Gamma ray log

Gamma ray log
Gamma ray log

Gamma ray log

Gamma ray log

Gamma ray log
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Qiongzhusi
Formation,
Chengdu, China
ODP Site 549, North
Atlantic

North Sea

IODP Site U1512,
Australian Bight
Basion

Western Desert,
Egypt

Lower Saxonian
Basin, Germany

Fiq Formation,
Oman

Albian claystone of
Herbram
Formation,
Germany

Nafun & Ara Group,
Oman

Jianghan Basin,
China

Rennes Basin,
France

Tikorangi
Formation, New
Zealand

Qiangtang Basin,
China

Ordos

Basin, China

Otway Basin,
Australia

South China Sea

Bohai Basin, China
Tarim Basin, China

Sichuan Basin, China
Bohai Bay Basin,
China

Lishui  Depression,
China

Shahejie Formation,
Dongpu & Dongying
Depressions, China
Nanxiang Basin,
China

Cambrian

Cretaceous

Cretaceous
Cretaceous

Cretaceous
Cretaceous
Cryogenian

Early Cretaceous

Ediacarian

Eocene-Oligocene

Eocene—0Qligocene

Late Oligocene

Middle Jurassic
Middle Jurassic
Miocene
Miocene

Oligocene
Ordovician

Ordovician-Silurian
Paleocene-Oligocene

Paleogene

Paleogene

Paleogene

(Liu et al., 2022; Zhang
et al, 2022)

(Kouamelan et al,
2021)

(Perdiou et al., 2016)
(Macleod et al., 2020)

(Makled, 2021)

(Voigt et al., 2008)
(Gong, 2021)

(Prokoph and Thurow,
2001; Wonik, 2001)
(Gong and Li, 2020)

(Huang and Hinnov,
2019)

(Boulila et al., 2021)

(Read et al., 2020)

(Gao et al., 2020)
(Chen et al., 2022)
(Radke et al., 2022)

(Shifeng et al.,, 2013;
Yuan et al., 2019)

(Du et al., 2020)
(Aboubacar et al,
2022)

(Lang et al., 2018)

(Liu et al., 2017)

(Liu et al., 2019)

(Ma et al.,, 2023; M.
Wang et al., 2020)

(Xu et al., 2019)



Gamma ray log
Gamma ray log

Gamma ray log
Gamma ray log

Gamma ray log
Gamma ray log
Gamma ray log

Gamma ray log

Gamma ray log
Gamma ray log

Gamma ray log
Gamma ray log
Gamma ray log
Gamma ray log

Gamma ray log
Gamma ray log

Gamma ray log
Gamma ray log

Gamma ray log

Gamma ray and Density
logs

Gamma ray and Density
logs

Gamma ray and Formation
Microlmager resistivity
logs

Gamma ray and Magnetic
susceptibility logs

Gamma ray and Magnetic
susceptibility logs

Gamma ray and Resistivity
logs

Gamma ray, Resistivity
and Sonic velocity logs

36

Parana Basin, Brazil
Yangtze cratonic
basin, China

North Sea

Pingle Depression,
China

China

Taiyuan Basin, China
IODP Site U1463,

Offshore NW
Australia

Quaidam Basin,
China

Lake Chalco, Mexico

Lake Chalco, Mexico
lleung Basin, East
Sea

Gulf of
Cadiz/Portugal
Coastal Plain  of
Israel

Lithuania
Buchstein, Italy
Bohemian
Cretaceous Basin,

Czech Republic
Wessex Basin, UK

Anticosti Island,
Canada

Franconian and
Swabian Alb,
Germany

Tarfaya Basin,
Morocco

Carnic  Alps in
Austria

Vienna Basin,
Austria

Bohai Basin, China

Tarim Basin, China

Buqu Formation,
Tibet, China
Western
Mediterranean

Permian
Permian

Permian

Permian
Permo-carboniferous
Plio-Pleistocene
Plio-Pleistocene

Plio-Pleistocene

Quaternary
Quaternary

Quaternary
Quaternary
Permian-Triassic
Silurian

Triassic
Turonian-Coniacian
Upper Jurassic

Ordovician

Middle Jurassic

Cenomanian/Turonian
Permian-Triassic

Miocene

Eocene

Pleistocene
Middle Jurassic

Miocene, Pliocene

(Fritzen et al., 2019)
(Xuetian Wang et al,,
2020)

(Nio et al., 2005)
(Xiugi Wang et
2020)

(YU et al., 2008)
(Z. Wang et al., 2022)
(Christensen et al,,
2017)

al.,,

(Liu et al., 2001)

(Brown et al., 2019)
(Sardar Abadi et al,
2022)

(Bahk et al., 2016)

(Lofi et al., 2016)
(Korngreen et al., 2013)

(RadzeviCius et al,

2014, 2017)
(Maurer et al., 2004)

(Laurin et al., 2014;
Laurin  and  Uli¢n;y,
2004)

(Melnyk et al., 1994)
(Sinnesael et al., 2021)

(Leu et al., 2022)
(Beil et al., 2020, 2018;
Kuhnt et al., 1997)

(Rampino et al., 2000)

(Paulissen and Luthi,
2011)

(Guo and Jin, 2021; Jin
et al.,, 2022; Shi et al.,
2019)

(Zzhang et al., 2019)
(Cheng et al., 2017)

(Ochoa et al., 2015)



Gamma ray, Resistivity,
Sonic velocity logs

Gamma ray and Sonic
velocity logs

Gamma ray, Caliper,
Density logs

Gamma ray and Density
logs

Gamma ray, Formation
MicroScanner logs
Gamma ray, Magnetic
susceptibility, Resistivity
and Density logs

Gamma ray, Porosity,
Sonic velocity logs

Gamma ray, Resistivity

and Density logs
Gamma ray and Resistivity
logs

Gamma ray and Resistivity
logs

Gamma ray and Sonic
velocity logs

Gamma ray and Sonic
velocity logs

Induction log

Magnetic susceptibility log
Magnetic susceptibility log
Magnetic susceptibility log

Magnetic susceptibility log

Magnetic  susceptibility
and Density logs

Magnetic  susceptibility,
Formation  Microlmager
resistivity logs
Photoelectric Effect and
Gamma ray logs

37

Western
Mediterranean
Lunpola Basin,
Tibet, China

Juggar Basin, China
Songliao Basin
Transect, China
Kimmeridge
UK

Clay,

Songliao Basin,

China

Ocean Drilling
Program, Leg 105,
Labrador Sea and
Baffin Bay

Juggar Basin, China

Ocean Drilling
Program Sites 865
and 866, western
Pacific Ocean

Gulf of
Cadiz/Portugal
Gulf of Cadiz,
Portugal/Spain
Newark—Hartford
Basins, USA
ODP  site
Labrador Sea
North Sea
Meuse, France
Kimmeridge
Formation, UK
Lake Towuti,
Indonesia

Ocean Drilling
Program Site 882,
north west Pacific
Ocean

6468,

Clay

ODP Leg 166, SE of
Florida/USA
Kimmeridge Clay

Formation, UK

Pliocene
Eocene
Carboniferous-
Permian
Cwenomanian-

Coniacian
Late Jurassic

Cretaceous

Pliocene — Pleistocene

Jurassic

Late  Albian,
Cretaceous

Early

Miocene-Pleistocene
Pliocene

Triassic

Pliocene
Plio-Pleistocene
Jurassic

Late Jurassic

Quaternary

Pliocene

Pliocene

Late Jurassic

(Ochoa et al., 2018)
(Weietal., 2017)
(Huang et al., 2021)
(Wu et al., 2009)

(Huang et al,
Morgans-Bell et
2001)

(Liu et al., 2020; Peng et
al., 2020; WU et al,,
2008; Wu et al., 2013,
2014; Li et al., 2022;
Wu et al., 2022; WU et
al., 2007)
(Jarrard
1989)

2010;
al.,

and Arthur,

(Y. Lietal., 2018)

(Cooper, 1995)

(Hernandez-Molina et
al., 2016)
(Sierro et al., 2000)

(Olsen et al., 2019; M.
Wang et al., 2022)
(Worthington, 1990)
(Barthes et al., 1999)
(Huret et al., 2011)
(Weedon et al., 1999)
(Ulfers et al., 2021)
(Tiedemann and Haug,
1992)

(Kroon et al., 2000)

(Weedon et al., 2004)
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Resistivity log

Resistivity log

Resistivity and  Sonic
velocity logs

Resistivity and
Spontaneous potential
logs

Self potential logs

U concentration, based on
Gamma ray log
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Lower Saxony Basin,

Germany

ODP Site 1006, SE of
Florida/USA

ODP  Site 963,
Weddell Sea
Pannonian Basin,
Hungary

North German

Basin, Germany
Lake Van, Turkey

Cenomanian—Lower
Coniacian
Pliocene

Paleogene to Pliocene

Miocene

Cretaceous

Quaternary

(Niebuhr et al., 2001)
(Reuning et al., 2006)

(Golovchenko et al,
1990)
(Sacchi
2004)

and Miuller,

(Niebuhr and Prokoph,
1997)

(Baumgarten
Wonik, 2015)

and



Wireline

 Backfilling
+ influences
Air ; measurements
Drilling
fluid/mud =
= Irregular
Borehole : borehole
tool R wall & filling
e
Bottom ‘ B;’ttor."
of hole orcasing

1312

1313 Figure 1. Left: ideal logging conditions in a perfect drilled and open hole with a partial water filling.
1314  Right: imperfect conditions in a cased hole with a changing diameter and backfilling; modified after

1315 Lehmann (2010). Note that sondes are not always centralized, and are tailored to common borehole

1316 diameters.
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Figure 2: Schematic workflow of acquiring and analysing logging data. From left to right: a) data

acquisition, shown here in a lake; b) logging data from two runs; c) spliced logging data. Data analyses

regarding lithology (d), and the time encompassing the dataset (e).
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Figure 3: Effects of processing downhole logging data on cyclostratigraphic analysis. The upper panel
(a) shows the schematic processing steps of removing one event layer. During the borehole
measurements, a peak with characteristic border effects arises in the area of the event layer (e.g.
tephra, turbidite). When excluding the event layers, the entire record is reduced by the amount of all
event layers (thus shortened), but border effects are still present. In the final step, these border effects
are smoothed. The lower panel (b) shows these processing steps on real MS data from Lake Towuti
(Ulfers et al., 2021). Note the missing 3.5 m on the lower end of the record after the first processing
step. Also shown is the effect these processing steps have on evolutive harmonic analysis. Without
processing the investigator could be misled by the dominance of the high-frequency signals in the
spectrum relating to lithologically clearly different event layers. After processing, the remaining

dominant frequencies are in the bandwidth of eccentricity (see Ulfers et al. (2021) for details).
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Figure 4: This figure shows the differences of ‘classic’ spectral methods averaging over long depth/time intervals,
here power spectra, and time evolutive methods, here evolutive harmonic analyses. In both cases, we
investigated the GR record of the last ~ 1 Ma in Lake Ohrid on a) its depth scale and b) in the time domain (Ulfers
et al., 2022b). In the power spectrum and in the evolutive analysis in a), the dominant orbital signals appear to
be related to eccentricity. However, the position of the orbital components is based on constant average
sedimentation rate of 34.4 cm/kyr and may vary over depth (Ulfers et al., 2022b). The power spectrum in b)
shows dominant eccentricity and obliquity components. However, it is not possible to make statements about
changes in the dominance of a certain component with time. In the evolutive analysis in b), the amplitude of
the obliquity signal is substantially reduced after ~600 ka, and the eccentricity component is more dominant

in the younger part of the record.
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1345 Figure 5: Spectral Gamma Ray (SGR, left) from Lake Chalco (Sardar Abadi et al., 2022), and the
1346 components from potassium (K), thorium (Th), und uranium (U). Note that while there are similarities

1347 between the components, there are differences, which can be used for specific interpretations.
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Figure 6: An example of acoustic borehole image log and drill core sample from the PTA2 borehole on
the island of Hawai'i (modified from Pierdominici et al., 2020). Structural and geological features of an
‘a’a lava facies are shown: lithological change (boundary), vesicles, borehole breakout. The ‘a’a lava
flows show instead auto-brecciated upper and lower crusts separated by a vesicular interior. b) An
example of an optical borehole image (OBI) from a quasi-cyclic pelagic sedimentary sequence, the
Scaglia Rossa in the central Apennines (Italy; e.g., Johnsson and Reynolds, 1986; Turtu et al., 2017).
The OBI image shows a rhythmic layering of thick limestone layers (reddish colour) and thin marly
intervals (black colours); a paleoclimatic mechanism driven by orbital climate forcing is responsible for
the marl-limestone alternation (Johnsson and Reynolds, 1986; Turtu et al., 2017). Legend: TT: travel

time; AMPL: amplitude; Lith.: lithology.
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Figure 7: Comparison of linear fits through sedimentation rates at the main site in Lake Ohrid using
two independent methods. The red line represents results from the timeOptTemplate method
(Meyers, 2019, 2015; R Core Team, 2022), while the blue line represents the running average of the
sedimentation rate in the background. This in turn is based on a correlation approach using the LR0O4
benthic stack from Lisiecki and Raymo (2005), and shows the sedimentation rate for each Marine
Isotope Stage during the last million years. Both methods are based on GR downhole logging data in

Lake Ohrid (see Ulfers et al., 2022b for details on used methods).
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a) Downhole logging data b) c)
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1370  Figure 8: Example for cluster analysis using downhole logging data from Lake Ohrid (Baumgarten et al.,
1371  2015; Ulfers et al., 2022b). a) shows the logging data which were used for cluster analysis, b) shows
1372  the result of cluster analysis from this case, and c) gives a comparison to lithological data (after Ulfers
1373  etal., 2022b, adjusted). Note that the results of cluster analysis match the actual core description by
1374 (A. Francke et al., 2016; Leicher et al., 2021) well; this is commonly the case. In some cases downhole

1375 logging data based cluster analysis is the only way to assess lithology in intervals where cores could

1376 not be recovered.

46





