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Volcanic flanks subject to hydrothermal alteration become mechanically weak
and gravitationally unstable, which may collapse and develop far-reaching
landslides. The dynamics and trajectories of volcanic landslides are hardly
preserved and challenging to determine, which is due to the steep slopes and
the inherent instability. Here we analyze the proximal deposits of the 21 July 2014,
landslide at Askja (Iceland), by combining high-resolution imagery from satellites
and Unoccupied Aircraft Systems. We performed a Principal Component Analysis
in combination with supervised classification to identify different material classes
and altered rocks. We trained a maximum-likelihood classifier and were able to
distinguish 7 different material classes and compare these to ground-based
hyperspectral measurements that we conducted on different rock types found
in the field. Results underline that the Northern part of the landslide source region
is a hydrothermally alteredmaterial class, which bifurcates halfway downslope and
then extends to the lake. We find that a large portion of this material is originating
from a lava body at the landslide headwall, which is the persistent site of intense
hydrothermal activity. By comparing the classification result to in-situ
hyperspectral measurements, we were able to further identify the involved
types of rocks and the degree of hydrothermal alteration. We further discuss
associated effects of mechanical weakening and the relevance of the
heterogeneous materials for the dynamics and processes of the landslide. As
the study demonstrates the success of our approach for identification of altered
and less altered materials, important implications for hazard assessment in the
Askja caldera and elsewhere can be drawn.
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1 Introduction

Landslides, slope instability, mass movements, and sector
collapses are among the most hazardous events in volcanic areas.
All these are driven by gravitational loading, where the slope and
strength of a volcanic material are controlled by its edifice height
(Delaney, 1992). Consequently, taller volcanoes are clearly
associated with more common lateral collapse scars (Francis and
Wells, 1988; Norini et al., 2020). Some sector collapses produce far-
reaching debris avalanches (vanWyk de Vries and Davies, 2015; van
Wyk de Vries and Delcamp, 2015) such as the catastrophic event at
Socompa volcano which is one of the earliest detailed examples
documented (van Wyk de Vries et al., 2001). In total such events
caused about 20,000 fatalities by historic collapses alone (Siebert,
1984; Siebert et al., 1987). Even small sector collapses may enter the
sea and produce tsunami, such as occurred on 22 December 2018 at
Anak Krakatau (Walter et al., 2019). Other historical collapses
occurred at El Hierro on the Canary Islands (Gee et al., 2001), or
at Mount St. Helens (Lipman and Mullineaux, 1981).

Drivers of volcano flank collapses may be complex, and a
number of different sources have been identified, ranging from
pressurization of pore fluids, oversteepening by material addition or
basal erosion, and triggering by earthquakes (McGuire, 1996).
Volcanic edifices are almost permanently affected by a number of
processes that weaken their stability, which include an overall acting
weathering and erosion associated to climatic processes (Day et al.,
1999; Hürlimann et al., 1999; Kerle and de Vries, 2001) and a
commonly spatially more confined acting degradation of rocks
through hydrothermal activity involving hyperacidic brines
(Lopez and Williams, 1993; Kempter and Rowe, 2000; van Wyk
de Vries et al., 2000; Reid et al., 2001; Varekamp et al., 2001).
Similarly, as volcanic edifices may collapse, also caldera walls may
become unstable and produce large landslides. In some cases also a
combination of edifice collapse and caldera collapse has been
inferred, such as the edifices surrounding the Uzon caldera in
Kamchatka (Belousov et al., 2005). The material composition,
particularly of large landslides in such a setting can be very
complex (Ward et al., 2020). Identification of the hydrothermally
weakened materials, however, is challenging and may be indirectly
advanced using remote sensing methods. The altering rocks change
their porosity, permeability and may reduce their strength by a
factor of ten or even more (Heap et al., 2019).

The analysis of satellite spectral data allows monitoring and
mapping minerals on the Earth’s surface, allowing deciphering
effects of alteration, weathering, erosional and depositional
processes in the context of changing weather, climate, and
tectonics (Cudahy et al., 2016). Remote sensing imagery has a
very high potential to access sites of geohazards. Hydrothermal
activity commonly influences the surrounding rock masses, leading
to chemical interaction with hydrothermal fluids and a
hydrothermal (re-)mineralization that is also of interest for
exploration geologists (Pirajno, 1992). At the surface, the spatial
distribution of those hydrothermally altered rocks is key to identify
potential mineral deposits and hydrothermal systems (Rajesh, 2004).
The presence of iron oxides/hydroxides and clay minerals, in
particular, with spectral signatures that are identifiable in the
visible/shortwave infrared (VSWIR) portion of the
electromagnetic spectrum, is a common indicator for identifying

hydrothermal alteration zones (Bedell et al., 2009; Bedini, 2017). In
this view, clays, with their hydroxyl bearing minerals, can be
remotely identified through their spectral characteristics. Effective
methods to identify the presence of iron-oxides and hydrous mineral
species have been implemented in multispectral satellites such as
Landsat, Sentinel-2, or ASTER (Mia et al., 2019; Sekandari et al.,
2020; Tompolidi et al., 2020; Aguilera et al., 2021), or airborne
instruments such as AVIRIS (Crowley and Zimbelman, 1997).
However, spatial and spectral resolutions often do not allow
locating details in the sub-meter scale so that their value for
examination of very localized hydrothermal zones has been
limited (spatially 10–30 m and spectrally 4–15 bands at best).
However, drone-based data acquisitions and hyperspectral point
measurements may provide a landmark change allowing accessing
volcanic regions (James et al., 2017; James et al., 2018; Govil et al.,
2021). Hyperspectral point spectroradiometer with a high spectral
resolution (narrow, spectrally contiguous wavelength) in visible-
infrared and shortwave infrared (VNIR-SWIR) wavelength region
may allow a detailed and fast identification of hydrothermally
altered facies in the field without time-consuming and cost-
intensive laboratory analysis (Schwartz et al., 2011; Govil et al.,
2021). A rapid, easy-to-use and portable hyperspectral system
provides information of the chemical composition of the
absorbing mineral, e.g., controlled by the shape, depth and
position of the spectral features (Pazand et al., 2013). A quick
monitoring of hydrothermal zones is still missing or was not
often used in areas with rough terrain (e.g., Madani, 2015).

The study site is located on the rim of a caldera lake, in eastern
Iceland (Figure 1). On 21 July 2014, a massive landslide occurred at
the steep Askja caldera rim, mobilizing an estimated volume of
35–80 × 106 m³ (Schöpa et al., 2018). Others calculated differently
and there seems to be some controversy about the actual volumes
(Jóhannesson et al., 2018), e.g., 12–50 × 106 m3 (Gylfadóttir et al.,
2017), 30–50 × 106 m3 (Helgason et al., 2019) and 20–50 × 106 m3

(Saemundsson et al., 2015). The most recent estimation is 20 ×
106 m3, half of which was deposited in the lake and the other half on
the shore (Eliasson and Sæmundsson, 2021). The event was
recorded by seismic stations located south of the Askja caldera
(Schöpa et al., 2018) and is also reported by eyewitnesses close on-
site (Helgason et al., 2019). The flank was generally known to be a
site of intense hydrothermal alteration and fumarole degassing
activity, where frequent small-scale rock falls posed a hazard to
daily hikers. When a significant portion of the southeastern flank
slipped into the caldera lake (Öskjuvatn), it triggered a tsunami that
traveled throughout the lake with reported run-up heights of
60–80 m above lake level (Gylfadóttir et al., 2017), with impact
for the shore around the lake (Rauter et al., 2022). He collapsed flank
allows studying deposits that did not travel far and to explore how
moving rock masses are disintegrated, and mixed as a consequence
of weak materials. Therefore, investigations of trigger mechanisms,
detailed understanding of the flow dynamics and mass
redistributions of this event are crucial.

In an attempt to analyze the lithological and geomorphological
consequences of the 2014 Askja landslide, we have realized a series of
Unoccupied Aircraft System (UAS) surveys in August 2019 in order
to acquire highly resolved visible range imagery of the eastern part of
the Askja caldera which contains the 2014 landslide deposition area.
For a detailed characterization and thematic mapping of the
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deposited materials we applied a machine learning based
classification approach utilizing Principal Component Analysis
(PCA) to highlight relevant features in our airborne imagery, as
already has successfully been done in other studies in order to
classify different volcanic materials (Amici et al., 2014; Kereszturi
et al., 2018), or for localization of geothermal areas and sulfur
deposits (Müller et al., 2021). Other studies shown that applying
PCA is helpful in identifying weakened materials by hydrothermal
activities (Darmavan et al., 2022).

Here we considered the visible bands of RapidEye-1 and
PlanetScope DOVEs satellite imagery, newly acquired high-
resolution visible range imagery from UAS and ground-based
hyperspectral point measurements (https://doi.org/10.5281/
zenodo.7575783) to analyze the materials that collapsed in a
hydrothermally affected region. The UAS data provide high
spatial data needed for mapping details of the landslide area. The
ground-based hyperspectral point measurements were carried out in
the VNIR-SWIR wavelength range (350–2,500 nm) using a High-
Resolution Field Spectroradiometer on representative rock surfaces
in the field, to better characterize the different rock types and to
validate our classification of different rock units from drone
imagery. Here we present a detailed description of how we
processed our imagery data from the drone camera and
furthermore, how we proceeded in extracting information from

that by means of PCA and classification methods, highlighting the
importance of hydrothermal alteration for caldera wall collapses.

2 Geologic setting

Iceland is the subaerial part of a divergent plate boundary where
the Eurasian plate and the North American plate are drifting apart at
average 2 cm/yr (Sigmundsson, 2006). The uprise of the oceanic
crust and magmatism in this area is also strongly affected by a
colocated mantle plume, giving rise to the formation of the island
about 16–18 million years ago (Sigmundsson et al., 2020).

The Askja volcanic system is located on a ~200 km long and
~20 km wide NNE-SSW trending fissure swarm, and covering an area
of 2,300 km2 in the middle of Iceland’s North Volcanic Zone (NVZ,
Thordarson and Larsen, 2007; inset of Figure 1). In this part of the
Icelandic rift zone, the island grows at slightly faster than average
spreading rates by 2.3 cm/year towards the East (e.g., Perlt et al., 2008).

The central volcano of the Askja volcanic system is located at the
very southern end of the system. The equally named predominantly
basaltic central volcano, that has also produced major silicic
eruptions, has been active for ~200–300 ka (Brown et al., 1991;
Sigvaldason, 2002). Askja central volcano has produced more than
175 effusive and explosive eruptions during the last 7 ka, more than

FIGURE 1
Area of the 21 July 2014 landslide. (A) Landsat 8 satellite image (bands 4-3-2, scene of 6 September 2014) and EU-DEM v.1.0 elevationmap (showing
the topography) of the Askja Caldera in the Northern Volcanic Zone (NVZ) of Iceland (see inset map). The location of the study area on the east of Lake
Öskjuvatn and the areal extent of the 2014 landslide are outlined in white (landslide outline adapted from Gylfadóttir et al., 2016). (B) Aerial photograph
taken one day after the landslide, showing the landslide headwall, and the light-colored red-brownish altered rocks partly covering black basaltic
lava-flows (image provided by Magnus T. Gudmundsson). (C) Pre-slide geological map of the study area detailing the onshore portion of the landslide
(lithological units adapted from maps of Graettinger, 2012; Graettinger et al., 2013, shoreline and caldera wall morphology adapted from post-slide VHR
satellite imagery). The approximate extent of the 2014 landslide is shown by the white outline.
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50 of which have occurred in historical times (Hartley et al., 2016).
Askja formed within the Dyngjufjöll, a 400 km2 large predominantly
pre-Holocene basaltic hyaloclastite massif of subglacial origin
(Sigvaldason, 1964), which can be divided into Vesturfjöll and
Nordurfjöll bounding the central volcano to the West and North,
and Thorvaldsfjall and Austurfjöll to the South and East (e.g.,
Hartley et al., 2016; Figure 1A).

On the 21st of July 2014, a large landslide occurred in the SE sector
of the inner Askja caldera wall (Figure 1B), causing massive material
redistributions and a tsunami that inundated the shores around the
entire caldera lake (Vogfjörd et al., 2015; Gylfadottir et al., 2016; Schöpa
et al., 2018). The source location of the landslide was found to be along a
known ring fault, which formed during caldera subsidence (Hartley and
Thordarson, 2012). Field surveys showed that the site of the landslide
was a hydrothermally very active region (Sigmundsson et al., 2014;
Vogfjörd et al., 2015; Schöpa et al., 2018). In addition, ground
displacements and newly formed tensile fractures were identified in
the source region of the landslide in photographs taken in the years
between 2007 and 2014 (Gylfadottir et al., 2016; Helgason et al., 2019).
The landslide has left a crescent-shaped 800–900 m long scar at around
1,400 m a.s.l in the caldera wall andmoved downhill on a spoon-shaped
sliding plane in the uppermost portion of the slope (Saemundson et al.,
2015; Eliasson and Saemundson, 2021). The initial rock-dominated
avalanche was un-roofing hydrothermally active sites in its path and
depositing a debris tongue, which extends ~1900 m into the lake and
was followed by intense mudflows (Gylfadottir et al., 2016; Eliasson and
Saemundsson, 2021). The volume of the landslide was estimated based
on multibeam echo sounding surveys of the bottom of Lake Askja,
together with measurements of the lake level, which rose at least 1 m
following the slide and photogrammetric digital elevation models
(DEMs) of the landslide area on land before and after the slide,
yielding a volume of 20 × 106 m3 (Gylfadóttir et al., 2017).

This study focuses on the inner eastern flank of Askja caldera
(Öskjuvatn caldera) andmore precisely on the landslide deposition area
(Figure 1B) and the classification of materials deposited and sourced in
this part of Askja volcano. Pre-slide geological maps of Askja
(Figure 1C) show that this area is largely covered by the talus of
historic volcanic deposits thatmainly consist of non-porphyritic basaltic
tuffs and lavas, a minor fraction of porphyritic and subaerial basaltic
tuffs and lavas, and by extensive sheets of the 1875 rhyolite pumice and
ash deposits (Sigurdsson and Sparks, 1981; Sparks et al., 1981;
MacDonald et al., 1987; Graettinger et al., 2013). Moreover, the area
contains the outcrops of two (2) rather small basaltic lava flows that
erupted in 1922–23 in the SE part of the caldera from vents north and
south of the landslide (Thorinasson and Sigvaldason, 1962; Sigvaldason,
1964; Thorinasson, 1968), and two (2) rhyolite lava bodies of unknown
age situated in the SE corner of the caldera (McGarvie, 2009;
Graettinger et al., 2019). The southern of the two (2) domes is
located in the alleged source region of the landslide, where it is
attached to and conformably overlain by the subglacial deposits of
the Austurfjöll massif (Graettinger, 2012) forming the part of the
caldera wall that later collapsed including its pumice cover.

3 Data and methods

In the following we will first describe the satellite, drone and
ground-based hyperspectral datasets that have been used in this

study (Section 3.1), and explain the processing methods applied on
the imagery datasets such as Structure fromMotion (SfM), PCA and
classification (Section 3.2). Further, we will explain how we validate
the classification results using a confusion matrix and compare to
hyperspectral data of selected rock samples in the field (Section 3.3).

3.1 Data

We use high-resolution visible range imagery, which we
acquired during a series of UAS surveys in August 2019 over the
Eastern Askja caldera for the purpose of mapping different
geomaterials by means of RGB-color distinction and compare
these to the results obtained from very high resolution (VHR)
satellite images. To better characterize the different rock types
and to validate our classification of different rock units from
drone imagery, these surveys were further complemented by
ground-based hyperspectral measurements on representative rock
samples in the field. In the following we describe 1) the VHR satellite
data and then in detail how we acquired 2) our imagery data from
the drone camera and 3) the narrow-band spectra collected by
means of the field spectroradiometer.

3.1.1 Satellite data
In order to provide details on the temporal development of the

landscape in the landslide deposition area and to compare the
different situations to that encountered during our high-
resolution drone survey, we used very high resolution (VHR)
satellite imagery acquired one year before and two months
respectively five years after the landslide, i.e., 24 days prior to our
drone survey. The satellite scene of July 2012 was obtained from
RapidEye-1, that of September 2014 from RapidEye-2 both images
are having 5 m resolution. We also consider an image from August
2019 from PlanetScope with 3 m resolution. In this study, we used
the RGB bands of the available Geotiff dataset. In the acquired VHR
satellite images, areas with steep slopes are shadowed, and we can
not observe any features in those areas therefore, drone imagery
acquired in the field can be helpful.

3.1.2 Drone data
For our drone surveys, we used a DJI Inspire1 quadcopter with a

gimbal-stabilized Zenmuse X3 Full HD camera system onboard. The
sensor size of the camera system is 1/2.3 inch, providing images with
4,000 × 3,000 pixels. We conducted 4 overflights on 28 August
2019 starting and landing in the NE corner of the caldera fromwhere
we managed to cover the eastern part of the caldera. Ambient
temperatures were below the freezing point in the morning hours
of that day, thus we warmed up the batteries by keeping them beside
thermos bottles of warm water wrapped in our scarfs, because the
drone was not working with batteries cooled down. To ensure that
we are covering the whole study area, we flewmultiple loops over the
eastern part of the caldera. During the flights it was difficult to keep
track as we had to deal with a moderate to strong breeze and gusty
winds with speeds of between 5 and 10 m/s blowing from SSE. In
these cold and windy conditions, the duration of flights was about
15 min long, and we had to be careful about the elevation differences
in the area in order to avoid crashing the drone. Skies were overcast
by a heterogeneous cover of white and gray rain clouds, thus light
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conditions varied slightly during the surveys. Despite these
unfavorable weather conditions, we managed to fly the drone up
to 500 m altitude and captured 259 usable images of the eastern
inner flank of the caldera. The velocity of the drone was in between
10 and 15 m/s during the flight and the camera was taking partly
overlapping photos in a nadir view in a 5 s interval.

3.1.3 Hyperspectral field data
While drone data allow distinguishing different features related

to materials, a direct compositional interpretation remains
challenging. To this aim, we use in-situ hyperspectral field
measurements, to identify fundamental differences of the rocks
and validate the classification results. Hyperspectral remote
sensing can effectively contribute in identifying minerals and
rocks with diagnostic spectral absorption bands, with increasing
use in mineral exploration (Clark et al., 2003). The aim of this is to
explore the relevance of hydrothermal alteration involved in the
landslide process.

Reflectance spectra of representative rock samples were acquired
in the field by a portable PSR+ 3,500 High-Resolution Field
Spectroradiometer (Spectral Evolution, Massachusetts,
United States) equipped with a contact probe with a field-of-view
of 2–3 cm and a built-in 5 W halogen light source. The spectral
range covers 350–2,500 nm with a spectral resolution (full width at
half maximum) of 2.8 nm at 700 nm, 8 nm at 1,500 nm and 6 nm at
2,100 nm. We used a contact probe due to rapidly changing weather
conditions. Each reflectance spectrum corresponds to the average of
30 individual colocated measurements to improve the signal-to-
noise ratio, and each sampled spectrum was corrected with the
reference spectrum of a standardized white reference panel with 20%
reflectance.

The sample reflectance spectra were collected from different
characteristic materials occurring at 15 different locations within the
study area (Figure 5B) in order to cover the variety of encountered
rock types. To identify corresponding materials, these sample
spectra were visually compared to reference reflectance spectra
obtained from laboratory measurements of well-characterized
minerals and geologic materials as, e.g., provided by the USGS
spectroscopy laboratory (SpecLab) in Denver.

3.2 Methods

We applied processing steps to prepare the VHR satellite images
and our high-resolution drone imagery for PCA analysis, and the
latter data additionally were used in order to obtain a classification

map distinguishing between different surface materials found in the
field (Figure 2).

3.2.1 Satellite image processing
Optical satellite imagery usually does not exploit the full

dynamic range of the sensors, thus these typically require some
color and contrast enhancement before objects in the image obtain
their natural appearance, which matches the color perception of the
human eye. The histograms of each color band of the VHR satellite
images were stretched linearly using the ENVI 5.4 image analysis
and processing software in order to enhance contrast without
changing color hues of the images prior to further analysis of the
images. Afterwards, we masked out the water bodies in order to
reduce the unnecessary information. Further, we applied PCA (see
action 3.2.4 for details) to visualize the landslide and hydrothermal
areas. As colors in satellite imagery tend to be more pale than seen
from ground, we increased color saturation of images in Figure 3 by
~15% to match the rock sample colors for clearer display of different
rock types.

3.2.2 Drone data processing
We first extracted the images from drone storage, and imported

all the high quality geotagged images into Agisoft Metashape
Professional Version 1.5.2. Then we manually deselected the
pictures that were blurred or out of focus and followed the
predefined workflow to generate an orthomosaic image of the
study area. For this purpose, we applied image alignment in
order to sort the images based on the coordinate of the drone
when it was acquiring the photo. We obtained a coarse point cloud
with 214,496 tie points. In the following step, we built a dense cloud
of 172,135,880 points with ultra-high quality. From this we
generated a 3D model mesh with 34,427,157 faces. Eventually, we
generated the Digital Elevation Model (DEM) and orthomosaic
based on the processing of dense cloud and mesh covering an
area of 3.2 km2 reaching a resolution of 16.6 cm/pix. For the
purpose of this study, we relied on the internal GPS of the
drone, which yields a location error on the order of several
meters horizontally and vertically, but which will not be relevant
for the purpose of our study.

3.2.3 Hyperspectral processing methods
The preprocessing of the reflectance data included a correction

of spurious spikes caused by instrumental noise, which were
sporadically occurring at wavelengths (~2018, ~2048 and
~2,185 nm) in the SWIR region and a smoothing of the spectra
for reduction of further noise, eminent particularly below 500 nm

FIGURE 2
Flowchart of image processing steps.
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and beyond 1800 nm. The data were de-noised with a
Savitzky–Golay filter applying second-order polynomial fits to a
window size of 77 data points. Due to the use of the contact probe,
errors related to stray light were largely eliminated, and the signal-
to-noise ratio was optimized. Furthermore, its use ensured that
illumination conditions stayed comparable throughout the field
survey.

3.2.4 Principal component analysis (PCA)
Principal component analysis is a common image pre-

processing method used 1) for the enhancement of color
differences of features in imagery and 2) to aid machine learning
based image classification approaches in the process of
discriminating between different classes of image pixels (Canty,
2019). We applied PCA to highlight the main features in the
orthomosaic and the VHR satellite images using the ENVI
5.4 image analysis and processing software. In the first step, we
masked out water bodies and all pixels outside the image area (as the
latter are white in ENVI and thus would be confused with snow) in
order to reduce the range of RGB data values for further processing,
both in the sense of data size and color spread. Similarly, the water
bodies were also masked out in the VHR satellite image scenes prior
to PCA. These masking out allows to focus the PCA analyses and
further classification steps on only the geological outcrops of the

caldera, and finally to improve the spectral discrimination within the
caldera.

For performing PCA, we used the standard Forward PCA
Rotation from ENVI’s Transform toolbox. Since we used the
three color bands from our RGB orthomosaic and the VHR
satellite scenes, for each we obtained three grayscale
representations of the principal components in the output, which
were then merged into an RGB composite image, where RGB
channels correspond to PC1-PC2-PC3.

3.2.5 Classification method
To retrieve more details on different features and materials, we

further applied classification methods implemented in ENVI to the
RGB composite of the three principal components. In order to
determine a suitable number of classes required to characterize
different rock units in our dataset, we applied several unsupervised
classification methods such as K-means and ISO-data in each of
which we tried different numbers of classes to check 1) which
algorithm performs best on our data, and 2) how many classes
are required to capture the materials to be mapped. Furthermore,
based on 1) the color patterns we found in the results of our principal
component analysis, 2) the classification results of our unsupervised
classifications and 3) the knowledge we had from the RGB color
space of our orthomosaic, we defined regions of interest (RoI)

FIGURE 3
Very High Resolution (VHR) satellite images of the study area. (A) RapidEye-1 before (16 July 2012) and (B) RapidEye-2 after the landslide
(6 September 2014) and (C) PlanetScope only 24 days prior to our drone survey (4 August 2019). Hydrothermally affected areas appear in rusty red colors.
(A) Locations of the 1920 basaltic lava flows and two rhyolitic lava domes in the SE sector of the caldera are indicated. Corresponding eruptive vents and
fissures—also those of older eruptions—are encircled in red, respectively indicated by red lines (locations adapted from Trippanera et al., 2018;
Graettinger et al., 2019). (B). (C) The deposition area of the 2014 landslide is outlined by a thick white dotted line (subaqueous landslide outlines adapted
from Gylfadóttir et al., 2016), and preferentially deposited materials are indicated. Hydrothermally altered materials of the unroofed rhyolite lava dome
were mostly deposited in the northern half of the landslide deposition area. The southern limit of deposition of yellow-brown hydrothermally affected
rocks in the rockslide is indicated by a thinwhite stippled separation line. Mostmaterial was deposited in the upper half of the slope forming a pronounced
morphological edge (black line) with respect to the downslope portion of the deposition area. (C) Locations of secondary downwash deposits formed
along the coast since 2014. Selected scenes were least affected by snow and cloud cover.
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covering the materials to be classified using the standard RoI
defining tool of ENVI. These snippets of the original raster
image were then used to train the maximum-likelihood classifier
provided in the corresponding toolbox of ENVI based on which it
performed the final classification shown in the results section. The
classifications are based on pixel intensity in the RGB composite of
the principal components determined by PCA. The maximum
likelihood classification performs the discriminant function for
each pixel as follows (Richards and Richards, 1999):

gi x( ) � 1np ωi( ) − 1
2
1n Σi| | − 1

2
x −mi( )ΤΣ−1

i x −mi( ) (1)

where, i is the class, x is n-dimensional data which n is the number of
spectral bands, p(ωi) is the probability of class ωi occurs, |Σi| is the
determinant of the covariance matrix for the data in class wi, Σi − 1
is the inverse and mi is the mean vector. The outputs are 1) a
classification raster in which each pixel of the original image is
attributed to one of the classes, along with 2) corresponding statistics
describing the number of elements in each class and the
performance and accuracy of the classification.

3.2.6 Class attribution and validation
In general, there are several methods in order to validate

classification results. Here, we first used a confusion matrix to
measure the accuracy and efficiency of our classification
algorithm based on the user-defined classes (RoI). Afterward, to
qualitatively assess our classification based on real world ground-
truth data, we used ground-based hyperspectral measurements.

A confusion matrix was used in order to compare our
classification raster image to the training data set, which
comprises the raster snippets of our ground truth RoI. In this
matrix we can find the numbers of correctly classified pixels in
each class at the diagonal axis from left to right, while the numbers of
misclassified pixels are being displayed off that axis, where omission
errors (false negatives) appear along the column, and commission
errors (false positives) appear along row of a class. By using these
statistics, we calculated the overall accuracy of our classification and
determined the kappa coefficient as a measure of the efficiency of
our classifier. The kappa coefficient (Richards and Richards, 1999)
was calculated as follows:

κ � NΣn
i�1mi,i − Σn

i�1 GiCi( )
N2 − Σn

i�1 GiCi( ) (2)

Where i is the class number, N is the total number of classified values
in comparison to the true ones, mi, i relates to the number of values
in class iwhich are also classified as class i (diagonal of the confusion
matrix), Ci is the total number of predicted pixels for class i andGi is
the total number of true values for class i.

4 Results

We provide a phenomenological explanation based on the three
satellite images, one before the landslide and two after (Section 4.1).
Then, we describe the derived PCA analysis of these images (Section
4.2). After this general comparison, we describe the result derived
from our drone imagery consisting of SfM, PCA and classification
(Section 4.3, Section 4.4, Section 4.5). We perform the validation

measures and also interpretation for the spectra of the hyperspectral
measurements for our classification (Section 4.6).

4.1 General phenomenology deduced from
VHR satellite imagery

VHR satellite scenes acquired over the Askja edifice reveal a talus-
covered inner Eastern caldera flank. Images acquired prior to and
following the 2014 landslide (Figures 3A–C) allow to reconstruct the
major changes in consequence of the event. The 2014 landslide
covered a large portion of the talus-covered flank by mostly light-
gray material. These are redeposited pyroclastic deposits of the
1875 eruption, which are particularly widespread in the NE section
of the caldera (compare areal extents in Figure 1C and Figures 3A–C).
Our field visit reveals that most of these pyroclastic deposits consist of
unusually vesicular and crystal-poor white rhyolitic pumices, which in
the field near the source appear colorized yellow to orange, while the
remainder consists of pale to dark-gray pumice, which further have
been distinguished into three different types according to their
composition: (1) dark steel-gray rhyolite pumice, (2) pale to dark-
gray brownish pumice consisting of varying amounts of rhyolite and
basalt glass, and (3) pale gray crystal-rich basaltic andesite pumice,
mainly found as enclaves within the white pumice. Since the
pyroclastic deposits are commonly heterogeneously colored and
individual pumice clasts are max. 1 m large, the colors of these
deposits as they are resolved by satellite merge into different
shades of bright-gray and brown-gray, however.

The two small 1920s basaltic lava flows north and south of the
landslide (see outlines in Figure 3A) appear in dark-gray to black
colors in the VHR satellite image. This Virtually resembles the talus
of a third 1920s basaltic lava flow that is situated N of the study area,
which covers much of the lower caldera terraces at the N margin of
the study area. In addition, the RGB data resolve the rhyolite lava
body of unknown age situated in the SE corner of the caldera
(outlined in Figure 3A). The body located right within the source
region of the landslide is dominated by yellow-brownish rhyolites
showing signs of intense hydrothermal alteration (Figure 3A). This
body is attached to and conformably overlain by the subglacial
deposits (Graettinger, 2012; Figure 1C) forming the part of the
caldera wall that later collapsed, which mainly consisted of similarly
yellow-brownish colored hydrothermally affected hyaloclastite and
pillow lavas of the Austurfjöll massif. A pinkish-white spot on the
northern slopes of that dome indicates the location of a
hydrothermal replacement deposit (clays and sulfates) is visible
in satellite images that formed at a likely still active fumarolic
vent. Notably, we find several eruptive vents and active
hydrothermal vent sites within and surrounding the landslide
area (Figure 3A), and a large cluster of fumarolic vent sites,
which is appearing in the satellite image as reddish-brown spots
with bleached margins. The fumarole sites are located on the NE
slopes of the caldera wall (Figure 3A). The chemically altered and
reworked material of alluvial fans found in morphological
depressions and drainage channels, e.g., south of the northern
rhyolite lava body, and the talus deposited along the steep cliff in
the NE part of the caldera is characterized by similar red-brown to
yellowish-brown hues, implying active or inactive hydrothermally
active sites.
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The 2014 landslide mobilized large parts of the rhyolitic lava
body in the caldera wall together with the overlying basaltic
hyaloclastites and pillow lavas. The landslide has emplaced blocks
of up to 80 m in diameter on the slopes of the unroofed dome, split
up into several different streams further downslope, and near the
lakeshore additionally partly buried two of the 1920s basaltic lava
flows, Kvíslahraun to the North and Suðurbotnahraun to the South,
before it finally reached the Öskjuvatn lake (Figure 3B). We measure
the onshore portion of the landslide deposition that covers an area of
~0.8 km2. Previous to the landslide event wemeasure that 27% of the
onshore depositional area were covered by bluish black basaltic lava
flows and their talus, 33% by yellow-brown altered rocks, most of
which originate from the rhyolite lava body, and 40% by dark-brown
to bluish black and greenish gray undifferentiated mostly basaltic
talus material of the Austurfjöll (compare Figures 3A, B, features
compiled in Supplementary Figure S3).

The central material stream of the slide was emplaced on the rather
flat surface of the Suðurbotnahraun lava flow, where it built up an
~250 m wide horn-shaped coastal block. Which initially extended
~100 m into the lake, at the same time eroding the coastline by
some 10 m forming embayments at its northern and southern
margins (indicated by white arrows Figure 3B). The Northern half
of the subaerial landslide deposition area is dominated by a bilobate
central blocky stream of yellow-brown hydrothermally altered rhyolite
and hyaloclastite material, from which ~50 m wide secondary branches
of finer yellow-brown debrismaterial split off, spreading towardsNorth.
In the southern half, in contrast, we find less altered and less blocky
materials (light-gray rhyolitic lava, and greenish-gray hyaloclastite and
pillow lavas), mostly in the upper half of the slope, while at the coast
merely little debris was deposited (also compare with Eliasson and
Saemundson, 2021) and thus the black basaltic lavas of the
Suðurbotnahraun flow shine through the debris cover in large parts
of that area. The material stream in the center of the landslide area,
which formed above thementioned block of the coastline, seems to have
been the preferential path of unaltered light-gray rhyolitic lava, which
was exhumed at the southern margin of the hydrothermally affected
rhyolite dome.

Comparing coastlines in the satellite images of 2012 and
2014 shows that the shoreline in our study area significantly
retreated as a consequence of the sliding event and tsunami
resulting in loss of 32,800 m2 land along this ~3.5 km long
portion of the coast. Satellite images acquired in the months
following the landslide further show a pronounced turbidity and
turquoise colorization of the usually dark-blue and clear water in the
caldera lake, which lasted for several months following the landslide
event.

In August 2019, the month of our field campaign, the
waterbody had regained its typical dark-blue color and was
completely clear, enabling us to see the submerged parts of the
steep coastal cliff (Figure 3C). Furthermore, the shoreline
advanced again following the landslide event in 2014, adding an
area of 29,074 m2 between 2014 and 2019, i.e., almost as much land
surface was regained as was previously lost in the study area.
Particularly within the landslide area significant amounts of
additional debris were deposited along the coast leading to
infilling of previously formed embayments and further
protrusion of the coastline up to ~10 m, thus hinting at intense
erosion of the landslide surface and formation of downwash.

4.2 PCA of satellite images

Features can be highlighted in aerial or satellite imagery by
applying a PCA to the bands of interest. Here, we first will take a look
at the results of a PCA performed on the RGB bands of the three
natural color VHR satellite images displayed in Figure 2. In the RGB
composite (Figure 4) we can observe different features in false-color
that can be associated with fumarolic areas, snow (in green), and a
variety of different volcanic rocks. It has to be noted that the false-
colors of some of these PCA features vary slightly in between the
scenes, partly due to the redeposition or alteration of materials and
partly due to the different light conditions that were encountered
during the acquisition of the three scenes. The yellow-brownish to
red-brownish colors associated with altered materials of the
landslide and debris fans in the natural color satellite image,
however, are commonly highlighted by PCA in false-color
magenta to purple colors and light-gray to whitish materials
commonly appear in a false-color dark blue. The whitish
hydrothermal replacement deposit in the fumarolic area in the
northern part of the study area appears in PCA in blue hues
surrounded by a mixture of light bluish and pinkish colors.
Light-green colored areas are associated with snow deposits
except for in the scene of September 2014, in which additionally
a stream of very light-gray rhyolite extending from the central part
of the landslide to the lake has this PCA color. In the scene of August
2019, the same rhyolite stream appears in rather dark blue colors,
despite having the same light-gray color in the satellite image, and
the same is true for the dirty-gray snow cover, e.g., in the landslide
area. Furthermore, shadowed areas are similarly colored in orange
hues as the basaltic lava flows thus posing a potential problem for
distinction by color. Especially the Southern limit of the landslide
area and its source region in satellite images commonly is obscured
by a large shadowed area extending along the southern caldera wall
which is particularly pronounced in the scenes of 2014 and 2019
(Figures 4B, C).

We note that already in July 2012 (Figure 4A), prior to the
occurrence of the landslide the upper slope of the area is covered
with hydrothermally affected materials appearing in purple hues
side by side with less altered volcanic materials appearing in orange
to orange-green. Furthermore, we can note the redistribution and
areal increase of such purple materials that are partly mingled with
less altered surroundingmaterials in the two satellite scenes acquired
after the landslide (Figures 4B, C). Moreover, in the scene of 2019,
we observe an increase in intensity of such purple features also along
the steep slopes despite there is hardly any morphologic change
visible in the northern part of the study area.

Figure 4 shows that the spatial distribution of different surface
materials has drastically changed at the location of the landslide
before and after the event. Outside the landslide, a similar spatial
distribution of materials is observed in the 3 images: light green
areas that are interpreted to be snow covers, and purple areas that
are spatially associated with altered materials. On the other hand,
in the Southern part of the images, the distribution of materials
has changed before and after the event. Outcrops of altered
materials that were not exposed before the event became
exposed after the event in the landslide areas. The different
PCA colors, therefore represent the spatial distribution of
materials that are similar.
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4.3 Drone data structure-from-motion
results

In order to obtain more detailed information on the study site,
we analyzed the high-resolution imagery recorded during the UAS
overflights of 28 August 2019 (Figure 5A). The orthophoto mosaic
and the DEM that we obtained from our drone imagery (Figures 5A,
B) provide highly detailed information on the spatial distribution of
different types of materials (rocks, snow, vegetation, waterbody) at
the time of our survey, and of different morphological structures
(cliffs, drainage gullies, and tectonic structures), which occur in the
area. We resolve some of the different materials small-scale surface
structures, such as flow-textures of lava and debris flows, or fracture
networks and layering in bedrock and sedimentary deposits.
Moreover, the data are almost free of large deeply shadowed
areas as they appear in the VHR satellite images, and only some
minor patchy and blurry shadows from clouds are visible due to the
heterogeneously overcast skies we encountered during their
acquisition. Some general large scale features can be observed,
such as: the deep-blue water body and current shoreline of
Öskjuvatn, a widespread light-gray pumice which covers large
parts of the Northern portion of the eastern inner caldera flank,
several blackish basaltic lava flows from previous eruptions and the
entire subaerial portion of the landslide area with its central blocky
rockslide and a number of secondary debris flows. Furthermore, we
can see details such as the pinkish-to-whitish hydrothermal deposits
and reddish-brown coated (probably Fe-oxide) rocks of two major
actively degassing fumarole areas that are located on the inner slopes
of the NE and SE caldera rim, the latter of which is located near the
landslides source region (see Figure 5). Small batches of minor

vegetation such as moss can be observed growing on the clay-rich
substrates close to the hydrothermally active areas. Note, that the
checkerboard pattern of interchangeably dark and bright blue on the
water surface of Öskjuvatn is the result of an image (compression)
artifact.

A slope map generated from the DEM of the surveyed area
(Figure 5B) illustrates the flat surfaces of lava flows and of pumice
filled depressions (green colors) and several oversteepened slopes
(orange-red colors) along the shoreline of the lake and
morphological edges demarking the Southeastern caldera rim and
drainage channels within the caldera. A detailed view into the
landslide area reveals a chaotic pattern of smooth plains, e.g., in
the depletion zone and the coastal areas of the landslide, between
rugged surfaces of debris flows and steep slopes with irregularly
distributed and differently sized blocky materials. Particularly large
blocks, which are up to 100 m in diameter, have been emplaced in
the downslope portion of the collapsed rhyolite dome, which is
situated in the zone of accumulation of the landslide.

4.4 PCA of drone data

We applied the PCA in order to reduce the dimensionality of the
data and highlight the main spectral features that can be extracted
from the image. Since the vibrant blue water body was masked out
previous to analysis, our PCA focused on the reduced color palette of
the less colorful volcanic materials in the subaerial portion of the
orthomosaic.

Having a look at the grayscale image reveals that the values of
PC1-PC3 are largely uncorrelated, and that different landscape

FIGURE 4
False-color RGB composite of the PCA results obtained from VHR satellite image sequence of the study area. (A) RapidEye-1 before the landslide
(16 July 2012), (B) RapidEye-2 after the landslide (6 September 2014), and (C) PlanetScope just 24 days prior to our drone survey (4th of August 2019).
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features preferentially have been captured by one of the different
components. PC1 preferentially captured the bright features of the
orthomosaic image such as snowfields and hydrothermal mineral
deposits, which in PC1 occur as sharply outlined dark features
(Figure 6A). PC2 is dominated by intense dark features, which
correspond to talus deposits and the redeposited material in the
landslide area (Figure 6B). Furthermore, the hydrothermally active
areas and eruptive vents appear as dark-gray spots in PC2, while
basalts and snow patches are bright. PC3 generally looks rather
noisy, but closer visual inspection reveals that the brightest spots as
well demark the locations of hydrothermally active venting areas
and rock surfaces with intense iron oxide coatings (Figure 6C).

The RGB composite of our PCA output (Figure 7A) shows a variety
of color patches that correspond to different types of materials.
Especially the mixed material of the landslide area, and the loose
material of other areas that were affected by mass movements such
as the talus accumulation along the cliff and the steep inner caldera wall
in the NE part of the caldera, is strongly outlined in dark red to purple
colors.Moreover, some color differences between pumice-covered areas
(olive) in morphological lows, snowfields (bright green), and several
lava flows (bright yellowish-green) which are distributed along the
eastern lake shoreline are clearly visible. Particularly, the snow bodies
seem to be captured perfectly. Furthermore, the two main fumarole
areas in the NE and the SE of the caldera appear in blue-violet color and
are easily detected with a simple PCA analysis. However, the landslide
outline and full extent of the redepositedmaterials particularly along the
southern landslide margin are not fully and precisely detected and still,
there might be some other features to extract which so far after applying
PCA, still are not well distinguished. Therefore, we conducted
classification for further analysis of the PCA results in order to

better visualize different features. Next to the PCA analysis, we see
the classification output (Figure 7B) for detecting different materials in
more detail, which we will explain and analyze in the next section.

4.5 Classification results

We applied classification methods to the RGB composite of the
PCA output obtained from our orthomosaic. We defined 7 general
classes to be classified by our maximum-likelihood classifier, 6 of which
are related to distinguished geological materials and structures. Defined
classes and their color-coded visualizations are illustrated in Figure 7B,
and they are as follows: 1. Whitish materials like snow (White class), 2.
Yellow-brown Fe-oxide coated materials as found in the
hydrothermally altered rhyolite dome, yellow-orange pumice and
materials with a characteristic ochre stain including loose reworked
debris depositions along steep slopes and materials covering the
landslide area, but also minor light-green vegetation which
preferentially occurs in these reworked areas (Red class), 3. Black to
dark-gray mafic materials like, e.g., the basaltic lava flows, dark brown
basaltic pumice (Dark Green class), 4. Light-gray to whitish materials as
found in hydrothermally affected areas (bleached volcanic rocks, clay-
and sulfate-rich hydrothermal replacement deposits and solfataric
mineral coatings) or dirty snow with slight irregularities in color
(Light Green class), 5. Brownish dark-gray materials, basalts, and
rhyolites with minor Fe-oxide coating (Yellow class), 6. Red-brown
materials, mostly oxidized basaltic lavas with reddish Fe-oxide coatings
as found at volcanic vents, and in oxidation zones of hydrothermal
vents (Light Blue class), 7. Light-gray to medium-gray materials, mostly
white and pale-gray pumice, but also very dirty snow (Dark Blue class).

FIGURE 5
(A)Drone derived orthomosaic showing the rock sample locations indicated by white stars and (B) slopemap of eastern Askja caldera. The landslide
outline is illustrated as a red polygon. The flight path is sketched in black lines in (B).
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At the landslide area (Figure 7B) data reveal the transport
paths of hydrothermally altered and Fe-oxide coated materials
from the landslide source area. Several types of rock and material
deposits can be seen in different areas all over the entire flank and
specifically in steep areas and mainly in the landslide zone below
the cliffs. The red class shows the spatial extent of Fe-oxide
coated materials in debris fans and the landslide, at the northern
margin of the landslide area, representing the landslide outline.
The southern half of the landslide area is dominated by yellow
class materials corresponding to brownish dark-gray materials,
mainly basalts with minor alleged Fe-oxide coatings. The yellow
class further is dissected by streaks of the light-blue class, which
are elongated in sliding direction, and correspond to red-brown
oxidized materials as found in surrounding eruptive fissures and
vents.

We counted the number of pixels in each class and
determined the approximate areas that each material covers in
a) the entire subaerial part of the study area and b) the onshore
portion of the landslide area (Table 1). Both areas are dominated
by materials corresponding to classes 5 (undifferentiated brown
gray talus) and 2 (hydrothermally affected ochre to red-brown
talus), which in the entire area cover 37 and respectively 23%, and
almost equal portions (each ~36%) of unaltered and altered talus
are found in the area of landslide deposition. The study area
further contains significant portions of class 3 and 7 materials
(17% and 13%) corresponding to black to dark-gray basaltic lava
flows and medium gray rhyolite pumice, while these materials
only constitute a minor fraction (4% and 6%) of the
landslide area.

4.6 Validation of classes

4.6.1 Confusion matrix
In order to determine the quality of our classification results, we

prepared a confusion matrix (Table 2) displaying the number of RoI
pixels that our maximum-likelihood classifier correctly assigned to
the classes that were predefined by the RoIs we used for training of
the classifier. These values can be found in the orthogonal axis of the
confusion matrix marked in color, while misclassified pixels are
shown off-axis. The sum of correctly classified pixels is 991,965 of a
total number of 1,051,109 pixels. This corresponds to an overall
accuracy of 991,965/1,051,109 pixels, i.e., approximately 94.38%.
Further, we calculated a kappa value of approximately 0.92.
Misclassifications were in the range between 2% and 3% of the
pixels for most classes (classes 2,3,4,7), while no misclassification
occurred in class 1, and slightly more misclassification was observed
for classes 5 and 6 in which 7% and respectively 10% of the training
data pixels set were not correctly assigned to their corresponding
class. The amount of misclassified pixels in the latter two classes
reflects the heterogeneity of color values found in the RoIs defining
these classes.

4.6.2 Comparison of classes to hyperspectral
information

In order to better characterize the material properties of our
classes, we compared the color properties of our material classes as
seen by drone with the reflectance spectra obtained from our
ground-based hyperspectral measurements, summarized in
Figure 8. The comparison revealed that the materials found in

FIGURE 6
Grayscale images of the three principal components obtained from the 2019 drone orthomosaic (from left to right: PC1, PC2, and PC3). (A) Dark-
colored areas in PC1 correspond to snow-cover and bright hydrothermal mineral deposits. (B) Landslide area and the steep debris-covered slopes in the
Northeastern part of the caldera are accentuated by dark tones in PC2. (C) Note the bright spots in PC3, which mark the locations of the hydrothermally
active areas.
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different classes show similarly different characteristics in
hyperspectral signatures, which means that characteristic colors
of each class are reflected in the spectral fingerprints of
predominant minerals in corresponding sampled rocks.

Our 1920 basaltic lava samples found at locations which were
successfully classified into class numbers 3+6 are visually characterized
by a low modal phenocryst abundance (approx. <5% plagioclase,
clinopyroxene, and sparse olivine) in a slightly glassy microcrystalline
groundmass (Appendix Table 1). The spectra of black basaltic materials
are fairly similar in shape and reflectance values (Figure 8A). The
reflectance values of the glassy black basalt lava (class3, Figure 8A2)
and the black-gray pumiceous basalt (class3, Figure 8A3) range between
0.2 and 0.3 and are lower in comparison to that of the Fe-oxide coated
basalt lava (class6, Figure 8A1) whose reflectance reaches values of 0.6 in
the iron band. Spectra are rather featureless with exception of weak
spectral features in the iron-band around 500, 530, 630 and 900 nm in the
VNIR region. In the SWIR region the spectra hardly show any absorption
features, besides of that of the pumiceous basalt. Here, additional weak
absorption troughs are shown around 1,400 nm and 1900 nm.

Samples of the 1875 rhyolite and basaltic pumice from locations
classified as 2,4,5, and 7 (samples B1-B5) exhibit a broad range of
alteration degrees ranging from clayiferous to highly vesicular
vitreous pumice and as the 1920 basalts merely contain minor
amounts of phenocrysts (approx. <5% plagioclase, clinopyroxene,

orthopyroxene, and magnetite). The spectra of white-gray rhyolitic
and brown basaltic pumices show similar spectral shapes and
absorption features, and mainly differ in reflectance values
(Figure 8B). Reflectance is strongest on the most altered clay-rich
and Fe-oxide coated pumice clasts (Figures 8B1, B2), while less
altered glass-rich pumices are characterized by low reflectance
(Figure 8B 4, 5). The spectra show absorption features around
500, 650, 900 nm in the VNIR region, which are more
pronounced in Fe-oxide-rich samples. Further, the spectra of the
pumices exhibit strong absorption features around 1,400 and
1900 nm, which as above are related to hydrated glass and water
on the rock surface.

The spectra of various colored altered landslide materials display
different shapes and spectral absorption features, having in common
absorption features related to OH-groups and water around
1,400 and 1900 nm (Figure 8C). The greenish-gray hyaloclastite
(Figure 8C2) shows small absorption features around 400, 500, 650,
900, 1,100 nm, weak features around 2,350 and even weaker features
at 2,450 nm. The spectrum of the brecciated hyaloclastite
(Figure 8C3) indicates features around 400, 500 and 1,000 nm.
The altered rhyolite dike sample (Figure 8C1) is characterized by
a broad absorption feature around 650 nm.

The spectra of hydrothermally altered material are shown in
Figure 8D and indicate all the same spectral shape and absorption

FIGURE 7
Results of the drone data analysis. (A) RGB composite of PC1 to PC3 and (B) classification results displaying the areal extents of classes 1 to 7.
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features with changing reflectance values between 0.2 and 1.5
(Figure 8D, D1-2, D5-6). The brown-gray colored pumice
(Figure 8D, D3-4) differ from the other spectra in spectral shape
but show almost the same spectral features. In the VNIR region,
there are absorption features around 500, 650, 900 or 1,000 nm.
Absorption features around 1,200, 1,400, 1800, 1900 and 2,200 nm.

Altered materials generally exhibit higher reflectance than the
above-mentioned less altered basaltic lavas and pumices, both in the
visible and infrared ranges of the spectra. Similarly, different
patterns are visible in the infrared range of the spectrum as well.
In the landslide and hydrothermally affected areas we observe
materials, which our classification identified as red or Fe-coated
class. This suggests that the Fe-coated class consists of a diverse
variety of rocks that can be found in the surroundings of the
landslide area and also on the south-east of the caldera wall
where the material originated from. An image of the wall and an
RGB composite of its principal components can be found in the
appendix.

5 Discussion

Steep slopes and altered source materials are potential sources of
volcano landslides (Heap et al., 2021). An early detection of such
areas utilizing a combination of remote sensing methods and

machine learning can be helpful in avoiding casualties or
damages. We used UAS to map the study area and took rock
samples and measured in-situ spectral signatures. Regarding the
data from the drone, we applied the structure from motion
technique to have an overview of the area and with that
generated a high-resolution DEM. As first and second derivatives
of the DEM, we calculated slope and hillshade maps to identify steep
slopes. Thereafter, we applied PCA and classification on the
orthomosaic to identify different materials and in general to
detect altered and less-altered materials. Furthermore, for
validating our results and to have a better understanding of the
material combinations in that area, we used the ground-based
sampling and rock surface spectral analysis.

5.1 Benefits of joint drone orthophoto
classification and hyperspectral sampling

We closely compared the classes identified in our drone
classification analyses to hyperspectral information (compare
Figures 5, 7, 8). The rock samples were visually identified, and
no chemical analysis was carried out. However, Van Der Meer
(2004) describes that the position, shape, depth and width of the
absorption features can be directly associated with the chemistry and
structure of the rock sample. Thus, the hyperspectral information

TABLE 1 Areal Statistics of Classification Results for a) the entire study area and b) the onshore portion of the landslide area.

Class number, material color Map color Pixel count Percent (%) Covered area (km2)

a) Entire study area

Class#1 whitish 4,427,721 3.78 ∿ 0.12

Class#2 ochre to red-brown 26,864,220 22.93 ∿ 0.74

Class#3 black to dark gray 19,855,364 16.95 ∿ 0.55

Class#4 light-gray to whitish 3,810,444 3.25 ∿ 0.11

Class#5 brown gray 43,134,818 36.82 ∿ 1.19

Class#6 red-brown 3,771,853 3.22 ∿ 0.10

Class#7 medium gray 15,293,004 13.05 ∿ 0.42

Sum 117,157,424 100 ∿ 3.23

b) Landslide area

Class#1 whitish 736,989 2.52 ∿ 0.02

Class#2 ochre to red-brown 10,433,714 35.67 ∿ 0.29

Class#3 black to dark gray 1,166,830 3.99 ∿ 0.03

Class#4 light-gray to whitish 1,702,679 5.82 ∿ 0.05

Class#5 brown gray 10,591,587 36.21 ∿ 0.29

Class#6 red-brown 1,188,431 4.06 ∿ 0.03

Class#7 medium gray 1,844,184 6.31 ∿ 0.05

unclassified 1,584,458 5.42 ∿ 0.04

Sum 29,248,872 100 ∿ 0.81
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can provide selective, fast detailed information of specific minerals
in rock samples without time-consuming chemical analysis.

We found that 6 of the 7 classes (class1=snow not considered
here) were well sampled by hyperspectral measurements. The closer
comparison shows that the information from classification analysis
and from hyperspectral measurements are complimentary, rather
than simply correlated.

The Askja landslide mass is best described by the classes 2 and 4,
which we could sample with our hyperspectral device as well. The
class 2 characterizes yellow-brown Fe-oxide coated materials in the
hydrothermally altered rhyolite dome and yellow-orange pumice.
The presence of iron oxide is also shown in the corresponding
spectra for the class 2. Here, absorption features in the VNIR region
are related to iron oxide due to electronic transition, bound on
hydroxyl groups or other metal cations (Hunt, 1977; Gholizadeh
et al., 2015). The absorption features around 1,400 nm are
characteristic for the overtone of OH-groups in the hydroxyl-
group or in clay minerals. In combination with the 1900 nm
feature, the presence of water molecules is implied, which is
likely due to wet sample surfaces (Hunt, 1977). The weak
features around 2,200 nm are just shown in the rhyolitic pumice
(D2-D3) and Fe-coated obsidian (D4) and are combination tones of
the OH-group and the Al-OH bending mode found in clay minerals
or mica (Hunt, 1977). In this view, the classification may indeed be a
first order spatial characterization of hydrothermally altered rocks,
which is relevant for slope stability measurements.

A closer look reveals, however, also important differences in the
two data sets. Here the classification results show rather uniform
classes 3 and 6. Class 3 is characterized by basaltic lava with a glassy
crust or black pumice from basaltic lava flow or scoria. The spectra
are rather featureless as is typical of volcanic glass (e.g., Henderson
et al., 2021; Rader et al., 2022) with exception of weak spectral
features around 500, 530, 630 and 900 nm in the VNIR region,
which are related to iron oxides. The spectra in the SWIR region
hardly show any absorption features, besides that of the pumiceous
basalt. Here, additional weak absorption peaks are shown around
1,400 nm and 1900 nm due to the presence of hydrated silicate glass
and water on the sampled surface. The class 6 is characterized by
oxidized basaltic lava from flow or pillow breccia with reddish oxides
coating. The reddish oxides coating is visible in the VNIR region
(around 500 and 900 nm), which is related to the absorption features
of iron oxides.

The class 5 also describes the landslide area and is characterized
by brecciated hyaloclastite with healed Calcite-filled fractures and
hyaloclastite or tuff with greenish altered minerals. The class
5 summarizes four samples with nearly similar spectral shapes
(Figures 8B2, B3, C3), except for sample C2 (Figure 8C2). All
spectra show absorption features around 440, 700 and
900–1,000 nm, which indicate a presence of ferrous iron
(~900–1,000 nm) and of ferric iron (~440 nm). The samples B2,
B3 and C3 also show absorption features around 700 nm, related to
ferrous ions (Hunt, 1977). The features around 1,400 and 1900 nm
in the SWIR region are water-related absorption features, whereby
the absorption feature at 1,400 nm is less distinct in sample C2 and
C3. Sample B3 and C2 also indicate absorptions features around
2,200 nm and 2,350 nm, which normally appear in pairs with the
1,400 nm band, due to combination of the hydroxyl-group and the
presence of aluminum (2,200 nm) and magnesium (2,350 nm)TA
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FIGURE 8
Spectra of rock samples acquired in the field (left) and corresponding photos (right) attributed to the 6 different rock classes. Important absorption
features are indicated by light-gray vertical lines. (A) Spectra of black basalticmaterials. (B) Spectra of white and gray rhyolitic and brown basaltic pumices.
(C) Spectra of differently colored altered landslide materials and (D) spectra of hydrothermally altered material (mostly pumices in different alteration
stages). (A1) Fe-oxide coated basaltic lava, with mm-sized Feldspar phenocrysts. (A2) Back glassy basaltic lava, with mm-sized Feldspar phenocrysts
and overgrown with moss. (A3) Black-gray pumiceous basalt. (B1) Clayiferous brown-gray pumice substrate with Fe-oxide impregnations and native
sulfur coatings. (B2) Clayiferous steel-gray pumice with partial Fe-oxide impregnation and native sulfur coatings (B3) Clayiferous “earthy” brown-gray
pumice. (B4) Vesicular pale-gray pumice, brown-gray pumice, and white pumice. (B5) Vesicular brittle clasts of orange stained (hydrothermally affected)
white pumice. (C1) Yellow-brownish piece of hydrothermally altered rhyolite with Quartz-filled fractures, possibly from the dome in the upper slope of
the landslide. (C2) Greenish-gray hyaloclastite from the Austurffjöll. (C3) Greenish-brown brecciated basaltic hyaloclastite or pillow lava from the
Austurffjöll. (D1)Clayiferous bleached “white tuff”with Fe-oxide impregnation, possibly a piece fromone of the hydrothermal replacement deposits in the
NE caldera wall. (D2) Orange-yellow clay-rich white pumice. (D3+D4). Yellow-brown to red-brown colored clayiferous gray pumice. (D5) Dark-brown
Fe-oxide coated gray pumice. (D6) Fe-oxide coated pale brown obsidian lava.
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(Hunt, 1977). Here, both samples may belong to hydroxyl-bearing
minerals, such as hydrothermal clays or sulfates (Van derMeer et al.,
2012). Comparing the absorption features of sample B2 and B3 to
the results of Van der Meer et al. (2012), shows that they are related
to a volcanogenic massive sulfide formation.

The class 7 is described by the samples B4 and B5. The samples
are characterized by rhyolitic pumice and to some extent with mafic
enclaves (B4). Here, the reflectance of both samples is very low, even
the sample color is bright. The low reflectance values are caused by
the wet samples surface or due to the stored water in the pores.

5.2 Data comparison and limitation

5.2.1 Comparison of optical and spectral data
We presented different satellite and drone data acquired during

different periods and with different resolutions and information
content. Ideally more frequent acquisitions may have improved our
work, but as Askja is located in an area difficult to access in rarely
good weather conditions, a more systematic acquisition plan seems
challenging. The freely available Multi-spectral satellite imageries
such as Landsat-8 and Sentinel-2 and Hyper-spectral ones such as
Hyperion and soon to be available EnMAP provide high resolution
spectral information. But they provide limited information on the
highland and mountain areas due to cloud or snow. And in general
do not provide detailed spatial information on some areas.
Therefore, it is necessary to get access to VHR datasets. And, in
order to compare these different datasets and see which features are
visible there, we have realized a fieldwork in order to acquire drone
imagery and ground-based information. Besides our drone imagery,
we ordered VHR satellite images to compare and assess our results
from fieldwork. From satellite data analysis such as the performed
PCA, we can only distinguish some general features and from the
field data such as drone and ground-based spectral analysis we can
even realize different types of material and classify higher risk areas
based on that information together with the high-resolution DEM.
The information content is hence dependent on the resolution of
imaging datasets.

For identification of different rock types and alteration grades,
ideally a spatially dense hyperspectral dataset is acquired. At Askja,
however, similarly as at most volcanoes, hyperspectral data are
difficult and expensive to acquire from airborne platforms, so
that the approach we presented may be a good alternative,
combining low-cost photogrammetry with point-wise
hyperspectral imaging and classification. We note that by this
method, local details and heterogeneities may be missed, which
in our case may be especially true for the Southern regions of the
landslide area. This is because the area was not possible to access due
to frequent rock falls and loose ground, putting the researcher
at risk.

The other challenging task is the georeferencing of these
datasets. There are several ways of georeferencing the drone data
such as (i) using actual ground control points (GCPs), (ii) using the
orientation of the camera during acquisition together with the GPS
location of the drone, or (iii) direct georeferencing using the drone-
interior GPS, possibly refined by an RTK/PPK approach (Aber et al.,
2010). We used the drone-interior GPS location, which is in the
metadata of each image to align and reference images. Thereby, we

generated a DEM and an orthophoto based on the automatic
positioning of the images from drone GPS only, with absolute
positioning errors on the order of several meters. Since we used
the same coordinate system for comparison of all datasets and most
of our analysis is based on drone data, it does not have any effect on
our results.

The color and brightness of materials in air- or spaceborne
imagery can change due to different angles of sunlight and
inclination of the sensor, therefore additional filters should be
applied on the image if this effect is too large. Also, precipitation
can cause such changes in light reflection both in RGB images
obtained from the drone or satellite and in the spectral signatures of
the ground-based hyperspectral data. Therefore, it always makes
sense to apply smoothing and histogram equalization methods in
order to reduce or eliminate these sorts of effects.

The number of classes used for the classification can be an
arbitrary choice, depending on the number of materials one wants to
distinguish. The number of different materials depicted in geological
maps may serve as a first approximation of resolvable features,
which can be refined by testing different classification methods with
different numbers of classes until a consistency between features in
the classification results and original image has been reached.
Moreover, it is commonly recommended to first perform
different dimensionality reduction algorithms before applying
unsupervised classifications as it improves the distinction of
features.

Regarding ground-based hyperspectral sampling it has to be
considered that it commonly is not possible to take too many
samples or measure them since some areas within the caldera
wall are not easy to access. Also, it is not possible to do sampling
often since Askja is a remote area specifically during autumn or
winter, difficult to reach.

5.2.2 Comparison of classification results to
geologic units

Comparison of our classification (Figure 7B) with previously
published geological maps, such as that of Graettinger et al. (2013);
Figure 1C, shows that our maximum likelihood classifier was able to
detect and distinguish classes 2 and 5 as hydrothermally altered and
less altered talus. The talus consists mainly of the basaltic tuffs and
pumice deposits that form the caldera wall, and classes 6 and 3 as
reddish oxidized and less oxidized basaltic lava and mafic pumice,
respectively. The contours of the talus-covered areas and lava flows
more or less correlate with those shown in the aforementioned
geological maps. In particular, the outlines of the northern basaltic
lava flow at Kvíslahraun (class 3) and the extent of the oxidation
zone around the corresponding eruptive vent (class 6) are well
reproduced by our classification and agree well with the outlines of
the flow as shown Graettinger et al. (2013). However, the lava flows
in our classification generally appear somewhat larger and are not as
sharply defined as in Graettinger’s map because they are often
surrounded by a variably wide halo of their own talus, which our
classification does not distinguish from the bedrock parts of the
flows. The southern lava flow in Sudurbotnahraun is also almost
completely covered by a mixture of Class 5 unaltered talus from the
2014 landslide and Class 6 oxidized basaltic lava (eruptive vent
material). In addition, the altered rhyolite dome in the landslide area
is located in the large northern part of the landslide, which has been
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classified as Class 2 hydrothermally altered material, but whose pre-
collapse contours can be reconstructed from its characteristic
yellow-brown color on pre-landslide satellite imagery, as shown
in Figures 3, 4. The rhyolite dome north of the Kvíslahraun basaltic
lava flow, on the other hand, which according to Graettinger et al.
(2013) consists of more fresh light-gray material, can only be
inferred from its dome-like morphology and the distribution of
loose material on top of the structure, both in the satellite imagery
and in our orthomosaic and classification, respectively. The pumice
cover is much more differentiated in our classification than in
Graettinger’s map. Our classification distinguishes between light
gray rhyolite pumice in class 7, brownish-gray basaltic pumice in
class 3 and yellow-orange altered white pumice in class 2. The
different types of basaltic tuff (porphyritic, non-porphyritic and
subaerial basaltic tuff), which are the main source of the talus on the
inner caldera flank, are not further distinguished.

Some minor misclassifications were identified mainly in areas
that are covered by dirty snow which can also be seen already from
the RGB image, if we zoom in or from our surveys in the field. In
some areas, we can see a mixture of two or three classes that
represent a new structure, such as thermal anomaly. For
example, in the north-eastern part of the caldera surrounding the
fumarolic vents, we can observe such a mixture of different classes
comprising classes 2, 4, 5 and 6. In general, it is common around
hydrothermally altered areas to see vegetation which in most cases is
classified as class number two.

5.3 Alteration effects on the landslide mass

The Askja landslide occurred on an unstable slope. Specifically, the
current understanding is that the stability and instability of volcanic
slopes is highly variable, changing in time and space. Conceptually,
three main drivers of slope instability can be considered, i) a too steep
slope, ii) changes to the system by extrinsic triggers such as earthquakes,
iii) a progressive intrinsic strength reduction of rocks. This is on one
side, because volcanoes are made up by very different materials, such as
the Askja caldera rim, including products from effusive and explosive
eruptions and endogenous growth. Consequently, these materials
encompass highly variable physical and mechanical properties (Heap
and Violay, 2021).

In a traditional way of thinking, unconsolidated and weak deposits
may provide the main sliding horizons that govern dimensions,
dynamics, and directions of mass wasting events. Depicting these
sliding horizons is essential, as this contributes to our understanding
of the collapse process, which may have high societal interest, as partial
flank collapses at some 200 volcanoes globally have caused over
20,000 fatalities (Rosas-Carbajal et al., 2016). At Askja, we could
demonstrate that different rock types were involved in the landslide
mass, whereby hydrothermally altered materials are especially
widespread and detectable by our drone remote sensing techniques
throughout the landslide deposits. The finding of hydrothermally
altered rocks is of relevance for (i) the destabilization of the slope,
and (ii) the dynamics of the mass movement. The alteration-induced
destabilization is in line with new research elsewhere that suggests that
hydrothermal alteration is strongly affecting the strength of volcanic
rocks. Indeed, studies suggest that hydrothermal alteration weakens a
volcanic slope, which can increase with time to promote sudden

collapse (van Wyk de Vries et al., 2000; Watters et al., 2000; Voight
et al., 2002; Heap and Violay, 2021). Case studies are found globally,
where hydrothermally altered materials are integrated in debris-
avalanche deposits resulting from partial flank collapse. For instance,
the 26 December 1997 rockslide at Soufrière Hills volcano (Montserrat,
Eastern Caribbean) showed a mixed (“varicolored”) and
hydrothermally altered material integrated into the avalanche
deposits, implying that these materials could have contributed to the
collapse (Voight et al., 2002). Following a strong storm, a flank collapsed
at Casita volcano (Nicaragua), where detailed field mapping revealed a
mixed material that formed by hydrothermally altered materials that
contributed to the instability and the collapse that killed about
2,500 people (van Wyk de Vries et al., 2000). Similarly, deposits
from La Soufrière de Guadeloupe (Eastern Caribbean, France) also
entrained hydrothermally altered rocks (Salaün et al., 2011). The answer
for most of these documented collapses can be found in the mechanical
changes associated with hydrothermal alteration, causing a change in
porosity and a dramatic reduction of compressive and tensile strength
values (Heap and Violay, 2021).

The hydrothermally altered rocks at Askja have also altered the
dynamics of mass movement. Types of landslides are usually
classified according to either the type of movement (falls,
overturns, slides, spreads and flows) or the type of material
(bedrock, coarse or fine soils), based on Varnes (1978); Cruden
and Varnes (1996). On the steep slopes and sub-vertical cliffs we find
large blocks, possibly rotated, indicating solid mass overturning and
rockfalls. On the medium slopes towards the coast we find well
mixed material, indicating unconsolidated material. Therefore, we
find that the collapse involved characteristics of two types of
materials, bedrock and weak material mass movements. The
hydrothermally altered and weakened materials probably have an
important role in this mobilization process, as they cause a high
mobility and mixture of the heterogeneous rock types involved in
the landslide. The finally deposited materials therefore bear complex
characteristics resembling a rock slide avalanche (at higher levels)
and also unconsolidated debris slides (at lower levels). Our remote
sensing and classification work thus demonstrates that
hydrothermal alteration materials have been incorporated in the
landslide materials at Askja as well, developing a mixed
(varicolored) material class. Therefore, by using our approach, a
systematic search of hydrothermally active zones and regions
becomes feasible, allowing (i) identification of those flanks that
may be prone to alteration and mechanical weakening prior to
collapse, and (ii) consideration of a higher mobility of the mixed
materials capable of reaching coastal regions and triggering tsunami
hazards. Also other regions at the Askja caldera wall, and at calderas
elsewhere, display hydrothermal activity and may therefore lead to
similar destabilization and mobilization processes. Future
mechanical works are needed and might provide further insights
into the degree of weakening of rocks (Heap et al., 2021) and the
resulting mobilization of landslide materials.

5.4 Implications for hazard assessment and
early detection of mixed materials

We found that multicolored mixed materials in the landslide
area are largely hydrothermally altered rocks. Furthermore, data
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suggest that they became mobilized during the slide process (Figures
9A, B). Our post-landslide drone survey suggests that a large number
of steep sloped sites still host a similar material class, possible
fumaroles, and sites of hydrothermal activity. We speculate that
these may be prone to future collapses. Indeed a number of failures
occurred after the main 2014 landslide, as was reported based on a
local seismic network and high-amplitude short-period events that
lasted up to 1 minute (Schöpa et al., 2018), interpreted by these
authors due to secondary failures that followed the main slide.

Understanding the mobility of landslide masses is of high
relevance for simulations and predictions. For instance, landslides
can now be modeled by granular porous media, and their effect
when entering water bodies can be studied (Rauter et al., 2022). It is
well known that basal shear resistance and topography initially
control the mobility of landslide masses, where during the
movement the material property and the interaction of the debris
with the underlying substrate strongly control mobility (Aaron and
McDougall, 2019).

We also speculate that material changes associated with
hydrothermal alterations may significantly contribute to the
landslide hazard and mobility. During alteration typically a
significant reduction in permeability occurs, possibly by four
orders of magnitude (Heap et al., 2021). This will modify, direct

or even inhibit an effective fluid circulation inside the volcano and at
the caldera rim (Figure 9A), leading to zones of high pore fluid
pressure that may strongly affect slope stability (Heap et al., 2021).
Furthermore, a landslide initiating at a hydrothermally weakened
slope may incorporate additional masses of unaltered materials.
These so-called erosional landslides may be particularly common at
altered volcano slopes, and hence strongly influence the related and
possible tsunamigenic energy budget of a moving mass with high
mobility (Pudasaini and Krautblatter, 2021).

We conclude that porosity-decreasing alteration, explored here,
and porosity-increasing alteration can both promote volcano
instability and collapse, but by different mechanisms.
Hydrothermal alteration should therefore be monitored at
volcanoes worldwide and incorporated into hazard assessments.
Especially during periods of unrest, occurrence of local earthquakes,
deformation and increased fumarole activity, close monitoring of
the steep and altered materials may save lives. At the time of this
work, Askja is inflating, therefore a close watch and awareness rising
is vital.

6 Conclusion

In this study, drone and satellite imagery allowed us to
calculate and vectorise the extent of materials involved in the
2014 Askja landslide. Using PCA and classification approaches,
we were able to distinguish different rock types and extract
landslide materials that included hydrothermally altered
source rocks. We find that the degree of altered rocks is high
where the landslide has traveled far and is mixed, with a granular
and light color. Comparison of classification results and
hyperspectral measurements of the selected rock samples in
the field further helped us to specify the rock characteristics in
the studied area and to confirm the different alteration degrees of
rocks in different classes. We find that oxidized materials
incorporated into the landslide masses originate from the
upper caldera rim. Based on these findings, we develop a
conceptual model that takes into account hydrothermal
alteration, mechanical weakening and flank instability. The
landslide changed its mode of movement and material, with
bedrock collapse, rockfall and overturning common in the
upper caldera rim, and debris sliding and spreading of mixed
altered materials in the farther reaches.

The shoreline in our study area retreated by 32,800 m2 between
2012 and 2014, and regained an area of 29,074 m2 between 2014 and
2019.46% of the approximately 0.8 km2 subaerial part of the
landslide area is covered by altered material, which was
previously about 33% of the same area. 54% of the landslide area
is covered by unaltered material such as talus and basaltic lavas,
compared to 67% of the same area before the landslide. The figures
show us a 13% increase in altered material, which is consistent with
our conceptual model.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

FIGURE 9
Conceptual model of collapsing mixed material. (A) Topographic
profile and fault lines (shown as black lines) at the Askja caldera system.
Hydrothermal circulation (yellow zones) includesmeteoric waters and
is inferred to be effective along the porous and permeable
caldera rim that is dissected by abundant ring faults. Hydrothermal
alteration of rocks is identified in satellite, drone and field
hyperspectral data. (B)Collapse of the hydrothermally active flank into
the lake produces a tsunami, and deposits characterized by alteration
andmulticoloredmaterials. The cause of the collapsemay be linked to
the alteration zone, involving a lower permeability that results in pore
fluid pressurization (after Heap et al., 2021). Instability of the SW flank
and collapse into the lake was already described in Hartley and
Thordarson (2012), profile and fault lines after Trippanera et al. (2018).
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