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Abstract
The Southern Permian basin in central Europe contains a number of important high-grade sediment-hosted 
Cu deposits. Laterally extensive stratabound Cu and Zn-Pb sulfide mineralized rocks are located at a major 
stratigraphic redox boundary, where coarse-grained continental sandstones of the uppermost Rotliegend Group 
are overlain by carbonaceous mudstones (T1) and limestones (Ca1) of the Zechstein Formation. This study 
investigates the diagenetic evolution and style of sulfide mineralization in three drill cores that intersect Cu 
and Zn-Pb sulfide mineralized rocks at three locations (Sangerhausen, Allstedt, and Wallendorf) in the Saale 
subbasin (Eastern Germany), which is located at the southern margin of the Southern Permian basin. We com-
bine macro- to microscale petrographic data (binocular, transmitted and reflected light, and scanning electron 
microscopy) with quantitative X-ray diffractometry and bulk-rock geochemical analyses. Petrographic results 
show extensive, primary-porosity-occluding, early diagenetic calcite cementation that predates both the diage-
netic alteration of detrital clasts and sulfide mineralization. The highest-grade Cu and Zn-Pb sulfides (bornite, 
sphalerite, and galena) replace the calcite cement, with subordinate replacement of dolomite and detrital clasts. 
Quantitative mineralogical and geochemical data demonstrate that the highest base metal (Cu, Zn, and Pb) 
concentrations are associated with carbonate-rich samples, mostly as disseminated mineralization in the middle 
T1. Bulk-rock geochemical results show enrichment and covariation of redox-sensitive trace elements (RSTEs, 
e.g., Mo) with total organic carbon content toward the lower T1, consistent with highly reducing depositional 
conditions. Overall, the distribution and dissolution of calcite cement across this stratigraphic redox boundary 
provided the main control on the lateral migration of base metal-bearing fluids and high-grade Cu and Zn-Pb 
sulfide mineralization in the Saale subbasin. 

Introduction
Stratigraphic redox boundaries play a key role in the for-
mation of a number of sediment-hosted stratiform to strat-
abound massive sulfide deposits (Hitzman et al., 2010). This 
is primarily because base metal (Cu, Pb, and Zn) solubilities 
are enhanced under oxidizing conditions and greatly lowered 
under reducing conditions (Seward and Barnes, 1997). The 
sediment-hosted stratiform Cu (SSC) deposits at the southern 
margin of the Southern Permian basin in Germany and Po-
land represent some of the world’s most spectacular examples 
of sulfide mineralization associated with a stratigraphic redox 
boundary. This stratigraphic redox boundary is regionally ex-
tensive, extending from the United Kingdom to Poland, and 
records a transition from the terrestrially deposited Rotlieg-
end sandstone (S1) to the organic-rich marine Kupferschiefer 
mudstone (T1). The T1 is overlain by the Zechstein limestone 
(Ca1). The highest Cu grades are in the T1, although sulfide-
mineralized rocks are also found in the S1 and hanging-wall 
units of the lowermost Ca1 and overlying anhydrite unit (A1) 
(Borg et al., 2012). 

Base metal-mineralized rocks in the Kupferschiefer (T1) 
and adjacent stratigraphic units are generally believed to have 
formed when slightly acidic, oxidizing, metal-bearing fluids 
encountered the redox boundary between the S1 and T1 

and mixed with slightly alkaline, saline, and reduced sulfur-
bearing pore fluids in the host rocks (e.g., Bechtel and Pütt-
mann, 1991; Wedepohl and Rentzsch, 2006). One of the char-
acteristic features associated with the high-grade ore is the 
“Rote Fäule,” a term given to epigenetic hematitic alteration 
(e.g., Piestrzyński et al., 2002; Pieczonka et al., 2008; Borg et 
al., 2012). The Rote Fäule was initially interpreted to be an 
oxidized shallow-water facies that was equivalent to the re-
duced Cu-bearing T1, with the contrasting redox potentials 
reflecting the different sedimentary and diagenetic conditions 
(e.g., Franz, 1965; Jung and Knitzschke, 1976). However, 
subsequent studies have described the Rote Fäule as cross-
cutting the stratigraphy, and the general consensus is that it 
has a postdepositional origin (Rydzewski, 1978; Oszczepalski, 
1989). 

Precise constraints on the timing of base metal sulfide for-
mation in the Kupferschiefer district remain controversial. 
Several studies have suggested a syngenetic (e.g., Wedepohl, 
1971) to early diagenetic (e.g., Wedepohl and Rentzsch, 2006) 
timing, i.e., base metal sulfides precipitated before major 
compaction and cementation. The preservation of negative 
d34S values (–40 to –25‰) in ore-stage sulfides has been used 
as evidence that reduced sulfur was generated via bacterial 
sulfate reduction (BSR) in an open system, during either syn-
genetic or early diagenetic mineralization (e.g., Sawlowicz, 
1989). However, it has also been suggested that ore-stage 
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sulfides could have replaced diagenetic pyrite and inherited 
the negative d34S values (Sun and Püttmann, 1997; Bechtel et 
al., 2001). Other studies have also proposed a late diagenetic 
timing of the mineralization, during tectonic hydrofracturing 
triggered by Triassic rifting (Jowett, 1986, 1987; Cathles et 
al., 1993). In these models, the reduced sulfur for the sul-
fide mineralization was derived from thermochemical sulfate 
reduction (TSR) (Heppenheimer et al., 1995; Sun and Püt-
tmann, 2000). The preservation of higher d34S values (up to 
–8.4‰) in Cu sulfides from high-grade mineralized samples 
has also been linked with reduced sulfur derived via TSR at 
low temperatures (<130°C) during later diagenesis (Bechtel 
et al., 2001). These different models most likely reflect several 
stages of mineralization, from the diagenetic evolution of the 
Kupferschiefer in the late Permian to at least 100 m.y. after 
(Alderton et al., 2016). 

The metal trap in sediment-hosted deposits may be influ-
enced by a number of factors, including the depositional en-
vironment, diagenesis, and hydrothermal processes. In order 
to better understand how these different factors interact, it 
is necessary to generate different types of petrographic and 
geochemical data. For example, total organic carbon and bulk 
compositional data can be used to interpret the depositional 
redox conditions, which have a strong influence on organic 
matter preservation and sulfate reduction (Böning et al., 2012; 
Greenwood et al., 2013; Reinhard et al., 2014; Little et al., 
2015; Magnall et al., 2018). Quantitative mineralogical data 
provide important constraints on the primary mineralogy of 
the host rocks, which is a first-order control on early (at near-
surface, lower temperatures <50°C) and burial (higher depths 
and temperatures >50°–300°C) diagenetic processes (Morad 
et al., 2000). In fine-grained rock types, it may be necessary to 
combine standard petrographic techniques (transmitted and 
reflected light) with high-resolution scanning electron micros-
copy (SEM) to establish the relative timing (paragenesis) of 
diagenetic and hydrothermal mineral assemblages.

This study investigates samples from the S1, T1, and Ca1 
in three drill cores (Sangerhausen, Allstedt, and Wallendorf) 
in the Saale subbasin (Eastern Germany). Different petro-
graphic (transmitted and reflected light, SEM), mineralogical 
(quantitative X-ray diffraction [QXRD]) and geochemical (X-
ray fluorescence [XRF] and inductively coupled plasma-mass 
spectrometry [ICP-MS]) data sets have been generated to in-
vestigate which aspects of the host rock determined the style 
of mineralization in the different units and localities. This 
requires consideration of (1) the evolution of paleoenviron-
mental conditions during the late Permian marine transgres-
sion, (2) how this influenced the diagenetic evolution of the 
S1, T1, and overlying Ca1, and (3) the relative timing and style 
of sulfide mineralization with respect to different diagenetic 
processes.

Geologic Background

Regional geodynamic and depositional setting of the  
Southern Permian basin

The Southern Permian basin is part of the intracontinental 
Central European basin system, which formed in the late 
Carboniferous to early Permian, contemporaneous with the 
assembly of the Pangea supercontinent (Plein, 1990; Ziegler, 

1990; Fig. 1A). The crust beneath the Southern Permian ba-
sin comprises a complex assemblage of orogenic terranes that 
were accreted to Baltica and the East European craton during 
the Caledonian and Variscan orogenies (Ziegler, 1990). The 
varying crustal rheologies had an important role for stress and 
strain localization during the post-Variscan evolution of the 
Southern Permian basin (Maystrenko et al., 2008). The devel-
opment of intracontinental basins during the latest Carbonif-
erous-earliest Permian followed the end of the Variscan orog-
eny, coinciding with wrench faulting, thermal thinning of the 
lithosphere, and widespread magmatism (Ziegler, 1990; Wil-
son et al., 2004; Breitkreuz et al., 2008; Pharaoh et al., 2010). 

The early Permian Rotliegend Group overlies the crystal-
line basement and Carboniferous (Westphalian-Stephanian) 
formations in the Southern Permian basin. Deposition of 
the Lower Rotliegend and Upper Rotliegend I was associ-
ated with bimodal volcanism in transtensive pull-apart basins 
(Stollhofen et al., 2008). The mafic and felsic volcanic rocks in 
the Lower Rotliegend are found in most parts of the Southern 
Permian basin but are particularly voluminous in the eastern 
part of the North German basin and Polish basin (Fig. 1A). 
The Upper Rotliegend II, comprising thick continental silici-
clastics (~2,500 m thick) and evaporites, was influenced by 
tectonics and climatic fluctuations and also short-term marine 
ingressions (Legler and Schneider, 2008). It is dominated by 
ephemeral fluvial (wadi), sabkha, lacustrine, and aeolian suc-
cessions (Stollhofen et al., 2008). Weissliegend and Graulieg-
end are used to describe local color variations in the upper-
most part of the Upper Rotliegend II, which are composed of 
white to gray aeolian, fluvial, and locally marine sandstones 
(Ehling et al., 2008). The color variations are the result of 
chemical reduction during diagenesis, meaning the Weisslieg-
end and Grauliegend are not strictly chronostratigraphic units 
(Borg et al., 2012).

During the late Wuchiapingian (Lopingian, ~258 Ma; 
Brauns et al., 2003), the Permian intracontinental basins were 
flooded by a marine transgression from the Boreal Ocean 
(Smith, 1979; Ziegler, 1990; Legler and Schneider, 2008). 
Besides the local occurrence of the so-called “Zechstein con-
glomerate” as a reworked horizon and a basal carbonate layer, 
the marine transgression resulted in the deposition of the 
T1, Ca1, and Werra anhydrite (A1) of the Werra Formation 
(Fig. 1B, C). The T1 is composed of three subunits, where 
organic matter is highest in the lower T1 (T1-L) and carbon-
ate increases upward into the middle and upper T1(T1-M and 
T1-U) (Grice et al., 1997). The T1 has been dated at 257.3 ± 
1.6 Ma using the Re-Os system (Brauns et al., 2003), mean-
ing deposition during the Wuchiapingian (Lopingian). This is 
supported by the depositional age (258 Ma) for the top of the 
underlying Elbe Group (Menning et al., 2006). This age is 
generally in agreement with a less precise Re-Os isochron age 
of 247 ± 20 Ma of Pašava et al. (2010) for unmineralized T1 
samples from the Zdrada area in northern Poland. These ages 
also overlap with K-Ar ages of 277 to 249 Ma for authigenic 
illite from unmineralized T1 samples in northwest Poland 
(Bechtel et al., 1999).

Geology of the Saale subbasin 

The SW-NE–trending Saale subbasin is approximately 150 × 
90 km and located to the southeast of the Harz mountains 
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and northeast of the Thuringian subbasin (Fig. 1C). The crys-
talline basement is overlain by Visean to Westphalian sedi-
mentary rocks (Schneider and Romer, 2010). The Stephanian 
Mansfeld Group is composed of (1) the basal fine-grained 
coal-bearing sedimentary rocks of the Grillenberg subforma-
tion and coarse-grained sedimentary rocks of the Gorenzen 

Formation, (2) unconformably overlying thick red beds of the 
Rothenburg Formation, and (3) braided river deposits of the 
Siebigerode Formation (Schneider et al., 1995; Schneider and 
Romer, 2010; Gebhardt and Hiete, 2013). 

The overlying early Permian Rotliegend Group, cropping 
out in most marginal parts of the Saale subbasin, comprises 

Fig. 1. (A) A map showing the extent of the Kupferschiefer and Zechstein in the Southern Permian basin (SPB) (Erzberger et 
al., 1968; Kulick et al., 1984; Paul, 2006). The red square shows the approximate location of the Saale subbasin. (B) General-
ized stratigraphy of the Kupferschiefer system in the Southern Permian basin consisting of the uppermost Rotliegend sand-
stone (S1), Kupferschiefer (T1), and Zechstein limestone (Ca1) (Stollhofen et al., 2008; Ruebsam et al., 2017). (C) Geologic 
map of the Saale subbasin (modified from Geologisches Landesamt Sachsen-Anhalt, 1993). The northern and eastern limits 
of the Saale subbasin are defined by crystalline basement rocks and the southwestern limit by the Thuringian subbasin (not 
shown). (D) Simplified Permian stratigraphy of the Saale subbasin. AF = Apolda fault, BH-GF = Blankenheim-Geiseltal fault, 
FF = Finne fault, Fm = Formation, Gp = Group, HA = Hornburger anticline, HF = Halle fault, HTF = Hornburger-Tiefen 
fault, KF = Kelbra fault, KH = Kyffhäuser, KH-NEBF = Kyffhäuser NE-Boundary fault, NF = Nebra fault, Z1C = Zechstein 
conglomerate.
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chert-quartzite-conglomerates interbedded with lacustrine 
black shales of the Halle Formation with silica-rich volca-
nic rocks as sills and laccoliths (Fig. 1D). The Halle Forma-
tion is overlain by medium- to coarse-grained sandstones of  
the Hornburg Formation and braided river sandstones of the 
Eisleben Formation (Ehling et al., 2008). The T1 in the Saale 
subbasin is a thin (0.3–0.6 m), organic matter-rich mudstone 
unit and was historically mined for copper and other metals 
in the Sangerhausen and Mansfeld mining districts. The dif-
ferent districts in the Saale subbasin are separated by struc-
tural highs (e.g., Hornburger anticline) and major faults (e.g., 
Hornburg-Tiefen fault) (Fig. 1C). In addition, the Saale sub-
basin has also been affected by several northwest-southeast 
minor faults. 

Base metal mineralization of the Kupferschiefer system in 
Germany and Poland

The Kupferschiefer system in Germany and Poland hosts the 
world’s second-largest SSC district, with combined resources 
of >60 Mt of contained copper (Borg et al., 2012). Copper 
and associated metals have historically been mined in differ-
ent mining districts and are being actively mined in the Siero-
szowice, Rudna, and Lubin districts in Poland (Oszczepalski 
et al., 2019). 

The sulfide mineralization in the Kupferschiefer system 
is laterally extensive in the S1, T1, and Ca1 and is found lo-
cally in the Werra anhydrite A1. Different styles of sulfide 
mineralization have been described, including disseminated, 
vein-type, and detrital clast and fossil replacement sulfides 
(see summary by Borg et al., 2012). Metal zonation has been 
described as having a lateral component in the German Kup-
ferschiefer districts and an oblique vertical component in the 
Polish Kupferschiefer districts (Borg et al., 2012). In either 
case, the zonation is characterized by (1) a Cu zone, adjacent 
to the Rote Fäule alteration, comprising chalcocite, bornite, 
chalcopyrite, and some other minor Cu sulfides, (2) an over-
lapping Zn-Pb zone, and (3) a noneconomic pyrite zone (Borg 
et al., 2012). The principal sources of copper in the Kupfer-
schiefer system are unknown, but could be either the mafic 
volcanic rocks in the Rotliegend or the basement rocks of the 
Mid-European Crystalline High (Borg et al., 2012). Lead iso-
tope data of galena ± sphalerite ± pyrite ores and vein galena 
from different parts of the Southern Permian basin suggest 
the basement rocks are a major source of Pb for the mineral-
ization (Wedepohl et al., 1978). 

In terms of geochronology, indirect paleomagnetic age data 
of hematite in the Polish basin suggest a Triassic age (250–220 
Ma) of the Rote Fäule (Jowett et al., 1987). This paleomagnetic 
age is bracketed by the K-Ar ages of illites (~250 Ma) in min-
eralized samples close to the Rote Fäule (Bechtel et al., 1996) 
and by the estimated age of diagenetic illite (216–190 Ma) in 
the mineralized T1 samples in the Polish basin (Bechtel et al., 
1999). A range of Re-Os ages have been derived for mineral-
ized samples from the Polish basin, which correspond with 
different mineralization styles (Alderton et al., 2016). The 
Re-Os ages indicate that the fine-grained sandstone infill and 
massive ore that formed during the late Permian-Early Trias-
sic and younger ages (Early to Middle Jurassic) correspond 
with sulfide veinlets. The paleomagnetic age data of hematite 
in the Rote Fäule in the Sangerhausen mining district (East-

ern Germany) also suggest two distinct ages (Symons et al., 
2011): 149 ± 3 Ma (Late Jurassic), which probably represent 
the disseminated, high-grade, Cu-Zn-Pb mineralization, and 
53 ± 3 Ma (early Eocene) for the vein mineralization (Borg, 
2017). The age discrepancy in the two basins could be related 
to either a local, younger postdiagenetic mineralizing event, 
such as structurally controlled (Rücken-type veins) mineral-
ization associated with Carpathian-Alpine tectonism charac-
terized by the presence of cobalt, nickel, and silver arsenide 
minerals (Wagner and Lorenz, 2002; Zientek et al., 2015) or a 
local fluid-flow event unrelated to the Cu-mineralizing system 
(e.g., Wilkinson et al., 2017). 

Methods

Sampling

Samples were selected from three different drill cores in the 
Saale subbasin (Eastern Germany; Figs. 1C, 2). Drilling took 
place in the 1980s for mineral exploration. The samples were 
selected from the Sangerhausen 102/80 (depth: 429.6–430.6 
m), Allstedt 11/86 (depth: 945.4–946.4 m), and Wallendorf/
Luppe 6/84 (depth: 359.1–360.1 m) drill holes. Each drill core 
contains the uppermost part of the Rotliegend sandstone (S1), 
Kupferschiefer (T1), and lowermost Zechstein limestone 
(Ca1) (Fig. 2A-C). These drill holes also intersect different 
sulfide zones: the Sangerhausen (SHN) drill hole intersects 
the Rote Fäule and Cu zone, the Allstedt (AST) drill hole in-
tersects the Cu zone and overlapping Zn-Pb zone, and the 
Wallendorf (WDF) drill hole intersects the Zn-Pb zone (Fig. 
2A-C). A total of 47 samples (SHN =17, AST = 17, and WDF 
= 13) were collected from the three drill cores, each every ~5-
cm interval. The samples were split, with one-half prepared 
into polished thin and thick sections, and the other half pow-
dered for mineralogical and geochemical analyses. 

Petrography 

All analyses were carried out at the German Research Centre 
for Geosciences (GFZ-Potsdam). Hand sample photographs 
and binocular microscope images were taken to inspect varia-
tions in lithology, mineralogy, and organic matter. Standard 
polished thin sections (~25-mm thickness) and polished thick 
sections (~2-mm thickness) were prepared for petrography for 
all samples. Transmitted- and reflected-light petrography was  
performed on a BX51 polarizing microscope (Olympus Cor-
poration). Organic petrography was performed on a DM4 P 
microscope (Leica) under an oil immersion objective lens us-
ing ultraviolet (UV) light and reflected white light illumina-
tion. Backscattered electron (BSE) and secondary electron 
(SE) imaging together with electron dispersive spectrometry 
(EDS) semiquantitative compositional analysis was performed 
using an Ultra Plus field emission scanning electron micro-
scope (Carl Zeiss Microscopy GmbH). The EDS analysis was 
conducted using an accelerating voltage of 20 kV. False-color 
elemental composite maps were generated to determine the 
distribution of the different mineral phases. 

Quantitative mineralogy 

Mineralogical and geochemical analyses (except total carbon 
and total organic carbon content) were performed at the Ele-
ments and Minerals of the Earth Laboratory (ElMiE-Lab) at 
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GFZ-Potsdam. Forty-seven bulk-rock samples were crushed 
and powdered to a grain size of <62 µm. For quantitative min-
eral analysis, the powdered samples were further milled to 
a grain size of <10 µm using a micronizing mill (McCrone 
Group). Analyses were performed with an X-ray diffractom-
eter (Malvern PANalytical) using a Bragg-Brentano geometry 
at 40 mA and 40 kV with CuKa radiation, and a PIXel3D de-
tector at a step size of 0.013° 2θ from 4.6° to 85° 2θ and 60 s 
per step. The mineralogy was determined with the software 
EVA (version 11.0.0.3) by Bruker using an updated mineral 
library. Rietveld refinement for quantitative mineralogy was 
performed using the program BGMN (Bergmann et al., 1998) 
and the open-source software package Profex (version 4.3; 
Doebelin and Kleeberg, 2015), calibrated for the used dif-
fractometer. The error is in the range of 3%.

Bulk-rock geochemistry

Major and minor elements were determined on glass beads 
on <62-µm powdered sample split and analyzed by XRF us-
ing an Axios Advanced spectrometer (Malvern PANalytical). 
The quantification level was 0.02 wt % for major elements 
and 10 ppm for minor elements. Loss on ignition (LOI) was 
measured as weight loss during the ignition of the sample. 
Total S was measured by the Eltra elemental analyzer (Eltra 

CS 2000). For trace element analysis, samples were digested 
using the standard four-acid digestion method (concentrated 
AR/HF/HClO4) using closed Savillex beakers on a hot plate 
at 180°C. After 24 h, the samples were checked for undis-
solved residue and evaporated to dryness. The digestion pro-
cedure was repeated until no residue was visible. Dissolved 
samples were diluted in 2 vol % HNO3. All acids were pre-
pared using reagents purified by subboiling distillation and 
diluted by bidistilled H2O. Acid blanks of concentrated re-
agents are routinely tested. Trace elements were analyzed by 
high-resolution (HR-)ICP-MS using an Elements XR instru-
ment (Thermo Fisher). Drift correction was performed by 
internal standard and addition of 1 µg/kg In. One procedural 
blank was included per 18 samples and was generally neg-
ligible compared to sample concentrations. Acid blanks are 
subtracted online. Measurements were repeated two to four 
times with repeatability generally within 5%. 

The total carbon and total organic carbon contents were an-
alyzed with an elemental analyzer (EA Isolink IRMS system, 
Thermo Fisher). For total carbon determination, about 5 mg 
of sample material was loaded into Sn capsules and burned in 
the elemental analyzer. Total organic carbon content was de-
termined on in situ decalcified samples (3 mg). To remove the 
carbonate carbon, samples were loaded in Ag capsules and 

Fig. 2. Stratigraphic and lithological logs and selected sample photographs for the three drill cores from Sangerhausen (SHN), 
Allstedt (AST), and Wallendorf (WDF) localities. The sampled intervals are annotated numerically alongside each graphical 
log. (A) Drill core photograph (430.32–430.55 m) showing the contact between the Rote Fäule alteration in the S1 and the 
overlying carbonaceous mudstone (T1). (B) Drill core photograph (946.07–946.25 m) showing the contact between the S1 
and T1. (C) Drill core photograph (359.35–359.68 m) showing the S1, T1, and Ca1. (D) Binocular microscope image of the 
S1 sample (WDF4) showing galena, sphalerite, and chalcopyrite replacing detrital clasts and filling intergranular pores. (E) 
Binocular microscope photograph and transmitted-light photomicrograph (WDF6) showing an overview of fine- and coarse-
grained laminations in the lower T1 (T1-L). Cpy = chalcopyrite, Gn = galena, Py = pyrite.
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decalcified in two rounds by 3% HCl and 20% HCl, respec-
tively, and heated for 3 h at 75°C. Both measurements were 
calibrated against urea and checked with an internal labora-
tory standard (TSK). The reproducibility for replicate analy-
ses for total carbon and total organic carbon was better than 
0.2 wt %. 

Results

Petrography

The relative timing of the different mineral phases formed 
in each of the major units is presented in a paragenetic chart 
in Figure 3, and key paragenetic relationships are described 
below. 

Rotliegend sandstones (S1): The analyzed samples comprise 
fine- to coarse-grained, poorly to moderately sorted, rounded 
to subrounded and randomly oriented detrital clasts composed 
of mostly submillimeter-size grains of quartz, feldspar, and lith-
ic/rock fragments (Fig. 4A, B; App. Fig. A1A-D). Some larger 
(cm size) clasts have been preserved in the Sangerhausen drill 
core. Monocrystalline quartz clasts dominate over polycrystal-
line quartz (App. Fig. A1A). Plagioclase (albite) and K-feldspar 
mainly compose the detrital feldspar fraction. Rock fragments 
commonly have source-specific textures and compositions that 
can be used to identify them in thin sections (Ulmer-Scholle et 
al., 2015). Accordingly, the rock fragments include both felsic 
and mafic igneous, sedimentary, metasedimentary, and meta-
morphic rock fragments (App. Fig. A1A-D). The mafic rock 
fragments are mostly composed of quartz and albite where 
their groundmasses altered to, or were replaced by, early illite 
and chlorite (e.g., Fig. 4C, D). 

Diagenetic assemblages in the sandstones include carbon-
ate (calcite and minor dolomite) and sulfate (anhydrite and 
trace barite) cements, and clays (illite, chlorite, and kaolinite) 
(Figs. 4–6). The carbonate cement in the sandstones occurs 
as extensive, poikilotopic, intergranular calcite cement that 
forms overgrowths on minor rhombic dolomite (~5–10 μm) 
and also ingresses into intragranular pores (Fig. 4D-H). In 
samples from the Sangerhausen drill core, the calcite cement 
is zoned, and certain domains contain bladed hematite (Figs. 
4F, H, 5B), producing the red color at hand-specimen scale 
(Fig. 2A). The hematite intergrowth mostly occurs in the out-
er parts of the intergranular calcite cement (Figs. 4F, H, 5B, 
C) but is also present as overgrowths on euhedral dolomite 
(Fig. 5C). The intergranular pore-filling calcite shows dissolu-
tion textures in all drill cores (Fig. 5B, C). These sandstones 
also contain poikilotopic anhydrite and trace barite cements 
(Figs. 4E, F; App. Fig. A2D). Anhydrite cement is mostly 
cogenetic with calcite cement and is more abundant in the 
Sangerhausen than in the Allstedt and Wallendorf drill core 
samples (Fig. 4E, F).

Mafic volcanic rock fragments have been cemented by cal-
cite (± anhydrite), and their groundmasses are altered to or 
replaced by illite and chlorite (Figs. 4B-D; App. Fig. A2A, 
B). These altered clasts sometimes have serrated edges that 
allow inward growth of intergranular calcite cement (Fig. 4C). 
This interlayered illite with minor chlorite also occurs rarely 
in the intergranular pores (e.g., Fig. 5C). Rounded detrital al-
bite clasts have been also replaced by calcite and minor anhy-
drite (± barite) cement intergrown with kaolinite (Fig. 5D, E). 

Kaolinite is only preserved in these assemblages in the intra-
granular pores (Fig. 5E, F). Detrital feldspar and quartz clasts 
have grain boundaries that are etched and corroded, and the 
released ions precipitated to intergranular late, meshwork il-
lite (Fig. 4H; App. Fig. A2C), probably after the dissolution of 
intergranular calcite cement (Fig. 5B).

The sulfides in the sandstones include (1) accessory bornite 
and covellite in the Sangerhausen samples (Fig. 4F), (2) born-
ite and sphalerite in the Allstedt samples (Fig. 6A-F; App. Fig. 
A2F), and (3) galena and sphalerite with minor chalcopyrite 
and enargite in the Wallendorf drill core samples (Fig. 6G, H; 
App. Fig. A2G, H). These sulfides occur predominantly as a 
replacement of intergranular calcite cement, but also of de-
trital clasts (Fig. 6A-H; App. Fig. A2E-H). For example, the 
sulfides may have replaced clasts that have been first replaced 
by calcite (e.g., Fig. 6C). This is consistent with numerous ex-
amples of clasts that have been replaced by calcite (Figs. 4E, 
5A, B). No pyrite was observed in the sandstones.

Kupferschiefer (T1): The T1 is composed of shale (lower 
T1 [T1-L]), carbonate-rich marlstone/mudstone (middle T1 
[T1-M]), and mudstone (upper T1 [T1-U]) (Fig. 2A-C). The 
framework grains in these subunits are mainly clasts of quartz 
and albite. The matrix is composed of clay minerals, mainly 
illite and minor chlorite and kaolinite. The lower T1 contains 
alternating coarse and fine-grained laminations (Figs. 7A-C, 
8A-H). The coarser-grained laminations are composed of de-
trital clasts of quartz (~50 μm) and albite (~30 μm), whereas 
the fine-grained laminations are dominated by organic mat-
ter-rich layers of illite ± chlorite ± kaolinite (Figs. 7A-C, 8A-
H). The middle and upper T1 are composed of quartz and 
albite, cemented by calcite, dolomite, and minor anhydrite 
(Fig. 9A, B). 

Organic petrographic and reflected UV and white (RW) 
light investigations of samples from the Sangerhausen and 
Wallendorf drill cores showed different macerals in the T1. 
These include vitrinite-like macerals, alginite, and inertinite 
(Fig. 7A, B). Vitrinite-like macerals are very thin (<10 μm) 
and conformable with clay laminations. They are abundant in 
the lower T1 in both drill cores (Fig. 7A, B). Framboidal py-
rite (~5 μm) is mostly associated with these vitrinite-like mac-
erals and is generally ubiquitous in clay-rich layers (Fig. 7A, 
B). Alginite with greenish-yellow fluorescent colors is partially 
degraded in the Sangerhausen drill core samples and better 
preserved in the Wallendorf drill core samples (Fig. 7C-E). 
Carbonates have a very high fluorescence and are mostly as-
sociated with sulfides both in the T1 and Ca1 (Fig. 7C-E).

Diagenetic assemblages in the T1 include carbonate (cal-
cite and dolomite) and sulfate (anhydrite) cements and illite 
(Figs. 8A-H, 9A-E). In the lower T1, there is greater dolomite 
and less calcite cement in the coarser-grained laminations 
(Fig. 8A, B). In the middle and upper T1, fine-grained calcite 
(5–20 μm) forms a cement to euhedral to subrounded dolo-
mite (~5 μm) and framework grains. The abundant calcite ce-
ment has occluded intergranular pores and is most abundant 
in the middle T1 (Fig. 9A-C). Trace anhydrite cement is also 
preserved as intergranular cement (Fig. 9A). 

Carbonate cements and feldspars (albite and K-feldspar) 
have been affected by partial to complete dissolution in the 
T1, especially in the coarse-grained laminations in the lower 
T1 (Fig. 8C-F). In the middle and upper T1, calcite cement 
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has been significantly affected by dissolution relative to albite 
and dolomite (Fig. 9A, B). 

Framboidal pyrite is ubiquitous in the T1, especially in 
the fine-grained laminations in the lower T1 and foraminif-
eral tests at the boundary between the T1 and Ca1 (App. Fig. 
A3A-C). The ore-stage sulfides in the T1 have a style of re-
placement similar to that in the S1. In the lower T1, sulfides 
replace calcite and dolomite (e.g., bornite in the Sangerhau-
sen, bornite and sphalerite in the Allstedt, and sphalerite and 
galena in the Wallendorf drill core samples) and, to a lesser 
degree, detrital clasts in coarse-grained laminations (Fig. 8C-
F; App. Fig. A3E, F). In the middle T1 with high-grade Cu 
and Zn-Pb sulfide assemblages, the sulfides clearly replace 
the calcite cement (Fig. 9A-E). The post-ore-stage mineral-

ization occurs parallel to bedding or as disseminated pyrite 
in T1 (e.g., App. Fig. A3D), but the abundance increases up-
ward in each drill core. Furthermore, sphalerite and pyrite 
(not shown) occur in crosscutting calcite veins mostly in the 
Wallendorf drill core in the middle T1 (Fig. 9F). The sulfide 
assemblages in the middle T1 extend to the upper T1 though 
the type and abundance of sulfides may vary in different drill 
cores. 

Zechstein limestone (Ca1): The Ca1 is largely composed 
of dolomite and a significant amount of quartz and phyllo-
silicates (illite and minor chlorite ± kaolinite) (Fig. 10A, B). 
Both euhedral and subhedral to anhedral (circular) dolomite 
(~5 μm) have been observed in the Ca1. The dominant in-
tergranular cement in the Ca1 is highly fine grained calcite 

Fig. 3. A paragenetic chart for the mineral phases in the Rotliegend sandstone (S1), Kupferschiefer (T1), and Zechstein 
limestone (Ca1). diss = dissolution, OM = organic matter.
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cement (<5 μm) with minor Fe oxide and anhydrite (Fig. 10A-
C). The vuggy pores in calcite cemented dolomite are aligned 
in specific directions in hand-specimen (cm) scale and mostly 
filled with illite or sulfides (Figs. 7F, 10C, E). The sulfides 
in the Ca1, similar to the upper T1, include bornite, covel-
lite, and post-ore-stage pyrite in the Sangerhausen drill core 
and sphalerite, galena, and post-ore-stage pyrite in the Allst-
edt and Wallendorf drill cores (e.g., Fig. 10D-F). The edges 
of bornite grains are altered to covellite in the Sangerhausen 
drill core samples (Fig. 10D). 

Quantitative mineralogy 

Quantitative mineralogical data for the samples from the 
Sangerhausen, Allstedt, and Wallendorf drill cores are avail-
able in a supplementary data file (Mohammedyasin et al., 
2022) and summarized in Figure 11A through C. Major min-
eral phases in the S1, T1, and Ca1 include quartz, plagio-
clase, K-feldspar, calcite, dolomite, phyllosilicates (musco-
vite, phlogopite, illite, and chlorite), and pyrite (Fig. 11A-C). 
Some of the minor to accessory minerals (<1%) confirmed 
in SEM analysis include biotite, anhydrite, barite, hematite, 
and Ti dioxide (rutile). The samples have been classified on 
the basis of quartz + feldspar, phyllosilicate, and carbonate 
content and subdivided according to lithological units (Fig. 
12). The previous sedimentological classification of the T1 
into three—T1-I (shale), T1-II (claystone), and T1-III (marl-
stone)—was generally based on assumptions that carbonate 
content increases upward. However, the carbonate in the T1 
is an early diagenetic phase (i.e., is not primary) and is high-
er in the middle T1 than in the upper T1 in the drill cores. 
Hence, we reclassify the T1 mineralogically into three sub-
units: lower T1 (T1-L, shale), middle T1 (T1-M, mudstone 
to marlstone), and upper T1 (T1-U, mudstone) (Fig. 12). The 
QXRD data of the T1 samples from this study are in a good 
agreement with the T1 samples from the Mansfeld, Wettel-
rode, Polkowice, Rudna, and Lubin Kupferschiefer districts 
(Rahfeld et al., 2018; Fig. 12).

The quartz and feldspar content in the S1 samples is slightly 
lower in the Sangerhausen (mean = 57%) than in the Allstedt 

(73%) and Wallendorf (68%) drill cores (Fig. 11A-C), where-
as the carbonate content in the Wallendorf samples (10%) 
is lower than in the Sangerhausen (21%) and Allstedt (18%) 
samples. The phyllosilicate content in the Allstedt samples 
(8%) is lower than in the Sangerhausen (21%) and Wallendorf 
(22%) samples. Minor bornite and accessory sphalerite were 
observed in the S1 samples (AST3 and WDF4) adjacent to 
the T1 from the Allstedt and Wallendorf drill cores. Further-
more, rare anhydrite occurs only in the Sangerhausen samples  
(max. 3%). 

Samples from the lower T1 contain higher phyllosilicate 
(mean = 46%) and lower carbonate (12%) contents. The quartz 
+ feldspar and phyllosilicate contents in the middle (T1-M, 
31%, 31%) and upper (T1-U, 32%, 33%) T1, respectively, are 
generally proportional. However, the total carbonate content 
is slightly higher in the middle T1 (32%) than in the upper T1 
(27%). There is a notable difference in carbonate mineralogy 
(calcite and dolomite) between drill cores. In samples from 
the Sangerhausen and Allstedt, calcite is dominant in the S1 
and dolomite increases upward into the T1 (Fig. 11A, B; App. 
Fig. A4A, B). In contrast, in samples from the Wallendorf drill 
core, calcite is the dominant carbonate phase throughout the 
S1 and T1 (Fig. 11C; App. Fig. A4C). Sphalerite was quan-
tified in the Allstedt and Wallendorf drill core samples, and 
bornite (AST6) and galena (WDF6 and WDF10) only in a few 
Allstedt and Wallendorf drill core samples. Pyrite is abundant 
in the lower and upper T1 in all drill cores (Fig. 11A-C; App. 
Fig. A4A-C). Samples from the Ca1 comprise high quartz, 
feldspar, and phyllosilicate contents (combined mean ~50%), 
which are proportional to carbonates.

Bulk-rock geochemistry

The bulk-rock major and trace element composition of all 
samples from the Sangerhausen, Allstedt, and Wallendorf 
drill cores is available in a supplementary data file (Moham-
medyasin et al., 2022). 

Trends in major elements and base metal composition in the 
Rotliegend sandstone (S1): The SiO2 concentration is slightly 
lower in the Sangerhausen (range = 50–65.5 wt %, mean = 

Fig. 4. Backscattered electron (BSE) images of key samples. The name of the drill core (AST = Allstedt, SHN = Sangerhausen, 
WDF = Wallendorf) is written on each image, in this figure and hereafter. (A) Sample AST3 showing poorly sorted detrital 
clasts (Qz = quartz; dark gray) with intergranular pore space cemented by calcite (Cal; light gray). The red arrows highlight 
the grain boundary of a clast composed of detrital quartz and albite (Ab) where the groundmass has been altered to illite (Ilt) 
and chlorite (Chl) and replaced by calcite cement. The red and yellow arrows in the upper right-hand corner highlight detrital 
albite partially replaced by K-feldspar. (B) A mixture of clast types and sizes cemented by calcite. Mafic volcanic clasts have 
been strongly altered to illite and chlorite, and bornite (Bn) has partially replaced the calcite cement. The serrated dissolution 
contact (green arrow) between an altered mafic rock fragment and the calcite cement suggests acidity generated during clast 
alteration resulted in calcite dissolution (sample AST3). The red arrows highlight the grain boundary of an altered volcanic 
rock fragment. (C) A BSE image showing the complex intergrowth of illite, chlorite, and quartz in a highly altered mafic 
rock fragment (sample AST3). (D) A BSE image of sample SHN4 showing a mixture of clast types in an intergranular calcite 
cement. A clast of detrital albite has been partly altered to kaolinite (Kln), and replaced by calcite, anhydrite (Anh), and barite 
(Brt). The red arrows highlight the grain boundary of an altered volcanic rock fragment. (E) A BSE image showing a small 
clast that has been completely replaced by calcite and anhydrite. The altered clast has then been partially replaced by bornite. 
The calcite cement has multiple growth zones and overgrows an earlier generation of minor dolomite (Dol) rhombs. Small 
crystals of bladed hematite (Hem) are intergrown with a latest stage of the calcite cement (sample SHN4). The calcite cement 
also ingressed into intragranular (IntraG) pores (upper-left corner). The orange arrows show dissolution of detrital quartz. (F) 
A high-resolution BSE image showing complex growth zoning in the calcite (planar crystal boundaries are denoted by yellow 
arrows). One of the calcite growth zones is intergrown with bladed hematite (sample SHN4). (G) A BSE image showing a 
strongly altered clast, where the inset image shows an assemblage of illite and chlorite. The other subrounded clasts are pri-
marily quartz and cemented by calcite (sample SHN4). (H) A BSE image showing complex growth zones (yellow arrow) in the 
calcite cement, including a domain that has been partially replaced by bladed hematite. Small dolomite rhombs have also been 
overgrown by calcite, which contains minor inclusions of hematite (sample SHN4). Ti-ox = titanium oxide. 
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58.9 wt %) compared to Allstedt (60–66.7 wt %, 64.2 wt %) 
and Wallendorf (59.2–67.8 wt %, 64.1 wt %) drill core sam-
ples. The MgO concentration is slightly higher in the Sanger-
hausen (1–3.5 wt %, 1.9 wt %) compared to the Allstedt (0.9–
1 wt %, 0.9 wt %) and Wallendorf (1.1–1.5 wt %, 1.3 wt %)  
drill core samples. The CaO concentration in the Sangerhau-
sen (5.4–19 wt %, 12.2 wt %) and Allstedt (10.4–12.9 wt %, 
11.8 wt %) drill core samples is nearly twice as high as the Wal-

lendorf drill core samples (4.5–9.4 wt %, 6.5 wt %). The MnO 
concentration is similar in the Sangerhausen (0.2–0.7 wt %,  
0.4 wt %) and Allstedt (0.3–0.4 wt %, 0.4 wt %) drill cores but 
is lower in the Wallendorf drill core samples (0.1–0.3 wt %,  
0.2 wt %). The Fe2O3 concentration in the Sangerhausen 
(0.8–2.1 wt %, 1.4 wt %), Allstedt (1.2–1.6 wt %, 1.4 wt %), 
and Wallendorf drill core samples (1.6–2.2 wt %, 1.9 wt %) is 
comparable. The concentration of Al2O3 is slightly lower in 

Fig. 5. (A) A mixture of clast types cemented by poikilotopic calcite. The clast highlighted by red arrows has been almost 
completely replaced by an assemblage of calcite and kaolinite. Clasts of albite (Ab) have been partially altered to K-feldspar 
(yellow arrow) (sample SHN4). (B) Zoned calcite (Cal) cement with bladed hematite (Hem) microcrystals and fine-grained 
illite (Ilt) matrix. The preservation of the undeformed muscovite (Ms) crystal indicates cementation happened before major 
compaction (sample SHN4). (C) Illite and chlorite (Chl) crystals rimming two quartz (Qz) clasts. The cement is zoned cal-
cite, which has overgrown microcrystals of rhombic dolomite. Bladed hematite is intergrown with the final stage of calcite 
cement (sample SHN4). (D) Rounded detrital clasts cemented and partially altered by calcite. The large albite clast has been 
partially altered by kaolinite (Kln) and anhydrite (Anh) (sample SHN4). (E) A high-resolution backscattered electron (BSE) 
image showing an intergrowth of albite, calcite, anhydrite, kaolinite, and barite (Brt) (sample SHN4). (F) A large detrital clast 
composed of quartz and albite (highlighted by a red dotted line) replaced by calcite and anhydrite, which are intergrown with 
kaolinite (sample SHN4). Orange arrows show corrosion/dissolution minerals. Drill core abbreviation: SHN = Sangerhausen.
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Fig. 6. Sulfide mineralization in the Rotliegend sandstone (S1) from Allstedt (AST) and Wallendorf (WDF) drill core samples. 
(A) Backscattered electron (BSE) image showing partial replacement of a rounded detrital clast (red arrows) of K-feldspar (Kfs) 
and calcite (Cal) cement by bornite (Bn) and sphalerite (Sp) (sample AST3). (B) A false-color element map of the same image 
shown in A, which helps differentiate between the Zn and Cu sulfides and different clast compositions (quartz vs. K-feldspar) 
(sample AST3). (C) A detrital clast of K-feldspar that has been partially replaced by quartz (Qz) and bornite (sample AST3). 
(D) A false-color element map showing albite (Ab) and quartz clasts that are cemented by bornite and sphalerite (sample 
AST3). (E) Reflected-light photomicrograph showing sulfide minerals cementing detrital clasts. Bornite and sphalerite are the 
main sulfide minerals, with minor enargite (Eng) and very rare silver oxide (Ag-ox). (sample AST3). (F) A BSE image show-
ing minor inclusions of calcite within the sulfide cement of bornite and sphalerite (sample AST3). (G) A BSE image showing 
ankerite (Ank) and calcite cement preferentially replaced by galena (Gn) in a large detrital quartz clast. The orange arrows 
show intragranular pores. (H) Replacement of calcite cement by sphalerite and galena (Gn) (sample WDF4). Energy dispersive 
spectrometry false-color elemental map: Ag = silver oxide, Ca = calcite, Cu = bornite, Na = albite, Si = quartz, Zn = sphalerite. 
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Fig. 7. A series of ultraviolet (UV, left) and reflected white (RW, right) light photomicrographs of the T1 and Ca1 samples from 
the Sangerhausen (SHN) and Wallendorf (WDF) drill cores. (A) Sample SHN10 in which vitrinite-like macerals (Vit) are 
parallel to alternating carbonate- and clay-rich laminations. Framboidal pyrite (PyF) is bright white in RW light. (B) Sample 
WDF5 showing alginate (Alg) orientated parallel to fine-grained clay-rich laminations. (C) A silt lamination cemented by car-
bonate (Carb) and sulfides (Sulf) (sample WDF8). (D) Sample WDF10 showing a fine intergrowth of carbonate and sulfide 
within the fine-grained clay matrix. (E) Sample WDF10 showing sulfides replacing calcite cement. (F) A small vuggy sulfide 
in the Ca1 limestone from the Sangerhausen drill core (sample SHN16). Cal = calcite, Dol = dolomite. 
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Fig. 8. Selected backscattered electron (BSE) and false-color element maps of samples in the lower T1. (A) A BSE image of 
sample SHN9, which shows variation in grain size and organic matter (OM) content between laminations. (B) An element 
map that can be used to identify the major mineral phases in the image shown in A. (C) Sample AST6, which shows how 
bornite (Bn) and sphalerite (Sp) have formed preferentially within the coarse-grained lamination. (D) An element map used 
to interpret the major mineral phases for the image shown in C. (E) Widespread bornite replacement of clasts and carbonate 
cement within coarse-grained laminations in sample AST6. The insoluble margins of clasts are highlighted by red arrows. (F) 
Remnant inclusions of calcite (Cal) contained within a clast that has been replaced by bornite. (G) A sulfide-rich lamination 
of sphalerite and bornite in sample AST6. (H) A BSE image of the contact between sphalerite and bornite in sample AST6. 
Energy dispersive spectrometry false-color elemental composite maps: Al = kaolinite, Ca = calcite, Cu = bornite, Mg = dolo-
mite, Na = albite, Si = quartz, Zn = sphalerite. Drill core abbreviations: AST = Allstedt, SHN = Sangerhausen. Other mineral 
abbreviations:  Ab = albite, Ap = apatite, Dol = dolomite, Ilt = illite, Kln = kaolinite, Qz = quartz, Pb-ox = lead oxide, Py = 
pyrite, PyF  = framboidal pyrite.  
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the Sangerhausen and Wallendorf than in the Allstedt drill 
core samples (Fig. 13A, B). The minor oxides (TiO2, mean  
~0.4 wt %; P2O5, mean 0.1 wt %) have similar concentrations 
in all drill cores. The Al2O3 content is strongly correlated in all 
drill cores with TiO2 or K2O but not with Na2O (Fig. 13A, C, 
D). However, the Al2O3 content is negatively correlated with 
CaO/TiO2 (r2= –0.85; Fig. 13B). The concentration of base 
metals (Cu, Zn, and Pb) in the sandstone samples is generally 
very low, except for those samples adjacent to the T1 (Cu = 
1% in SHN7, Cu = 0.9 wt % in AST3, and Cu = 0.7 wt % and 
Pb = 0.6 wt % in WDF4; Fig. 11A-C). 

Trends in major elements and base metal composition in the 
Kupferschiefer (T1): The T1 samples preserve a very strong 
correlation between Al2O3 and TiO2 (r2 = 0.99; Fig. 13A). The 
lower T1 has a low CaO content in all drill cores. The highest 
CaO (19.1 wt % in WDF7) and MgO (7.5 wt % in SHN11) 
concentrations are in the middle T1 samples, but upper T1 
samples from Allstedt (8 wt % in AST13) have similarly high 
values. All samples have a strong negative correlation between 
the CaO/TiO2 ratio and Al2O3 (r2 = –0.85; Fig. 13B). 

Lower base metal concentrations are observed in the 
lowermost T1 samples in all drill cores, except samples 

Fig. 9. Selected backscattered electron (BSE) images of samples from the middle and upper T1. (A) Rhombic dolomite (Dol) 
with calcite (Cal) overgrowth and pore-filling anhydrite (Anh) and bornite (Bn) (sample SHN11). The orange arrows show 
secondary porosity as a result of anhydrite and calcite dissolution. (B) Detrital albite (Ab) and dolomite cemented by calcite 
and bornite in the Sangerhausen samples (sample SHN11). (C) Complex assemblage of bornite and covellite (Cv) that has 
cemented recrystallized diagenetic pyrite (PyRC) (sample SHN11). (D) Pore-filling sphalerite (Sp) that has replaced calcite 
cement (sample AST9). (E) Sphalerite that has overgrown aggregates of diagenetic pyrite (Py) in sample WDF7. (F) A sulfide 
veinlet containing sphalerite and calcite in sample WDF9. Drill core abbreviations: AST = Allstedt, SHN = Sangerhausen, 
WDF = Wallendorf. Mineral abbreviations: Ilt = illite, Gn = galena, Pb-ox = lead oxide. 
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with abundant layered sphalerite with pyrite in coarser-
grained laminations such as in WDF5 (Zn = 3.1 wt %; 
Figs. 11, 13E). The entire T1 in the Sangerhausen drill 
core in the Cu zone has elevated Cu concentrations (max. 
1.2 wt % in SHN11; Fig. 11A). The Allstedt samples are 
Cu rich in the lower T1 (max. 2.4 wt % in AST6), Zn 
rich in the middle T1 (max. 2.4 wt % in AST9), and Pb 
rich in the upper T1 (max. 0.7 wt % in AST13), reflect-
ing the vertical sulfide zoning (Fig. 11B). The Wallendorf 

samples have higher Zn (max. 2.5 wt %) and Pb (max.  
0.9 wt %) concentrations, both increasing toward the upper 
T1, in sample WDF10 (Fig. 11C). However, sample WDF5 
in the lower T1 has exceptionally high Zn concentration (3.1 
wt %) because of layered sphalerite (Fig. 11C). 

The total sulfur, total organic carbon, and total inorganic 
carbon contents are presented in the supplementary data file 
(Mohammedyasin et al., 2022). The highest total sulfur and 
total inorganic carbon content, consistent with the abundant 

Fig. 10. Selected backscattered electron (BSE) images and a false-color element map for samples from the Zechstein lime-
stone (Ca1). (A) Dolomite (Dol) that has been cemented by calcite (Cal) and crosscut by an anhydrite (Anh) vein (sample 
AST15). (B) Interlocking rhombic dolomite crystals with calcite rims, with minor pore-filling authigenic illite (Ilt) highlighted 
by the blue arrow (sample SHN16). Orange arrows highlight dissolution of calcite and dolomite cements. (C) Large vuggy 
sulfide infill comprising bornite (Bn), covellite (Cv), and pyrite (Py) within the host rock of dolomite and calcite (Dol + Cal) 
(sample SHN16). (D) Bornite crystals that have been altered to covellite, with minor Fe oxide (Fe-ox) forming overgrowths 
to dolomite (sample SHN16). (E) Coarse-grained aggregates of bornite and pyrite within calcite and dolomite host rock 
(sample SHN16). (F) A false-color element map used to interpret the major mineral phases shown in E. Energy dispersive 
spectrometry false-color elemental composite maps: Ca = calcite, Cu = bornite, Fe = pyrite, Na = albite, S = anhydrite, Si = 
quartz. Drill core abbreviations: AST = Allstedt, SHN = Sangerhausen. Other mineral abbreviations: PyF = framboidal pyrite. 

Dol+Cal

20 mμ

Dol

Dol

Ilt

Cal

B

150 mμ

F

Ca Si FeCuNa

E

Bn

Py

Anh

PyF

SHN

C

A
Anh vein

Cal

Anh

Dol

Dol

BnCv

Fe-ox

PyPy

DAnh

Dol+Cal

Bn

Bn Cv
Bn

D

20 mμ100 mμ

150 mμ

30 mμ

Py

Bn

Cal+
Dol

Anh

Anh

Qz

Cal+Dol

K

Ilt

Ilt

Ilt

Bn
Py

PyPyPy

Py

Downloaded from http://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/118/6/1467/5951281/5015_mohammedyasin_et_al.pdf
by GeoForschungsZentrums Potsdam user
on 30 October 2023



1482 MOHAMMEDYASIN ET AL.

Fig. 11. Graphical logs for Sangerhausen (SHN; A), Allstedt (AST; B), and Wallendorf (WDF; C) drill core samples showing 
base metal concentrations (wt %) and modal mineralogy (%) from quantitative X-ray diffraction. 10Å-Phyll = 10Å-phyllo-
silicate (muscovite + phlogopite + illite). Anh = anhydrite, Bn = bornite, Bt = biotite, Cal = calcite, Chl = chlorite, Dol = 
dolomite, Gn = galena, Kfs = K-feldspar, Kln = kaolinite, Pl = plagioclase, Py = pyrite, Qz = quartz, Sp = sphalerite, RF = 
Rote Fäule, t = depth (m).
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carbonate, is mostly observed in samples from the middle 
T1 in all drill cores (Fig. 13E, F). The total organic carbon 
content increases toward the lower T1 in all drill cores where 
fine-grained laminations are organic matter rich. The Allstedt 
drill core samples contain higher total organic carbon content 
(max. 20.3 wt % in AST5) compared to the Wallendorf (12.6 
wt % in WDF6) and Sangerhausen (7.2 wt % in SHN9) drill 
core samples. 

Trace element composition: The concentration of trace ele-
ments in the S1 is relatively lower and uniform compared to 
the T1 samples in all drill cores. Only U and Mo in samples 
from the Allstedt and Ga and Nb in samples from the Wal-
lendorf have higher concentrations. 

The concentration of trace elements varies in the differ-
ent subunits of the T1. This has been further evaluated using 
the relative change in trace elements (TED) from the glob-
al median black shale (MBS) of all host rock types (Ketris 
and Yudovich, 2009) calculated by normalizing to Ti [TED =  
((TE/Ti)sample – (TE/Ti)MBS)/(TE/Ti)MBS) × 100]. The MBS is 
preferred here because other shale normalizations have very 
different trace element concentrations that may cause differ-
ent paleoredox interpretations (Slack et al., 2021). Titanium 
is used here for normalizing because it has a nearly perfect 
correlation (r2 = 0.99) with Al in the T1 samples, and Al was 
not reported in the MBS database of Ketris and Yudovich 
(2009).

Most of the trace elements (e.g., Mo, U, V, Ni, As, and Tl) 
have very large to extreme positive changes in the lower T1, 
except Mo and Tl in the Sangerhausen drill core (see Table 1). 
Cobalt and Cd, however, have very large to extreme positive 
changes in specific sulfide zones. For example, Co in the Cu 

zone from the Sangerhausen drill core and Cd in the Zn-Pb 
zone from the Allstedt and Wallendorf drill cores show ex-
treme enrichments (Table 1; Fig. 14A-C). The highest TED 
values correspond to the highest base metal concentrations. 
These enrichments are found mostly in the middle T1, which 
corresponds with the high-grade sulfide mineralization. In 
contrast, the Cu zone shows depletion in Cd, i.e., the entire 
T1 in the Sangerhausen and lower T1 in the Allstedt drill 
core samples (Fig. 14A). Further investigation on the trace 
element composition of base metal sulfides is required to ac-
curately constrain a genetic relationship associated with the 
hydrothermal input.

The relationship between several redox-sensitive trace ele-
ments (RSTEs; Mo, U, V, Cr, Ni, and As) and base metals has 
been tested (cf. Stüeken et al., 2020), and apart from Mo and 
Cu (Fig. 14D-G) there is no correlation. Rather, the concen-
tration of several RSTEs covaries with total organic carbon 
content and increases toward the lower T1 (e.g., Fig. 15A-C). 
The lower T1 samples from the Sangerhausen drill core are 
depleted only in Mo, but not U (Fig. 15A). The enrichment 
factor (EF) of selected RSTEs (trace elements = U, Mo, Ni, 
V, Cr) was calculated relative to Post Archean Australian Shale 
(PAAS; Taylor and McLennan, 1985) on Al-normalized basis 
[TEEF = (TE/Al)sample/(TE/Al)PAAS]. Enrichment factors of Mo, 
U, V, Cr, and Ni generally increase toward the lower T1 (Table 
1; Fig. 15). However, MoEF and NiEF values are exceptionally 
low in the lower T1 in the Sangerhausen drill core samples 
(Table 1). The UEF and MoEF values in the middle and upper 
T1 are similar in the Wallendorf drill core samples (Table 1). 
Most of the Ca1 samples, however, show Mo depletion rela-
tive to T1 samples (Fig. 15A-C).

Fig. 12. A ternary diagram for major mineralogical composition (carbonate, phyllosilicate + quartz, feldspar) for samples from 
all three drill cores. Each unit/subunit is assigned by a specific shape and shaded with the same background color, where the 
color of each shape represents the drill core. Phyllosilicate = 10Å-phyllosilicate (muscovite, phlogopite, illite) + chlorite. The 
T1 samples from Mansfeld (M-KS), Wettelrode, Polkowice, Rudna, and Lubin Kupferschiefer districts from Rahfeld et al. 
(2018) are plotted together for comparison.
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Discussion

The petrographic observations together with the mineralogical 
and geochemical trends have been used to unravel the relative 
timing and formation processes of diagenetic and hydrother-
mal mineral assemblages in the S1, T1, and Ca1 units (Fig. 
3). These data sets will be combined to investigate the major 
diagenetic events and style of sulfide replacements in the main 
ore-bearing units from the Saale subbasin, Eastern Germany.

Diagenetic evolution of the Rotliegend sandstone (S1)

The primary composition of sandstone is controlled by the re-
gional geologic setting, hydrology, and climate of the source 

area (Dickinson, 1970; Dickinson and Suczek, 1979; Dick-
inson et al., 1983). Similar to sandstones deposited in other 
semiarid to arid environments (Morad et al., 2010), the Rot-
liegend sandstones are mineralogically immature and charac-
terized by high content of feldspar and rock fragments (Fig. 
4A-D). The high proportion of silicate clasts means the Rotli-
egend sandstones were likely mechanically stable but chemi-
cally unstable (Worden and Morad, 2003), consistent with the 
lack of compacted grains (e.g., Fig. 4A-D).

Calcite (± dolomite) is the most abundant intergranular 
pore-filling carbonate cement between detrital clasts. The 
calcite cement likely formed shortly after deposition during 

Fig. 13. A series of bivariate plots for major element composition. (A) TiO2 (wt %) vs. Al2O3 (wt %). The pale yellow and 
purple denote composition fields for S1 and Ca1 + T1, respectively. (B) CaO/TiO2 (wt %/wt %) vs. Al2O3 (wt %). (C) K2O 
(wt %) vs. Al2O3 (wt %). (D) Na2O (wt %) vs. Al2O3 (wt %). (E) Carbonate (quantitative X-ray diffraction, %) vs. Cu + Zn 
+ Pb (wt %). (F) S (wt %) vs. Cu + Zn + Pb + Fe (wt %). Fe excluded in this figure to acount only carbonate replacement 
by the Cu and Zn-Pb sulfides. T1-L = lower Kupferschiefer, T1-M = middle Kupferschiefer, T1-U = upper Kupferschiefer.
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the early stages of diagenesis, as it has occluded precompac-
tion intergranular porosity (Worden et al., 2020). The random 
shape and orientation of clasts further indicates minimal com-
paction took place before calcite cementation (Fig. 4A-D). 
This is most clearly highlighted by the preservation of unde-
formed muscovite grains (e.g., Fig. 5B). The absence of clay 
rims means that porosity was occluded by the calcite cement 
before clasts could be altered by undersaturated pore fluids 
(e.g., Waldmann and Gaupp, 2016). 

Following a marine transgression, early diagenetic carbon-
ate cements can often develop in aeolian and fluvial sand-
stones (Ketzer et al., 2002, 2003b). The diffusion of Ca2+ 
and HCO3

– from overlying seawater is commonly enhanced 
by slow sedimentation rates associated with a sea-level high-
stand (e.g., Ketzer et al., 2002; El-Ghali et al., 2006, 2013). 
The patchy anhydrite cement that formed together with the 
calcite and barite cement may suggest the involvement of a 
partially evaporated seawater-derived fluid (Fig. 4E, F). Simi-
larly, the strong enrichment of deuterium in n-alkanes (dD 
values up to –36‰) and isoprenoids (dD values up to –20‰) 
in T1 samples proximal to the Rote Fäule from the Sprem-
berg area (Eastern Germany) has been used to show interac-
tion between organic matter and evaporitic seawater at tem-
peratures less than 110°C (Poetz et al., 2022). The evaporated 
seawater could derive from short-lived marine ingressions at 
the end of Rotliegend deposition (e.g., Stollhofen et al., 2008) 
or during the more widespread deposition of the overlying 
Zechstein salt (e.g., Sullivan et al., 1994). 

There is a minor component of euhedral dolomite, which is 
commonly overgrown by calcite (e.g., Fig. 4E, F, H). The dolo-

mite could have formed via a number of pathways—for exam-
ple, mixing between meteoric, evaporative, and marine waters 
(Morad et al., 2000)—but it is also possible that it formed via 
Mg sources from the alteration of mafic rock fragments (e.g., 
Fig. 4C). The higher dolomite contents in the Sangerhausen 
and Allstedt samples relative to the Wallendorf samples may 
indicate differences in the Mg/Ca ratio of seawater between 
marginal marine and basinal settings, respectively. The pre-
cipitation of calcite rather than dolomite can be favored dur-
ing significant seawater diffusion, which may be controlled by 
the primary porosity and permeability. The growth of trace 
hematite on euhedral dolomite shows that hematite formation 
postdates the euhedral dolomite (probably an initial phase; 
Fig. 5C). Therefore, the paragenetic relationship between do-
lomite and hematite suggests that the hematite did not form 
as the earliest phase i.e., as a detrital grain coating. The in-
tergrowth of most of the hematite within later-formed zones 
of the calcite cement indicates that hematite mostly postdates 
the first extensive calcite cement but could overlap or predate 
the last phase of calcite cementation (Figs. 3, 4E-H, 5B, C). 
The origin of hematite in the Rote Fäule could be linked to 
ferrous Fe oxidation that generates acidity (H+) that would be 
buffered by the dissolution of carbonate in the host rocks. The 
ferrous Fe could be released during the dominant Cu sulfide 
mineralogy transitions from chalcopyrite to bornite and then 
to chalcocite (Zhang et al., 2021). Alternatively, the dissolution 
or breakdown of mafic rock fragments would have released Fe 
that could have been incorporated into hematite. 

The other diagenetic feature in the Rotliegend unit is the 
alteration of feldspar grains. The alteration of detrital plagio-

Table 1. Trace Element Change (TED, %) and Trace Element Enrichment Factor (EF) Calculated Relative to the Median Black Shale  
(Ketris and Yudovich, 2009) and Post-Archean Australian Shale (Taylor and McLennan, 1985), Respectively

TED

Sangerhausen Allstedt Wallendorf
T1-L T1-M T1-U T1-L T1-M T1-U T1-L T1-M T1-U

Li 67.0 48.0 22.4 103.8 87.0 95.4 84.9 88.9 108.8
Cd –94.4 –80.3 –83.2 –65.8 711.6 453.8 1,677.8 1,464.8 1,751.3
Ba –53.6 10.1 173.6 –60.1 –45.3 –22.5 –66.0 –64.0 –63.3
Tl 82.9 539.4 135.6 390.5 137.7 195.5 332.5 12.6 89.6
Bi –8.1 746.7 –79.5 110.6 –69.7 –65.0 –67.5 –71.4 –55.9
Th 13.4 27.1 19.1 7.9 14.9 26.3 20.0 12.8 36.5
U 651.1 423.3 27.6 1,419.8 170.4 –12.7 370.1 141.5 102.1
Be 105.3 66.8 46.0 121.4 14.8 8.3 117.9 71.5 99.0
Sc –13.7 –12.0 –27.0 –32.5 –40.0 –42.1 –31.9 –36.8 –30.8
Cr 69.3 26.0 –28.3 18.3 –20.4 –45.0 19.6 –12.7 –9.2
Co 670.1 1,729.0 551.9 876.3 179.7 106.9 1,362.3 313.1 147.2
Ni 82.4 207.8 37.0 186.7 108.9 –0.9 205.2 70.0 67.0
Ga –7.3 –13.1 –24.4 –26.2 –32.9 –36.5 –19.3 –27.2 –18.2
Rb 80.9 80.3 56.7 29.2 26.6 18.9 29.9 21.9 46.9
Sr –29.3 112.9 50.6 –64.3 –34.9 –5.6 –35.8 –24.2 –41.8
Nb 41.2 26.4 13.7 7.5 0.2 –5.4 13.4 –0.9 15.3
Mo 72.6 692.3 177.3 1,094.7 611.4 37.2 431.2 68.1 81.3
Sn –23.9 –21.6 –27.3 –33.4 –31.8 –32.3 –30.9 –32.2 –20.5
Sb –66.2 –16.6 145.2 124.0 –40.4 –28.7 245.2 46.5 121.8
Cs 223.1 225.3 175.0 298.4 247.4 217.4 294.8 258.8 373.2
V 471.4 381.4 1.1 431.8 95.9 –29.0 349.6 102.4 66.0
As 131.2 303.1 123.8 427.6 –27.6 39.7 1,459.7 260.3 244.5
TEEF

MoEF 71.8 266.8 121.4 600.8 297.6 60.6 247.1 72.1 73.9
UEF 44.1 31.7 7.7 71.6 41.5 5.4 28.5 14.3 11.2
NiEF 5.2 9.0 3.8 6.1 5.9 2.8 8.7 4.6 4.4
VEF 16.5 13.7 3.0 13.2 6.0 2.2 13.9 5.9 4.7
CrEF 3.1 2.3 1.4 2.5 1.5 1.1 2.3 1.6 1.6
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clase follows cleavage planes and twinning surfaces (Fig. 4A), 
consistent with faster dissolution along weak surfaces due to 
excess surface energy (Morad et al., 1990). Detrital albite is 
also sometimes replaced by calcite with minor anhydrite and 

barite, mostly intergrown with kaolinite (Fig. 5E, F). These 
alteration assemblages may have originated from feldspar-un-
dersaturated fluids, such as residual meteoric water that was 
trapped in pores before calcite cementation, or from organic 

Fig. 14. (A) Comparison of trace element change (TED, %; refer to text for details) calculated relative to the median black 
shale (Ketris and Yudovich, 2009) in the subunits of the T1. (B) A bivariate plot of Cu (ppm) vs. Co (ppm). (C) A bivariate 
plot of Zn (ppm) vs. Cd (ppm). (D) A bivariate plot of Pb (ppm) vs. Bi (ppm). (E) A bivariate plot of Cu (ppm) vs. Mo (ppm). 
(F) A bivariate plot of Zn (ppm) vs. Mo (ppm). (G) A bivariate plot of Pb (ppm) vs. Mo (ppm). 
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acids that infiltrated from the overlying Kupferschiefer unit. 
However, several lines of evidence suggest that feldspar al-
teration mainly postdates carbonate cementation. 

1. Dissolution of calcite cement and formation of a serrated 
dissolution contact with the altered volcanic rock fragment 
could be explained by local in situ acid generation either 
released from the overlying organic matter in the T1 or 
during clay precipitation (green arrow, Fig. 4B). 

2. Precompaction dissolution of clasts would lead to greater 
susceptibility to deformation of clasts during burial, which 

is not observed, as clasts retain their original shape (Fig. 
4A, B, D). 

3. Clast dissolution and replacement was restricted to specific 
clasts under closed-system conditions, i.e., mafic volcanic 
rock fragments are more susceptible to dissolution and re-
placement (e.g., Fig. 4B, C). 

The precipitation of illite can be explained by [a(K+)/a(H+)] 
ratio in the solution during fluid-rock interactions (Lanson 
et al., 2002). Textural evidence suggested that early illite and 
chlorite formed early in the diagenetic sequence as a result 

Fig. 15. Downhole plots of selected trace elements (Mo, U, Cr, V, Co, and Ni), total organic carbon (TOC) and total inorganic 
carbon (TIC) for Sangerhausen (SHN; A), Allstedt (AST; B), and Wallendorf (WDF; C) drill cores. Notice the different scales 
for different drill holes.
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of alteration or replacement of mafic volcanic rock fragments 
and that these processes predate the extensive intergranular 
calcite cementation (Fig. 4B, C). The serrated edges of rock 
fragments support that the calcite cement postdates the early 
illite and chlorite formation (e.g., Fig. 4C). The late, inter-
granular pore-filling illite was formed after the dissolution 
of intergranular calcite and detrital feldspar clasts (e.g., K-
feldspar) (Figs. 4E-H, 5B). Previous petrographic and model-
ing studies about the diagenesis of the Rotliegend sandstone 
also showed illite formation as a result of K-feldspar disso-
lution (Schöner and Gaupp, 2005; Waldmann et al., 2014;  
Waldmann and Gaupp, 2016). Similarly, the possible ions for 
late illite precipitation in the studied samples could have been 
derived from the partial dissolution of K-feldspar.

Depositional conditions and diagenetic evolution of the  
Kupferschiefer (T1)

The deposition of the T1 represents a major change in the 
depositional paleoenvironment, which involved the flooding 
of the Permian intracontinental depression and the develop-
ment of the Kupferschiefer Sea (Rentzsch, 1965; Legler et 
al., 2005; Fig. 1B). Importantly, the availability of reduced 
sulfur exerts a strong control on the behavior of a number 
of RSTEs, which can also be used as proxies for depositional 
paleoenvironments (Tribovillard et al., 2006; Algeo and Liu, 
2020; Bennett and Canfield, 2020). The enrichment of some 
RSTEs (e.g., Mo, U, V, Ni, and Cr) in the organic matter-rich 
lower T1 (Fig. 15) is consistent with highly reducing condi-
tions in the bottom waters or pore fluids during sediment 
deposition. The behavior of Mo is particularly useful; for ex-
ample, Mo enrichment in modern anoxic systems has been 
used to distinguish noneuxinic (nonsulfidic, <25 ppm), sea-
sonally/intermittently euxinic (25–100 ppm), and persistently 
euxinic (sulfidic, i.e., H2S-bearing, >100 ppm) conditions, re-
spectively (Scott and Lyons, 2012). The Mo concentration of 
samples from the T1 reflects persistently euxinic (lower T1, 
Mo > 100 ppm) to seasonally euxinic (middle T1 and upper 
T1, Mo = 25–100 ppm) bottom water or pore water condi-
tions (Fig. 16).

Covariation between Mo and U is sensitive to both seawa-
ter Eh and water mass connectivity (Algeo and Tribovillard, 
2009; He et al., 2021). Based on the UEF and MoEF relation-
ship (Fig. 16), the T1 was deposited in anoxic (nonsulfidic) 
to euxinic conditions, before a transition to suboxic and then 
to oxic conditions during the deposition of the Ca1. Further-
more, the T1 in the Saale subbasin preserves similar UEF and 
MoEF systematics as samples from the adjacent Thuringian 
subbasin (located to the southwest of the Saale subbasin) and 
were interpreted to have been deposited under open marine 
conditions (Ruebsam et al., 2017; Fig. 16). The one exception 
is the group of samples from the Sangerhausen, which pre-
serve relatively lower Mo values in the lower T1 and could be 
related to remobilization by the oxidizing fluid that produced 
the Rote Fäule alteration (Fig. 15A). Though the cause for 
Mo but not U removal in the lower T1 from Sangerhausen is 
not clear here, one possible explanation is that Mo and U have 
different redox potentials, so it may be that the fluids were not 
quite oxidizing enough to mobilize U. Alternatively, the other 
possible explanation could be that U was locally bounded in 
clay-organic nanocomposites (Kennedy et al., 2014; Löhr and 

Kennedy, 2014). It may also be related to biotic processes that 
are the prominent driver of U reduction in organic-matter-
rich sediments, and direct enzymatic U microbial reduction 
could increase the rate of U immobility (U6+ can be reduced 
to U4+ in such reactions) as evidenced in roll-front U deposits 
(e.g., Min et al., 2005).

Other RSTEs show relative enrichment in specific sulfide 
zones (e.g., Co in the Cu zone and Cd in the Zn-Pb zone; 
Fig. 14A-C). This probably shows either mobility of these ele-
ments by the mineralizing fluids or, more likely, the addition 
of these elements from the mineralizing fluids into the sys-
tem. In contrast, the correlation between other RSTEs (e.g., 
Mo, U, V, Ni, and Cr) and total organic carbon (Fig. 15A-C) 
and their lack of covariation with base metals (Cu, Zn, and 
Pb) (Fig. 14D-G) indicate no significant mobility of these ele-
ments by the mineralizing fluids, and they can be used for 
paleoenvironmental interpretations (Stüeken et al., 2020).

In terms of diagenetic mineral phases, similar to the S1, tex-
tural evidence shows calcite and dolomite cements were the 
earliest phases in the T1. Early diagenetic carbonate cements 
can be formed under anoxic conditions in marine fine-grained 
siliciclastic sediments as a by-product of microbial sulfate re-
duction (Loyd and Smirnoff, 2022). However, understanding 
the source(s) of these fine-grained carbonate cements will 
require further investigations using in situ C and O isotope 
analyses (e.g., Denny et al., 2020; Cui et al., 2021).

Differentiating detrital and authigenic illite in the T1, espe-
cially in clay-rich fine-grained laminations, is very challenging. 
However, illite in carbonate-rich intervals was predominantly 
formed after the dissolution of carbonates (calcite and dolo-
mite) and clasts (Fig. 9A, B). Similar to the Rotliegend sand-
stone, the dissolution of K-feldspar likely contributed ions to 
illite precipitation in the T1. Pore fluids may be another pos-

Fig. 16. A plot showing UEF vs. MoEF, annotated with the different redox 
zones, including oxic, anoxic (ferruginous), and euxinic (H2S-bearing). 
Enrichment factors (EF) for Mo and U were calculated relative to the Post-
Archean Australian Shale (PAAS; Taylor and McLennan, 1985). Solid rect-
angles for samples from this study and dotted rectangles for samples from the 
Thuringian subbasin (Ruebsam et al., 2017). Colors of the rectangles: black = 
lower T1 (T1-L), orange = middle T1 (T1-M), and green = T1 (T1-U). 
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sible source of ions for illite precipitation; this cannot be ruled 
out from this study.

Our detailed petrographic observations showed both the 
sulfides and authigenic illite were formed after calcite dissolu-
tion, but the exact timing remains uncertain. Previous studies 
used illite crystallinity and K-Ar geochronology to discriminate 
between authigenic illite in mineralized and unmineralized 
zones. In general, illite in the mineralized zone in the Polish 
basin preserved lower crystallinity (Bechtel et al., 1999). The 
K-Ar age of the clay-size fraction (<2 μm) of the mineralized 
samples in this basin is ~250 Ma, whereas the age of diage-
netic illite is estimated to range from 216 to 190 Ma (Bechtel 
et al., 1999). Furthermore, the d18O and dD values of illite in 
the Rote Fäule and Cu zone were used to show the interac-
tion between illite with the mineralizing fluids (Bechtel et al., 
2000). For example, the shift in d18O (decrease by ~4‰) and 
dD (increase by ~40‰) values of illite from the Rote Fäule to 
the Cu zone in the Polish basin and Richelsdorf ore district in 
Germany have been attributed to fluid-rock interaction with 
ascending, oxidizing, mineralizing fluids (Bechtel and Ho-
ernes, 1993; Bechtel et al., 2000). These lines of evidence, 
together with our petrographic observation that sulfides and 
authigenic illite precipitated after calcite dissolution, suggest 
that some authigenic illite formation could at least overlap or 
postdate the mineralization.

Diagenetic evolution of the Zechstein limestone (Ca1)

The Ca1 shares key diagenetic features with the T1, includ-
ing early diagenetic carbonate cementation, illite formation, 
and sulfide precipitation associated with carbonate dissolution 
(Fig. 10A, B). Similar to the T1, detrital quartz and feldspars 
are uncompacted and cemented by early diagenetic calcite ce-
ment. The calcite cement is restricted to intercrystalline pores 
without any precursor dolomite fabrics (e.g., Fu et al., 2008). 
The lack of textural evidence, meteoric diagenetic assemblag-
es at this diagenetic stage (e.g., Al-Hashimi and Hemingway, 
1973; Ronchi et al., 2004; Nader et al., 2008), and absence of 
local anhydrite unit at the Sangerhausen site as a Ca2+ fluid 
source (Schoenherr et al., 2018) imply dedolomitization is not 
the likely process for the formation of the vuggy pores in the 
Ca1. Dedolomitization is a slow process that can increase po-
rosity (e.g., Lucia, 1995, 2004) or occlude porosity, depend-
ing on the presence (e.g., anhydrite dissolution) or absence of 
Ca2+-rich fluid sources (Escorcia et al., 2013; Schoenherr et 
al., 2018). In a hand-specimen (cm) scale, these vuggy pores 
are aligned in specific directions in the lowermost samples of 
the Ca1 and disappear upward. Therefore, the formation of 
these vuggy pores is related to selective dissolution of calcite 
cemented dolomite grains, probably by the mineralizing fluids 
(Figs. 7F, 10C).

The sulfides were mostly formed after the dissolution of 
highly calcite cemented areas of dolomite that have vuggy 
pores (Fig. 10E, F). Similar to S1 and T1, illite is formed after 
carbonate dissolution, with cations likely sourced from disso-
lution of K-feldspar (Fig. 10B).

Trace element associations and timing of high-grade sulfide 
mineralization in the Saale subbasin

The base metal sulfides in the three units include bornite 
in the Cu zone and sphalerite and galena in the overlapping 

Zn-Pb zone (Figs. 6A-H, 8C-H, 9C-E, 10C). The base metal 
data also reflect the vertical metal zonation in the studied drill 
cores (Fig. 11A-C). Zinc (sphalerite) is more proximal to the 
Cu zone than Pb (galena) in the Zn-Pb zone, and this could 
reflect the slight difference in their solubility during sulfide 
precipitation (Seward and Barnes, 1997; Huston et al., 2016). 
The distribution of certain trace elements also reflects the 
zonation of the major sulfide phases. For example, trace ele-
ments such as Bi, Ag, and Sb are primarily partitioned into 
galena and Cd into sphalerite (Cook et al., 2009; George et 
al., 2015). The enrichment of Cd in the Zn-Pb zone, there-
fore, may reflect its partitioning into sphalerite and/or galena 
(Table 1; Fig. 14A). Consistent with this interpretation, trace 
element analysis using laser ablation (LA)-ICP-MS on sul-
fides from the Polish Kupferschiefer showed higher Cd con-
centrations in sphalerite but not in bornite and chalcopyrite 
(Foltyn et al., 2022). 

Different timings have been proposed for the high-grade 
Cu and Zn-Pb mineralization in the Kupferschiefer, from ear-
ly diagenetic (e.g., Wedepohl and Rentzsch, 2006) to hydro-
thermal mineralization induced by tectonic fracturing (Jowett, 
1986, 1987; Cathles et al., 1993). Most of the early diagenetic 
models are based on (1) the interpretation of early pyrite re-
placement and low d34S values of sulfides and (2) the later-
ally extensive stratiform style of the mineralization, especially 
in the fine-grained carbonaceous mudstones of the T1 (e.g., 
Wedepohl and Rentzsch, 2006). Pre-ore, framboidal pyrite in 
the T1 and Ca1 is preserved in organic matter- and clay-rich 
laminations and likely formed before carbonate cementation 
during early diagenesis or even in the water column. In con-
trast, the high-grade Cu and Zn-Pb sulfides are formed mostly 
as a replacement of early diagenetic intergranular calcite ce-
ment in S1 and T1 (Figs. 6D, 9B-E). The lack of grain collapse 
following calcite dissolution is consistent with synchronous 
calcite dissolution-sulfide precipitation. It may also suggest 
that the high-grade, disseminated, sulfide mineralization oc-
curred at relatively shallow depths, i.e., grains were partially 
dissolved but lithostatic pressure was insufficient to cause the 
skeletal grains to collapse. 

The other important feature is the replacement of detrital 
feldspar by sulfides, which is most readily observed in the S1 
(Fig. 6A-C) and coarser-grained laminations in the lower T1 
(Fig. 8C-H). For example, in the S1 from Allstedt, rounded 
detrital K-feldspar (and intragranular calcite) has been re-
placed by bornite (Fig. 6A-C). In the T1, petrographic com-
parison between unmineralized and mineralized domains 
shows abundant carbonate and subordinate feldspar replace-
ment by sulfides, whereas quartz was less affected (Fig. 8A-
D). The angular shape of sulfides (e.g., bornite) replacing de-
trital clasts in these coarse-grained laminations also provides 
indirect evidence for sulfide replacement of feldspar clasts 
(Fig. 8E).

Overall, our preferred model involves the influx of Cu-
bearing hydrothermal fluids into the S1, T1, and Ca1 follow-
ing early diagenesis, which resulted in the dissolution and 
replacement of calcite and feldspar by sulfides (Fig. 17). It 
is generally accepted that the Cu-bearing fluids that formed 
SSC deposits had a weakly acidic to neutral pH (Wedepohl 
and Rentzsch, 2006; Hitzman et al., 2010; Borg et al., 2012). 
As there is no evidence of widespread phyllosilicate altera-
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tion in the Rotliegend, therefore, the acidity that resulted in 
the dissolution of calcite and feldspar was likely to have been 
generated in situ during fluid-rock interaction and fluid mix-
ing (e.g., Corbella et al., 2004; Zhang et al., 2021; Magnall et 
al., 2023). 

Implications 

The samples from the Saale subbasin contain fine-grained Cu 
and Pb-Zn sulfides that are hosted in the uppermost Rotli-
egend sandstone (S1), Kupferschiefer (T1), and overlying 
Zechstein limestone (Ca1). This stratigraphic interval records 

Fig. 17. Schematic diagram summarizing early (A) and postearly (B) diagenetic processes and products in the S1, T1, and 
Ca1. The inset backscattered electron images show the typical mineralogical assemblages in the three units during early and 
postearly diagenetic times. Extensive calcite cement, mostly postdating clast alteration, in the three units was formed during 
early diagenesis. The sulfides in this system are formed as a replacement of detrital clast (and intragranular calcite cement) 
in the S1 and mostly in lower T1, intergranular calcite cement in the S1 and middle and upper T1, and calcite cemented 
dolomite forming vuggy porosity in the Ca1. Ab = albite, Anh = anhydrite, Bn = bornite, Brt = barite, Ca1 = Zechstein limes-
tone, Cal = calcite, Chl = chlorite, Cv = covellite, Dol = dolomite, Hem = hematite, Ilt = illite, Kln = kaolinite, OM = organic 
matter, Py = pyrite, PyF = framboidal pyrite, Qz = quartz, S1 = Rotliegend sandstone, SW = seawater, T1-L = lower Kupfer-
schiefer, T1-M = middle Kupferschiefer, T1-U = upper Kupferschiefer. 

Halle

Sangerhausen

Not to scale

Cu
Zn-Pb
Cu

Cu,
Zn, Pb

B Post-early diagenetic processes and products

Cu
Cu

Cu Cu,
Zn, Pb

Cu

65
7 8

9
Zn-Pb

Zn-Pb
Zn-Pb

Zn-Pb

Basement

Ca1
T1-U

T1-M
T1-L

S1Langensaltz
high

?

Not to scale

OM
degradation

Basement

Rotliegend

Ca2+Ca2+

Ca2+

HCO3
-

A Early diagenetic processes and products

?? HCO3
- ?

T1-L
T1-M

S1

T1-U
Ca1

Halle

SangerhausenSW

Langensaltz
high

?
Rotliegend

? ?

20 μm
40 μm

Qz

Kfs

Bn Cal

Ab
Qz

Cal
OM+Clay

Bn

Sulfides replacing detrital clasts/intragranular calcite in the S1
Sulfides replacing intergranular calcite cement in the S1
Sulfides replacing carbonates/clasts in coarser-grained laminations  in the lower T1
Sulfides replacing disseminated calcite in the middle and upper T1
Sulfides in pores in the Ca1vuggy

Carbonate (calcite and dolomite) cement with hematite coating in the S1
Cogenetic albite, calcite and anhydrite in the S1
Carbonate cement in the middle T1
Carbonate cement and anhydrite in the Ca1

1
2
3
4
5
6
7
8
9

Dol

4 µm
Ilt

Anh
Cal4

1

4 µm

Cal

Hem

Dol

Ilt
Ilt

Qz
Chl 4 µm

Cal

Dol

Dol

3

2

4 µm

Kln

Brt Ab

Cal

Anh

20 μm

Bn
Cv

PyF

Dol

4 μm

Bn
Py

Cal

20 μm

Bn

Cal

High-transmissibility faults

Mineralizing fluids (Cu, Zn, Pb) Sulfate-rich brineSeawater-derived fluids

(Residual) meteoric water Organic acids(  )

Downloaded from http://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/118/6/1467/5951281/5015_mohammedyasin_et_al.pdf
by GeoForschungsZentrums Potsdam user
on 30 October 2023



 DIAGENESIS AND SULFIDE MINERALIZATION, KUPFERSCHIEFER, GERMANY 1491

a major change in the depositional environment that followed 
the Zechstein marine transgression (e.g., Legler et al., 2005; 
Legler and Schneider, 2008). Importantly, the diagenetic evo-
lution of units separated by major stratigraphic boundaries 
can have a major influence on reservoir heterogeneities (Mo-
rad et al., 2000, 2010, 2012; Al-Ramadan et al., 2012). For 
example, early diagenetic processes are primarily controlled 
by the mineralogy of detrital phases, pore fluid chemistry, or-
ganic matter content, and residence time of sediments under 
specific geochemical conditions (Ketzer et al., 2003a, b; Mo-
rad et al., 2000, 2010, 2012). 

In the Saale subbasin, the immature primary sediment com-
position and transition toward seawater-dominated pore fluid 
chemistry across the S1-T1 boundary were key factors con-
trolling the diagenetic evolution of the system. In particular, 
the distribution of early diagenetic carbonate, which was then 
subsequently replaced by sulfides, was a major factor control-
ling the influx of metal-bearing fluids through the S1 and T1 
units. Reaction permeability developed when metal-bearing 
mineralizing fluids reacted with calcite in the host rock, re-
sulting in fluid migration and sulfide precipitation. This 
model is similar to carbonate replacement models for clastic-
dominant (CD-type) Zn deposits, which are also hosted by 
carbonate-rich siliciclastic units (e.g., Magnall et al., 2021; 
Spinks et al., 2021). Future research may further elucidate 
the mineralizing fluid migration pathways in the host rocks 
by mapping the carbonate cement using techniques such as 
hyperspectral imaging and micro-X-ray fluorescence in cores, 
integrated with micro- to nanoscale imaging techniques (e.g., 
transmission electron microscopy) to better understand the 
interface reactions between sulfides and other mineral phases 
(e.g., Magnall et al., 2023).

Conclusions
Copper and Zn-Pb sulfide mineralized rocks in the Saale sub-
basin (Eastern Germany) formed primarily via the replace-
ment of diagenetic carbonate cement in the uppermost Rot-
liegend (S1), Kupferschiefer (T1), and Zechstein limestone 
(Ca1). Early calcite cementation in the Rotliegend (S1) unit 
occluded high levels of precompaction primary porosity and 
was followed by diagenetic alteration of detrital feldspar 
clasts. In the overlying T1 unit, petrographic and mineralogi-
cal data show an increase in carbonate (calcite and dolomite) 
cement. Enrichment of RSTEs (e.g., Mo) and covariation 
with total organic matter in the lower T1 are consistent with 
the development of highly reducing depositional (euxinic) 
conditions. The styles of sulfide replacement in the S1 and 
T1 are similar, although the highest base metal grades (max. 
Cu = 2.4 wt %, Zn = 3.1 wt %, Pb = 1 wt %) are associated 
with carbonate in the middle T1. The most volumetrically 
important mineralization style involved the replacement of 
intergranular calcite cement in the S1 and in the middle and 
upper T1. A second style of sulfide mineralization involved 
the replacement of detrital feldspar clasts. In the Ca1 unit, 
sulfide mineralization has formed in vuggy pore spaces. Over-
all, the reduced nature of the T1 provided the necessary re-
dox gradient for sulfide precipitation, and the dissolution of 
diagenetic carbonate was the main factor controlling reaction 
permeability and the lateral migration of hydrothermal fluids 
in the Saale subbasin.
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