

Helmholtz-Zentrum

Helmholtz-Zentrum Potsdam DEUTSCHES GEOFORSCHUNGSZENTRUM

Harlov, D. E., Anczkiewicz, R., Dunkley, D. J. (2023): Metasomatic alteration of zircon at lower crustal P-T conditions utilizing alkali- and F-bearing fluids: Trace element incorporation, depletion, and resetting the zircon geochronometer. - Geochimica et Cosmochimica Acta, 352, 222-235.

https://doi.org/10.1016/j.gca.2023.05.011

Institional Repository GFZpublic: <u>https://gfzpublic.gfz-potsdam.de/</u>

1	Metasomatic alteration of zircon at lower crustal P-T conditions utilizing alkali-
2	and F-bearing fluids: trace element incorporation, depletion, and resetting the
3	zircon geochronometer
4	
5	Daniel E. Harlov ^{1,2,3*} , Robert Anczkiewicz ⁴ , and Daniel J. Dunkley ^{5,6}
6	¹ Deutsches GeoForschungsZentrum-GFZ, Telegrafenberg, 14473 Potsdam, Germany
7	² School of Earth Resources, China University of Geosciences, Wuhan 430074, China
8	³ Department of Geology, University of Johannesburg P.O. Box 524, Auckland Park, 2006 South
9	Africa
10	⁴ Institute of Geological Sciences, Polish Academy of Sciences, Krakow Research Centre, Senacka
11	1, 31-002 Krakow, Poland
12	⁵ Department of Polar and Marine Research, Institute of Geophysics, Polish Academy of Sciences
13	Księcia Janusza 64, PL-01452 Warsaw, Poland
14	⁶ National Institute of Polar Research, 3-10 Midori-cho, Tachikawa-shi, Tokyo-to, 190-8518
15	Japan
16	
17	*dharlov@gfz-potsdam.de
18	
19	ABSTRACT
20	Natural alteration of zircon takes place in melts or fluids either via dissolution coupled with
21	overgrowth or via a coupled dissolution-reprecipitation process. The latter results in the zircon
22	being partially or totally replaced by new, compositionally re-equilibrated zircon or a new mineral
23	phase or both. In this study, fragments (50 – 300 μ m) from a large, inclusion-free, clear, 520 to 530

- 24 Ma euhedral zircon with light radiation damage from a nepheline syenite pegmatite, Seiland
- 25 Igneous Province, northern Norway, were experimentally reacted in 20 mg batches with 5 mg of

ThO₂ + ThSiO₂ + SiO₂ and a series of alkali-bearing fluids in sealed Pt capsules at 900 °C and 1000 26 27 MPa for 6 to 11 days in the piston cylinder press using a CaF₂ setup with a cylindrical graphite 28 oven. Th O_2 + Th SiO_2 + Si O_2 was present at the end of the experiment. In experiments involving 29 H_2O , $H_2O + NaCl$, $H_2O + KCl$, and 2N KOH, no reaction textures formed other than a slight 30 dissolution of the zircon grain fragments. Experiments involving 2N NaOH, Na₂Si₂O₅ + H₂O, and 31 $NaF + H_2O$ resulted in zircon reaction textures with varying degrees of intensity, which took the 32 form of partial replacement by compositionally modified zircon via a coupled dissolution-33 reprecipitation process. In the NaF + H₂O experiment some overgrowth also occurred. Altered 34 zircon is separated by sharp compositional boundaries from unaltered zircon. Secondary ion mass 35 spectrometry (SIMS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-36 MS) analysis indicates that, relative to the unaltered zircon, the altered zircon is strongly enriched in 37 Th, and heavily to moderately depleted in U and (Y+REE). In all the experiments, ²⁰⁶Pb (3 to 5 38 ppm in unaltered zircon) is depleted in the altered zircon to below the SIMS detection limit and to at 39 or below the LA-ICP-MS detection limit. Hafnium and Ti concentrations in the altered zircon 40 retained the same approximate value (within error) as the original zircon. The results from these 41 experiments demonstrate that zircon can be compositionally modified by alkali-bearing and alkali-42 F-bearing fluids via a coupled dissolution-reprecipitation process. Near to total loss of radiogenic 43 Pb via such processes under high-grade conditions resets the internal zircon geochronometer. 44 Although the end result is the same as with zircon overgrowth, i.e. the production of new generation 45 zircon at the time of a metasomatic/metasomatic event, such replacement processes can explain incomplete isotopic 'resetting'; inclusion production through unmixing of solid solutions in 46 47 metastable zircon compositions; and 'ghost' textures that preserve initial growth features but with 48 isotopic disturbance. Diagnostic replacement features produced in experiments, such as interface 49 geometries between altered and unaltered zircon, provide markers of the mechanism and aid in 50 zircon interpretation. A major implication from this study is that if zircon with low radiation 51 damage can be metasomatically altered under high-grade conditions this would have important

55

56 Keywords: zircon, Th, U, Pb, REE, petrochronology, coupled dissolution-reprecipitation, alkali57 bearing fluids, experimental petrology

58

59 **1. Introduction**

In nature zircon is one of the principal accessory minerals used for the dating of geologic processes. Its chemically and mineralogically robust nature allows it to survive its igneous origins and be reincorporated into either successive igneous protoliths, through melting of zircon-bearing source rocks, or into sedimentary protoliths, as detritus. Zircon can also survive metamorphism, metasomatism, and/or partial melting of the host rock. However, such survival is typically partial. The cores of the zircon grain tend to preserve its origins whereas the rims and replacement textures can record changes wrought during diagenesis, metasomatism, metamorphism, and re-incorporation

67 into a magma (e.g. Harlov et al., 2022).

68 Zircon is a principal host for U, Th, Hf, Y, and HREEs in various sedimentary, 69 metamorphic, and igneous rocks, and as such can contain a significant fraction of the whole rock 70 abundance of these elements depending on the presence or lack of other minerals such as monazite, 71 xenotime, allanite, apatite, and garnet. Despite its reputation as a refractory mineral, zircon can interact with diverse fluids and/or melts under a range of crustal P-T conditions. For example, the 72 73 chemical stability of metamict zircon, radiation-damaged zircon, and synthetic (pristine) zircon with 74 respect to various fluids has been explored experimentally as well as speculated upon in a series of 75 studies of natural examples utilizing a variety of analytical techniques, as summarized in Geisler et 76 al. (2007); see also Pidgeon et al. (1966), Rizvanova et al. (2000), Geisler et al. (2002, 2003), 77 Tomaschek (2004, 2010), Lenting et al. (2010), and Lewerentz et al. (2019). Both experimentally

and in nature, compared to pristine zircon or zircon with a low degree of radiation damage,

metamict zircon and zircon with a high degree of radiation damage is highly susceptible to fluidassisted alteration down to relatively low P-T conditions (e.g., 175 °C and 250 bars) (Geisler et al.,
2007).

82 In addition to metamict and radiation damaged zircon, reaction textures, presumed to be 83 produced by fluids or melts, can also be seen in zircons with a low degree of radiation damage from 84 both igneous and high-grade metamorphic rocks under cathodoluminescence (CL) imaging. 85 Examples include zircons from a ca. 983 Ma anorthosite, Eastern Ghats Mobile Belt, India (Chatterjee et al., 2008); orthopyroxene-bearing granulite-facies granitoids (charnockites) from the 86 87 Shevaroy Massif, southern India (Harlov et al., 2022); polymetamorphic migmatites, Valle 88 d'Arbedo, Switzerland (Vonlanthen et al., 2012); granulite-facies meta-granitoids, Queensland, 89 Australia (Hoskin and Black, 2000); and granitic gneisses in a contact aureole associated with the 90 Rogaland anorthite-norite intrusive complex, southern Norway (Möller et al., 2002). Here CL-91 bright or CL-dark areas of apparent alteration overprint the original magmatic zoning (Fig. 1). The irregular and/or lobate shapes of these altered areas, which extend inward into the zircon from the 92 93 grain rim, are difficult to ascribe to overgrowth of either the original zircon grain or partially 94 dissolved zircon grain, but rather resemble the partial replacement textures in monazite that have 95 been shown to be the result of fluid-induced coupled dissolution-reprecipitation processes as 96 opposed to overgrowth (Harlov et al., 2011).

In this study, fragments of an inclusion-free, faintly banded zircon (CL imaging) with light radiation damage from the Seiland Igneous Province, northern Norway (Fig. 2) are used in a series of piston cylinder metasomatism experiments involving both pure H₂O and a variety of alkalibearing solutions at 900 °C and 1000 MPa. A ThSiO₄ + ThO₂ + SiO₂ mix was added to all of the experiments with the goal of seeing whether or not Th could be metasomatically incorporated into the zircon crystal lattice replacing Zr utilizing reactive fluids. After quench and extraction, the reacted zircon grain fragments are then mounted, polished to cross section, and evaluated using high-contrast backscattered electron (BSE) imaging, CL imaging, transmission electron
microscopic (TEM) imaging, electron microprobe (EMP) analysis, sensitive high-resolution ion
microprobe (SHRIMP) analysis, and laser ablation inductively coupled plasma mass spectrometry
(LA-ICP-MS) analysis. The results from the experimentally reacted zircons are then compared with
metasomatically altered zircons from nature and the reaction textures are interpreted chemically,
physically, and from a petrochronological perspective.

110

111 **2. Experimental and Analytical Procedures**

112 2.1 Experimental protocol

113 Experiments were run at 900 °C and 1000 MPa using the two piston cylinder apparatus as described 114 by Johannes et al. (1971) and Johannes (1973) and are summarized in Table 1. The zircon chosen 115 for the experiments was obtained from the Natural History Museum at the University of Oslo, Oslo, 116 Norway. It consists of a large (2 cm), transparent, inclusion-free, light brownish, euhedral crystal 117 fragment from a nepheline syenite pegmatite located in the Seiland Magmatic Province, northern Norway (523 ± 2 to 531 ± 2 Ma; Pedersen et al., 1989). A fragment of this crystal was broken up 118 119 into 50 to 300 µm size irregular grains. The transparent, inclusion-free, lightly brown-pink grain 120 fragments were washed in ethanol in an ultrasonic bath. Size sorting was not done. High contrast 121 BSE and CL imaging reveal that the grains are totally texture-free except for a very faint magnatic 122 zoning (Fig. 2).

Solids in the experimental charge consisted of 20 mg of zircon, 5 mg of a ThSiO₄ + ThO₂ + SiO₂ mix, and 5 mg of fluid (Table 1). Reactants in the experimental charge included doubled distilled nanopore H₂O, NaCl + H₂O, KCl + H₂O, 2N NaOH, 2N KOH, Na₂Si₂O₅ + H₂O, and NaF + H₂O. All chemicals used were spec pure to 99.99% or better. The experimental charge was placed in a 3 mm wide, 1 cm long, tempered (1000 °C) Pt capsule, which was arc-welded shut and placed vertically, four at a time, in a CaF₂ setup with a cylindrical graphite oven (Fig. 3). The capsules were separated from each other by thin sheets of biotite. The presence of a graphite oven under the airtight conditions of the experiment implies that the system/experiments, at least in theory, should have been buffered to graphite-CO-CO₂ once the oven was heated to 900 °C. The thermocouple tip was placed such that it reached halfway up alongside the Pt capsules (Fig. 3). The temperature differential along the capsules was approximately 40 °C with either capsule end at 860 °C compared to the sweet spot at the center of the capsules at the measured 900 °C. The pressure measured during the experiment was corrected for friction due to the CaF₂ pressure medium. Non-isobaric quench was achieved within 20 to 30 seconds by turning off the current.

After each experiment, the Pt capsule was cleaned, weighed, and punctured. The Pt capsules were then dried at 105 °C for several hours, and weighed again to determine fluid loss. Due to the very small amounts of fluid used in the experiments (5 mg), accurate trace element analysis of the fluid was not possible. The reacted charge was then carefully removed from the Pt capsule with as little mechanical disturbance as possible. The charge was then mounted and polished down to cross section in an epoxy grain mount.

143

144 2.2 Scanning electron microscope (SEM)

Experimental charges were first evaluated using high contrast BSE and CL imaging on a JEOL
JSM–5900LV Scanning Electron Microscope (SEM) equipped with a Gatan MiniCL detector and
JEOL SmileStation stage automation and image-capture software at the National Institute for Polar
Research (NIPR), Tachikawa-shi, Tokyo-to, Japan.

149

150 2.3 Electron probe microanalysis (EPMA)

151 Electron probe microanalysis (EPMA) of zircon was carried out using the JEOL electron

152 hyperprobe with field emission gun at the GeoForschungsZentrum (GFZ) Potsdam using an

accelerating voltage of 15 kV and beam current of 15 nA. Individual spot analyses were made

using a focused electron beam with a diameter of 1 micron. Elements analyzed for in zircon

155 included P, Si, Ti, Zr, Hf, Th, U, Y, Gd, Tb, Dy, Ho, Er, Yb, Lu, Ca, Pb, and Na, with counting

- times of 20 to 120 seconds depending on the relative amount of the element. Standards for the REE
- 157 were taken from synthetic REE phosphates prepared by Jarosewich and Boatner (1991). The
- 158 remaining standards were taken from both the CAMECA and Smithsonian standard sets
- 159 (Jarosewich et al., 1980). The full EMP analysis data set is contained in Table S1.
- 160
- 161 2.4 Sensitive high-resolution ion microprobe (SHRIMP)
- 162 2.4.1 Zircon U-Th-Pb measurement

163 Mounted zircon grains were cleaned to eliminate surface contamination by common Pb, and coated

164 with 100 Angstroms of high-purity gold. Mounts were imaged at high resolution by CL and BSE

165 with a JEOL JSM–5900LV Scanning Electron Microscope (SEM) equipped with a Gatan MiniCL

166 detector and JEOL SmileStation stage automation and image-capture software, at NIPR,

167 Tachikawa-shi, Tokyo-to, Japan.

168 Spots were carefully chosen from SEM imaging for Th, U, and Pb analysis during multiple 169 sessions by a SHRIMP-II at NIPR, using a primary O₂-ion beam with a typical sample surface 170 current of 4 to 7 nA to produce 25 to 30 µm long, flat-floored oval pits. Secondary ionization was 171 measured on a single electron multiplier on mass stations 196 (Zr₂O) through to 254 (UO), with a mass resolution of > 5000 for ²³⁸U¹⁶O and a sensitivity on ²⁰⁶Pb of 17 to 20 cps per ppm per nA of 172 primary current. Mass stations were measured through 5 to 6 cycles, with typical count times of 10 173 174 s per cycle for ²⁰⁴Pb, background (at 204.04 amu) and ²⁰⁶Pb, and 20s for ²⁰⁷Pb. Reduction of raw 175 data for standards and samples was performed using the SQUID v.1.12a (Ludwig, 2001), and 176 Isoplot v.3.71 (Ludwig, 2003) add-ins for Microsoft Excel 2003. Abundance of U was calibrated 177 against in-house reference zircon YBr157 (580 ppm U, as estimated by TIMS; provided by Allen 178 Kennedy of the John de Laeter Centre, Curtin University of Technology, Western Australia, 179 Australia). Corrections for common Pb on U/Pb values and ages were done with the common Pb 180 estimated from ²⁰⁴Pb counts and the Stacey and Kramers (1975) common Pb model for the approximate U-Pb age for each analysis. $(Pb/U)/(UO/U)^2$ values were calibrated against 181

185

186 2.4.2 Zircon Y+REE analysis

187 Yttrium, REEs, and Hf contents were estimated for a subset of U-Th-Pb isotopic analyses by re-188 analyzing the same spots (Table 2). Considering the small penetration depth (< 3 micron) of the 189 SHRIMP analytical spots, and the lack of strong chemical zoning ion in the starting material these 190 contents are considered to be equivalent to those in zircon analyzed for U-Th-Pb. Spot sizes and 191 mass resolutions were the same as for age analyses, with each station measured for 10 s through 6 192 cycles. To minimize the interference of LREE-MREE oxide peaks on MREE-HREE and Hf measurements, energy filtering was applied to reduce ¹⁸⁰Hf to 10% of the unfiltered signal. This 193 194 reduces potential REEO⁺ interference to less than 1% of the unfiltered signals. Counts were normalized against ⁹²Zr from the NIST610 standard glass, and compared periodically against 195 196 published values for zircon reference material 91500 (Wiedenbeck et al., 2004; Iizuka and Hirata, 197 2004). All estimates were within 10% of published values. Zircon SHRIMP mean REE data for 198 the reacted zircons listed in Table 1 is contained in Table 2. The full SHRIMP analytical zircon 199 REE data set is contained in Table S3. Chondrite-normalized REE plots of the SHRIMP REE data 200 are contained in Figure S1.

201

202 2.5 Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)

Trace element abundances in zircon were measured at the Institute of Geological Sciences, Polish
Academy of Sciences, Kraków Research Centre, Krakow, Poland using an ArF excimer laserablation system RESOlution M50 by Resonetics coupled with a quadrupole ICP-MS XSeriesII by
FisherScientific. Ablation took place in a double volume Laurine technology cell in pure He (flow
rate of 0.9 L/min), for which the Ar nebuliser gas (flow rate of 0.5 – 0.55 L/min) was mixed

208 downstream from the sample cell. After passing through a signal-smoothing manifold, the analyte 209 was delivered to the ICP source. A small addition of nitrogen (0.005 - 0.008 L/min) was used to enhance the sensitivity of the ICP-MS. The oxide to metal ratio 248 ThO/ 232 Th was kept below 0.5 %. 210 Analyses were performed using a rotating rectangular slit with a length of 50 µm and a width of 8 211 and 16 μ m. An energy density of 4 to 5 J/cm² at a repetition rate of 5 Hz was applied. Twenty 212 213 seconds of gas blank was measured prior to each 30 s ablation, which was followed by 30 s washout 214 time. Sample runs were bracketed by measurements of the NIST 612 glass (Jochum et al., 2011). 215 The zircon reference material 91500 (Wiedenbeck et al., 2004; Iizuka and Hirata, 2004) was 216 frequently measured as a secondary standard along with the unknowns. The ZrO₂ content from 217 previously acquired electron microprobe analyses of the Seiland zircon ($ZrO_2 = 66.65$; $SiO_2 =$ 218 32.20; $HfO_2 = 0.70$) was used as an internal standard (Table S1). Data processing was performed 219 using the Glitter 4.0 software from Macquarie University, Australia (Griffin et al., 2008). Zircon 220 LA-ICP-MS mean U-Th-Pb and REE analyses for the reacted zircons listed in Table 1 is contained 221 in Table 3. The full LA-ICP-MS analytical U-Th-Pb and REE zircon data set is contained in Table 222 S4.

223

224 2.6 Transmission electron microscopy (TEM)

225 Reacted zircon grains, suitable for TEM investigation, were first selected using BSE and SEM 226 images. Sampling was accomplished by using focused ion beam (FIB) milling (Wirth, 2004, 2009). 227 FIB preparation was conducted under ultra-high vacuum conditions in an oil-free vacuum system 228 using a FEI FIB200 instrument at the GeoForschungsZentrum Potsdam. TEM-ready foils of 229 approximately 15 x 8 x 0.15 µm representing cross sections perpendicular to and across the reaction 230 front (separating the altered and unaltered zircon) were sputtered directly from the zircon grain in 231 the epoxy grain mount using a 30 kV Ga-ion beam. The TEM foil was protected from sputtering by 232 the Ga-ion beam by a 1 μ m thick, Pt layer deposited using a high-purity organic Pt gas (C₉H₁₆Pt, 99.9 %), which decomposes under the Ga-ion beam. Once cut, the TEM foils were placed on a 233

perforated carbon film, which was placed on a copper grid. Carbon coating to prevent charging inthe TEM was not applied.

TEM on the zircon foils was carried out in a TECNAI F20 XTwin instrument operated at 200 kV and equipped with a FEG electron source. The TEM is equipped with a Gatan imaging filter (GIF Tridiem), a Fishione high-angle annular dark field detector (HAADF), and an EDAX X-ray analyzer with an ultrathin window. TEM bright field images (HREM) were acquired as energyfiltered images applying a 10 eV window to the zero-loss peak.

241

242 **3. Results**

All experiments were run at 900 °C and 1000 MPa over periods of 144 to 192 hours (6 – 8 days). 243 244 Whereas, the zircon grain fragments were a light pinkish brown before the experiment, at quench 245 the reacted zircon grain fragments were colorless and transparent, which suggests that any radiation 246 damage in the zircon had been healed. This is supported by a variety of annealing experiments at 247 comparable or lower temperatures and/or pressures (cf. Nasdala et al., 2001, 2002; Montario et al., 248 2008; Ginster et al., 2019; Herrmann et al., 2021; Ende et al., 2021; Härtel et al., 2022). Of the 249 eight experimental runs reported here and listed in Table 1, in those experiments involving pure 250 H₂O, NaCl + H₂O, KCl + H₂O, and 2N KOH, the zircon did not react with the fluid, other than 251 showing a little dissolution along the grain fragment edge. In contrast, zircon in experiments 252 involving Na₂Si₂O₅ + H₂O (Fig. 4), 2N NaOH (Fig. 5), and NaF + H₂O (2 experiments; Table 1, 253 Fig. 6) developed reaction textures under CL imaging to varying degrees. In each of these 254 experiments, due to the relatively large amount of the $ThSiO_4 + ThO_2 + SiO_2 mix$ added (Table 1), 255 all three phases persisted to the end of the experiment and were visible in the reacted charge. 256 While not obvious in high contrast BSE images, under CL imaging the altered areas in these 257 four experimental runs appear lighter (CL-light) than the unaltered areas (CL-dark). CL-light areas 258 are separated from CL-dark areas by sharp boundaries. In the experiments involving $Na_2Si_2O_5 +$ 259 H₂O (ZF-5; Fig. 4) and 2N NaOH (ZF-9; Fig. 5), the reaction textures are considerably less

260 extensive than in runs involving NaF + H_2O (ZF-16, ZF-40; Fig. 6). In the case of run ZF-9, only 261 two zircon fragments with a reaction texture were found amongst 30 grain fragments exposed in the polished mount, which makes up about half of the total experimental product. In the case of ZF-5, 262 263 about half of the grains in the grain mount had reaction textures. In contrast, in the NaF + H_2O experiment (ZF-16, ZF-40), all the zircon grains developed reaction textures ranging from slight to 264 extensive. In runs ZF-5 and ZF-9, a lack of crystal face formation and the preservation of irregular 265 266 grain fragment boundaries would suggest that the reaction textures are due to the replacement of the 267 original zircon by altered zircon. In runs ZF-16 and ZF-40, the development of new crystal faces as a product of overgrowth is evident on some of the grains (e.g. Fig. 6a). However, reaction textures 268 269 have also developed that are lobate and convex inwards, away from edges of zircon grain regardless 270 of whether they have overgrowths or not (e.g. Figs. 6a,c,d). A second type of reaction texture occurs 271 along cracks and possible cleavage planes inside of the zircon grains, which extends outwards from 272 the crack into the zircon (Figs. 6e,f). There is a general lack of crystal face formation despite the 273 fact that, due to the high ratio of fluid to zircon grain fragments by mass (Table 1), each individual 274 grain was totally surrounded by fluid during the experiment and, hence, not in direct contact with 275 any of the other grains unless it was overgrown by a neighboring grain (e.g. Fig. 6a).

TEM bright field images of foils sampled across the reaction front, as defined by CL imagery, in zircon grains from runs ZF-5 (Figs. 4a,b), ZF-9 (Figs. 5a,b), and ZF-16 (Figs. 6a,b), show no differences in texture on the sub-micron scale between the altered and unaltered areas in the zircon, no mineral inclusions, nor any evidence of a boundary or reaction front between the unaltered and altered zircon.

In general, both SHRIMP and LA-ICP-MS spot analyses indicate that the CL-light altered areas are moderately to heavily depleted in U and Y + HREE and enriched in Th relative to the CLdark unaltered areas of the zircon grains, which retain the trace element abundances of the original zircon grain (Tables 2 and 3; Fig. 7; Fig. S1; Tables S2, S3, and S4). The low Th and U contents in the original Seiland zircon would imply that the amount of radiation damage to the crystallographic lattice should be relatively minor after some 520 to 530 Ma (Table 3; Tables S2 and S4). One
exception was ZF-5 (Na₂Si₂O₅ + H₂O). Here Gd showed no depletion within the altered areas (Fig.
7a, Fig. S1; Tables 3 and 4). In contrast, altered areas in all the experiments are heavily depleted in
Pb to or below the detection limit in both the SHRIMP and LA-ICP-MS analytical data, whereas
Hf and Ti show little difference in their abundances (within analytical error) between the altered
and unaltered areas in the zircon (Tables 2 and 3; Tables S3 and S4).

292

311

293 **4. Discussion**

294 4.1 Formation of reaction textures in zircon

295 A series of previous studies have focused on the experimental alteration of zircon, though most of 296 these have involved metamict or zircon with a high degree of radiation damage under temperatures 297 and pressures lower than the ones considered in this study (Pidgeon et al., 1966; Geisler et al., 298 2001a,b, 2002, 2003, 2004, 2007; Rizvanova et al., 2000, 2007; Lenting et al., 2010; Lewerentz et 299 al., 2019). In general, these experiments have involved a variety of fluids $(H_2O, HCl, Ca(OH)_2 +$ 300 H₂O, CaCl₂ + H₂O, and AlCl₃ + H₂O) over a broad range of temperatures (200 - 700 °C) and 301 pressures (100 - 500 MPa). The zircon in these experiments generally shows a high degree of 302 reactivity during the experiment due to the large amount of chemical potential energy stored in the 303 disordered, amorphous areas in the zircon or in the radiation-damaged zircon crystallographic 304 lattice (see discussion in Geisler et al., 2007). Other experiments at high P-T have focused on 305 annealing of zircon in restricted chemical systems (Morales et al., 2022), the relationship between 306 zircon and baddeleyite as a function of the Ca and Si activity in fluids (Lewerentz et al., 2019), or 307 on the dissolution of zircon in a variety of silicate melts (Borisov and Aranovich, 2019; Baker et al., 308 2002; Schmidt et al., 2013) and in a series of fluids (Schmidt et al., 2006; Newton et al., 2010; 309 Ayers et al., 2012; Wilke et al., 2012; Bernini et al., 2013; Ayers and Peters, 2018). 310 In this study, utilizing pressures and temperatures that are normally characteristic of the

lower crust/lithospheric mantle, the goal was to partially alter a natural zircon with a low degree of

312 radiation damage metasomatically while at the same time incorporating Th in the altered areas. The 313 reaction textures produced in the experimentally metasomatized zircon show a sharp contrast, both 314 texturally and compositionally (trace elements), between the altered (CL-bright) and unaltered (CL-315 dark) zircon (Figs. 4, 5, and 6). The lobate intergrowths of altered zircon into the unaltered zircon as 316 seen in Figures 6a, 6c, and 6d can be argued as not being a product of overgrowth, but rather a 317 product of mineral replacement (see comments above). Similar textures, both lobate and otherwise, 318 have been recognized in metasomatically altered monazite (cf. Harlov et al., 2011), xenotime 319 (Harlov and Wirth, 2012), and apatite (Harlov et al., 2002, 2003, 2005) both experimentally and 320 from nature, and have been interpreted as partial replacement textures due to a coupled dissolution-321 reprecipitation process (Putnis, 2002, 2009; Putnis et al., 2005; Putnis and Putnis, 2007; Putnis and 322 Austrheim, 2010, 2013; Altree-Williams et al., 2015). This is especially obvious in Figures 4c, 6e, 323 and 6f where alteration occurs along cracks and possible cleavage planes within the zircon grains as 324 partial replacement textures extending into the zircon, similar to that seen in partial replacement 325 textures involving experimental replacement of monazite by huttonite (ThSiO₄) (cf. Harlov et al., 326 2007, their figure 2h). During coupled dissolution-reprecipitation, the original zircon is dissolved in 327 the presence of these alkali-bearing fluids while simultaneously being replaced by new zircon that 328 compositionally is in thermodynamic equilibration with the fluid chemistry under the particular P-T 329 conditions of the system. During this process, the new zircon uses the original zircon as a 330 crystallographic template for purposes of nucleation and subsequent growth/replacement. In 331 essence coupled dissolution-reprecipitation is the basis for mineral pseudomorphism, and is a 332 commonly observed process in nature for many minerals. It is also the principal process by which 333 fossilization of organic material, such as bone and wood, occurs.

In minerals, the process of coupled dissolution-reprecipitation has been shown to occur along a very thin (10 nm wide or less) fluid-filled reaction front between the original dissolving mineral and the newly growing mineral (Putnis, 2002, 2009; Altree-Williams et al., 2015). This reaction front is physically connected to the fluid surrounding the mineral grain via an actively 338 evolving, non-static, interconnected porosity prevalent throughout the newly grown mineral phase. 339 This allows for active fluid-aided mass transfer between the fluid along the reaction front and the 340 fluid surrounding the grain during the replacement process. Porosity formation can result from a 341 variety of causes such as differences in the molar volume between the original and replacement phase or differences in solubility between the two phases (Putnis, 2009). Once this replacement 342 343 process stops due to changing P-T-X conditions in an open fluid-mineral system or, in the case of a 344 closed system, due to limited amounts of the reactive fluid (e.g. the experiments in this study), the 345 reaction front will cease to advance and the altered areas of the mineral will begin to recrystallize such that the original interconnected porosity will evolve into isolated nano- and micron-size fluid 346 347 inclusions often along with mineral inclusions, both those genetically derived from the host mineral 348 and those originating from minerals outside of the host mineral (Putnis, 2002, 2009; Harlov et al.,

349 2005, 2011; Harlov and Wirth, 2012; Harlov et al., 2016).

350 As can be seen in Figures 4b, 5c, and 6b, for each of the alkali-bearing fluid-zircon 351 metasomatism experiments, neither a remnant porosity nor mineral inclusions remain in the altered 352 areas of the zircon under CL imaging nor in TEM foils taken perpendicular to the reaction front, 353 which includes both altered zircon and unaltered zircon. Here the reaction front, so clearly visible under CL imaging, is not visible in the TEM foils, i.e. the altered zircon appears texturally 354 355 indistinguishable from the unaltered zircon (cf. Figs. 4b, 5b, and 6b). This is not what is seen in the 356 reaction textures and accompanying TEM foils taken across reaction fronts in experimentally metasomatized fluorapatite (Harlov et al., 2005), monazite (Harlov et al., 2011), and xenotime 357 358 (Harlov et al., 2012) from experiments done under the same approximate P-T conditions. It is also 359 not seen in experimentally metasomatized metamict or radiation-damaged zircon (Geisler et al., 360 2007), nor in metamict or radiation-damaged zircon from nature (Geisler et al., 2002, 2003, 2007). 361 In all of these cases the metasomatically altered areas are characterized by numerous fluid 362 inclusions and mineral inclusions, such as ThSiO₄, USiO₄, ThO₂, UO₂, ZrO₂, xenotime, feldspar, 363 quartz, etc..

364 One explanation for this striking difference in zircon textures is that the alteration textures 365 seen in Figures 4, 5, and 6 appear to be specific to zircon with low amounts of radiation damage, characteristic of the 520 to 530 Ma Seiland zircon, the high P-T conditions of the experiments, and 366 367 the reactivity of the alkali-bearing and F-bearing fluid chemistry of the system. Total elimination of the porosity during the course of the experiment, after growth of the altered area had stopped, could 368 369 be due to a rapid coarsening effect, which would be consistent with attaining textural equilibration 370 driven by reduction in the surface area as defined by the interior surface area of the pores. Hence, 371 the original porosity, which was transient to begin with, would have totally disappeared as textural 372 equilibration was achieved, and in this particular case achieved rather quickly during the course of 373 the experiment. Similar phenomena have been observed in the KBr-KCl-H₂O replacement 374 experiments of Putnis et al. (2005). Rapid disappearance of the porosity would have also 375 discouraged mineral inclusion formation since the pores normally act as nucleation sites for 376 inclusions in the altered/reacted areas (see discussion in Harlov et al., 2005). What overgrowth that 377 did occur was also totally recrystallized as per the above mechanism eliminating any porosity that 378 might have formed during crystal growth outwards. The sharp compositional boundary seen 379 between the altered zircon and unaltered zircon under CL imaging would indicate that element 380 diffusion across the boundary was negligible at 900 °C and 1000 MPa over the course of the 381 experiment. This observation agrees with the U, Th, and Hf diffusion experiments of Cherniak et al. 382 (1997a) and REE diffusion experiments of Cherniak et al. (1997b), both of which indicate very 383 slow diffusion rates at high temperatures for these elements in zircon.

Comparison of the reaction textures resulting from the experiments (Figs. 4 – 6) with similar textures in natural zircons in Figure 1 support the proposition that high-grade, high pH, alkalibearing/F-bearing fluids could have been responsible for them. The examples provided in Figure 1 are found in both metamorphic and igneous rocks in a fluid-rich environment with broadly granitoid and hence alkali-rich compositions or else are associated with such rocks. These observations are supported by Aranovich et al. (2017) who make a strong case for alkali-bearing fluids causing partial to total alteration of zircon grains in gabbroids and plagiogranites from the Mid-Atlantic
Ridge. In another example, zircons from a leucocratic granite of the Weondong region of South
Korea show four types of partial metasomatic alteration, which the authors attribute to the action of
F-rich fluids during post-magmatic alteration (Park et al., 2016; their figures 3 and 5). The textures
of these metasomatised zircon grains broadly mimic some of the reaction textures obtained in the
NaF-fluid experiments (Fig. 6).

396

397 *4.2 Alteration of the zircon trace element chemistry*

398 Relative to the original unaltered Seiland zircon, the altered areas in the zircon are significantly 399 enriched in Th, significantly depleted in U, moderately to strongly depleted in Y + HREE, and 400 nearly to totally depleted in Pb to within the detection limit of both SIMS and LA-ICP-MS. In 401 contrast, there is little or no change in the Hf or Ti content within the measurement precision 402 (Tables 2 and 3; Fig. 7). These abundances contrast with the fluids used in the experiments, which 403 were saturated in Th + Si, and totally devoid of U, Pb, Y+REE, Ti, and Hf (Table 1). In the zircon crystallographic lattice, U⁴⁺, Th⁴⁺, and Hf⁴⁺ are conventionally considered to 404 substitute for Zr⁴⁺ on the 8-fold Zr site (Finch and Hanchar, 2003; Hoskin and Schaltegger, 2003). 405 406 While, Th and U have a limited solid solution with zircon as tetragonal thorite (ThSiO₄), and 407 tetragonal coffinite (USiO₄), respectively (Ushakov et al., 1999), Hf has a complete solid solution 408 with zircon as tetragonal hafnon ($HfSiO_4$) (Speer and Cooper, 1982). This is due to the fact that on the 8-fold Zr site Hf^{4+} (0.83 Å) can completely substitute for Zr^{4+} (0.84 Å) (effective ionic radii; 409 Shannon, 1976; Harley and Kelly, 2007). In contrast, the relatively larger 8-fold ionic radii of U⁴⁺ 410 (0.86 Å) and Th⁴⁺ (1.05 Å) (Shannon, 1976; Harley and Kelly, 2007), compared to 8-fold Zr⁴⁺ (0.84 411 Å), would explain their relatively limited solid solution in zircon. It would also explain as to why 412 U⁴⁺ was so easily removed and Th⁴⁺ only incorporated in limited amounts during each of the 413 414 metasomatism experiments despite the fluid being supersaturated with Th (Table 3; Tables S2 and 415 **S**4).

Yttrium and the REE are generally thought to be incorporated into zircon via a xenotime-

417 type coupled substitution or:

418
$$^{\text{VIII}}(\text{Y}+\text{REE})^{3+} + {}^{\text{IV}}\text{P}^{5+} = {}^{\text{VIII}}\text{Z}\text{r}^{4+} + {}^{\text{IV}}\text{S}\text{i}^{4+}$$
(1)

419 (Finch and Hanchar, 2003; Hoskin and Schaltegger, 2003) with $(Y+REE)^{3+}$ going on the 8-fold Zr 420 site and P⁵⁺ (0.17 Å) on the 4-fold Si⁴⁺ (0.26 Å) site (effective ionic radii; Shannon, 1976). Other 421 possible coupled substitutions for (Y+REE) in zircon which have been described in the literature 422 include:

423
$$Li^{+}_{(interstitial)} + {}^{VIII}(Y + REE)^{3+} = {}^{VIII}Zr^{4+}$$
(2)

424 (Finch et al., 2001; Wang and Trail, 2022), and:

425
$$H^{+}_{(interstitial)} + {}^{VIII}(Y + REE)^{3+} = {}^{VIII}Zr^{4+}$$
(3)

426 (Trail et al., 2016) where Li and H substitute on interstitial sites in the zircon structure (Finch and 427 Hanchar, 2003). In all of these cases, 8-fold $(Y + HREE)^{3+}$ (1.019, 1.079 – 0.977 Å) are strongly 428 preferred over the 8-fold LREE³⁺ (1.160 – 1.109 Å) due to their better fit on the 8-fold Zr (0.84 Å) 429 site (Hoskin and Schaltegger, 2003; Shannon, 1976).

From the LA-ICP-MS data in Table S4, $(Y+HREE)^{3+}$ plus the approximate value for P⁵⁺ when plotted vs. $Zr^{4+} + Si^{4+}$ for both unaltered and altered zircon in each of the experiments show an approximate linear relationship with a positive shallow slope. This indicates that an additional coupled substitution mechanism must have been responsible for Y+HREE incorporation in both the altered and unaltered zircon. These additional mechanisms could have included coupled substitutions (2) and/or (3), each to varying degrees, though this must be treated as speculation since neither Li nor H⁺ were measured.

437 The observation that Ti was not depleted in the altered areas (Table 3) is more curious 438 considering that the alkali-bearing solutions in each of the experiments were not buffered by rutile, 439 i.e. TiO₂, or some other Ti-rich mineral such as ilmenite or titanite; though each of the solutions was 440 buffered to an SiO₂ activity of 1 due to the presence of free SiO₂ in the capsule at the end of the 441 experiment. In zircon, relatively limited amounts of Ti, as ^{IV}Ti⁴⁺ (0.42 Å) are believed to substitute

for ^{IV}Si⁴⁺ (0.26 Å) (effective ionic radii; Shannon, 1976) on the tetrahedral site with the amount of 442 443 Ti present increasing as a function of increasing temperature for a system nominally buffered at a 444 constant TiO₂ activity (Watson and Harrison, 2005; Watson et al., 2006; Ferry and Watson, 2007; Harley and Kelly, 2007; Tailby et al., 2011). The fact that Ti remained in the altered areas of the 445 zircon at 900 °C and 1000 MPa in a Ti-free system (Table 1), as opposed to selectively partitioning 446 447 into the solution, would suggest that for minor amounts of Ti, the partitioning coefficients for NaF-, NaOH-, and Na₂Si₂O₅-bearing solutions apparently favor Ti remaining on the tetrahedral site in 448 449 zircon at the P-T of the experiments. Such an observation could have implications for the Ti-in-450 zircon geothermometer in alkali fluid-bearing systems whether they are buffered with respect to 451 TiO₂ or not (cf. Ferry and Watson, 2007). 452 Lead appears to be broadly incompatible in the zircon structure with respect to substitution on either the tetrahedral Si site or the octahedral Zr site due to its much larger size, i.e. ^{IV}Pb⁴⁺ (0.65 453 Å) vs. ^{IV}Si⁴⁺ (0.26 Å) and ^{VIII}Pb⁴⁺ (0.94 Å) vs. ^{VIII}Zr⁴⁺ (0.84 Å) (effective ionic radii; Shannon, 454 1976; Watson et al., 1997; Mezger and Krogstad, 1997; Geisler et al., 2003; Utsunomiya et al., 455 2004; Kogawa et al., 2012). This assumes that Pb would occur as Pb⁴⁺ in the zircon structure, 456 457 which would seem highly unlikely assuming that the experiments were presumably buffered to graphite-CO₂ (see above). If Pb in the original, unaltered zircon existed only as Pb^{2+} , in addition to 458 459 there being a question of charge balance, the misfit of Pb on both the Si and Zr sites becomes even 460 greater, i.e. 0.98 vs. 0.26 Å and 1.29 vs. 0.84 Å, respectively. This would imply that the only Pb 461 present in the original zircon should be from the radioactive decay of U, Th, and their short-lived 462 daughter isotopes in the form of small accumulations in amorphous radiation-damaged domains 463 and/or along cleavage planes, or as nano-inclusions in annealed zircon (Geisler et al., 2003; Nasdala 464 et al., 2005; Kogawa et al., 2012; Seydoux-Guillaume et al., 2015; Valley et al., 2014, 2015; Lyon 465 et al., 2019). A similar case has been made for Pb accumulation in monazite (Fougerouse et al., 466 2018). The fact that Pb is so readily removed from the altered areas of the zircon to the extent of 467 being at or below the detection limits of both LA-ICP-MS and SIMS implies that Pb, at least in

468 trace amounts, is apparently highly soluble in NaF-, NaOH-, and Na₂Si₂O₅-bearing fluids at 900 $^{\circ}$ C 469 and 1000 MPa most likely due to complexing with either OH⁻ or F⁻ in solution (Bottari and

471 The addition of Th, loss of U, and near to total loss of Pb in the altered areas of the zircon would imply that the U-Th-Pb geochronometer has been near to totally reset compared to the 472 473 unaltered areas. This obviously has major implications with regard to zircon geochronology. 474 Namely that the zircon U-Th-Pb geochronometer can be metasomatically reset, which is an idea 475 that has long been speculated upon in the literature (Hoskin and Schaltegger, 2003; Hoskin, 2005; 476 Geisler et al., 2007; Soman et al., 2010; Van Lankvelt et al., 2016; Peterman et al., 2016; Aranovich 477 et al., 2017; Chen and Zhou, 2017; Wang et al., 2018; Zi et al., 2022). Natural resetting of this 478 geochronometer via Pb diffusion in zircon under fluid-absent conditions has been demonstrated to 479 be a very slow, almost negligible process even if the zircon experiences relatively high temperatures 480 (>900 °C) for at least 1 Myr (Möller et al., 2002; see also Cherniak and Watson, 2000). In the 481 experiments from this study, the geochronometer was reset due to alkali-bearing high pH or alkali-482 fluoride fluids at 900 °C and 1000 MPa over a period of days. Such fluids might explain the zircon 483 alteration textures seen in Figure 1 since each of these examples occur in granitoid rocks rich in 484 alkali-bearing feldspars, which have experienced metasomatism/metamorphism under high-grade 485 conditions. In each of these cases, the CL-bright metasomatized areas tend to be younger by some 486 millions to 10's of millions of years than the CL-dark zircon cores, which the authors generally tend 487 to attribute to metamorphic/metasomatic processes. Similar conclusions were reached by 488 Lewerentz et al. (2019) in experiments (600 – 900 °C; 600 – 1000 MPa) involving the partial 489 alteration of a natural zircon in CaCl₂- and Ca(OH)₂-bearing fluids to baddeleyite. While the newly 490 formed baddeleyite and altered areas in the zircon contained U, Th, and Y + REE derived from the 491 zircon, Pb in both the baddeleyite and the altered areas of the zircon was below the detection limit of the SIMS. 492

493 The depletion of the Y + HREE in the altered areas of the zircon (Fig. 7) is due in part to 494 the fact that the alkali-bearing fluids used in these experiments contained negligible amounts of 495 REE. This apparently allowed for a fraction of the Y+HREE to be partitioned into the fluid where 496 they presumably complexed with OH⁻ (ZF-5 and ZF-9) (Haas et al., 1995; Wood et al., 2002; 497 Pourtier et al., 2010; Perry and Gysi, 2018) and/or with F⁻ (ZF-16 and ZF-40) (Haas et al., 1995; 498 Tropper et al., 2011, 2013; Mair et al., 2017). Depletion or enrichment of REE in zircon is a 499 commonly observed phenomena in granitoid rocks and generally presumed due to metasomatically 500 induced alteration via fluids and/or melts. Examples include zircons with metasomatically altered 501 areas depleted in REE from fluid-induced charnockite patches in granitoid rocks from Kottavattom, 502 Trivandrum Block, southern India (Taylor et al., 2014); metasomatically altered areas depleted in 503 REE in metamorphosed zircons from the leucocratic portion of a migmatite, Ticino, Switzerland 504 (Vonlanthen et al., 2012); and zircons from high grade metagranitoids, Queensland, Australia where 505 the metasomatically altered areas are depleted in REE (Hoskin and Black, 2000).

506

507 **5. Summary and implications**

508 In this study it has been demonstrated in a series of experiments that natural zircon with relatively 509 small amounts of radiation damage can be metasomatically altered using alkali- and F-bearing 510 solutions under the high grade P-T conditions commonly found in the lower crust. This involved the 511 incorporation of Th and the removal of U and REE, and the near to total removal of Pb to below 512 LA-ICP-MS and SIMS detection limits in the altered areas, which implies a basic resetting of the 513 U-Th-Pb geochronometer. If this is also the case for zircons in nature, then this would imply that 514 similar textures, as illustrated in Figure 1, could be metasomatically induced and thus could 515 potentially be used to date metasomatic events.

A second major implication from these experiments is that if zircon with low radiation damage can be metasomatically altered this would have important consequences with respect to zircons presumed role as an impregnable container for mineral inclusions. Namely the mineral 519 inclusions contained within the zircon could also be altered, reset as a geochronometer, or even 520 replaced by another mineral. This has important consequences especially with respect to how the 521 mineral inclusions within the Hadean detrital zircons from Jack Hills, Australia have been utilized 522 in an attempt to discern the geochemical and physical conditions on the very early Earth during the Hadean period (4.0 – 4.54 Ga) (Mojzsis et al., 2001; Wilde et al., 2001; Valley et al., 2002, 2014). 523 524 The fact that these inclusions have apparently experienced varying degrees of alteration has been 525 amply demonstrated by Rasmussen et al. (2011) who, in a study of monazite and xenotime 526 inclusions in the 4.35 to 3.35 Ga Jack Hills detrital zircons, concluded that these inclusions formed as the result of a metamorphic event at either 2.68 or 0.8 Ga and at monazite-xenotime temperatures 527 528 (Gratz and Heinrich, 1997) of around 420 to 475 °C. The Ti content of the quartz inclusions in these 529 same zircons gave temperatures of 350 to 490 °C using the geothermometer of Thomas et al. 530 (2010). They also noted that most of the mineral inclusions have the same composition and 531 abundances as the minerals in the original metamorphic matrix in which the zircons were found. 532 This is consistent with the idea that these inclusions, which include K-feldspar, albite, muscovite, 533 and biotite, formed during metamorphism due perhaps to the replacement of what could have been 534 originally apatite inclusions, which are one of the more common types of mineral inclusions in 535 zircon and generally not observed in Jack Hills zircons. If this replacement of mineral inclusions 536 did occur, it would probably have occurred via a coupled dissolution-reprecipitation process as 537 outlined by the experiments in this study. These observations are backed by a CO₂ fluid inclusion 538 study of the Jack Hills zircons by Menneken et al. (2017). Here the formation of these CO₂ 539 inclusions appears to be related to a later metamorphic event as opposed to the primary igneous 540 event presumed responsible for the genesis of the zircons. 541 Mineral inclusion formation in zircon grain interiors via a fluid-aided coupled dissolution-

documented the fluid-aided formation, via coupled dissolution-reprecipitation, of U-Th-REE phases
as mineral inclusions in trace element-rich zircons from the Island Park-Mount Jackson rhyolite,

reprecipitation process are not limited to the Jack Hills zircons. For example, Troch et al. (2018)

542

Yellowstone volcanic field, Wyoming, USA. Similar conclusions have also been reached for ultrahigh pressure mineral inclusions, such as coesite and jadeite, in zircon from a jadeite quartzite, Dabie orogen, central China (Gao et al., 2015). While the zircons here are presumed to have a detrital, igneous mid-crustal origin, the inclusions could only have formed during a fluid-rich event, perhaps as a result of coupled dissolution-reprecipitation, under the ultra-high pressure metamorphic conditions present during the continental subduction conditions experienced by the jadeite quartzite during the Dabie orogeny.

552 Similar conclusions have been reached for entirely different mineral systems. For example, Krause et al. (2013) documented metasomatically altered apatite inclusions in clinopyroxene from a 553 554 nepheline-bearing clinopyroxenite located in the Uralian-Alaskan-type complexes of Kytlym and 555 Nizhny Tagil, Ural Mountains, Russian Federation. Here the clinopyroxene experienced partial 556 metasomatic alteration via coupled dissolution-reprecipitation by a CaCl₂-enriched saline fluid, 557 which also altered the apatite inclusions in these areas from fluor-chlorapatite to chlor-fluorapatite 558 giving them a composition similar to the apatites in the surrounding mineral matrix. In those areas 559 of the clinopyroxene not metasomatically altered, the apatites retained their original fluor-560 chlorapatite composition. In another example, where apatite is the host mineral, the formation of 561 magnetite and quartz inclusions in metasomatically altered areas of fluorapatite from the Pea Ridge 562 iron oxide-apatite ore body is attributed to fluid-aided mass transfer of Fe and Si into the 563 fluorapatite from magnetite and quartz in the surrounding mineral matrix, again during a process of 564 coupled dissolution-reprecipitation (Harlov et al., 2016).

In all of these cases, the key point here is that the chemistry of a fluid encountered by zircon, or any other mineral, will dictate whether or not the mineral will experience alteration, and whether this alteration occurs by simple partial dissolution, overgrowth, or metasomatic alteration, either partial or total, via a coupled dissolution-reprecipitation process. This last process can also result in the total replacement of one mineral phase by another mineral phase as proposed for the inclusions in the zircon, clinopyroxene, or fluorapatite as discussed above. The pressure and temperature under which such a process will or could occur is of less importance since nature has
time on its side as opposed to the very finite lifetime of laboratory experiments (see discussion in
Harlov et al., 2002, 2003, 2005).

574 The basic conclusion here is that if the typical sort of zircon commonly found in crustal rocks, with radiation damage ranging from light to metamict, encounters a chemically reactive fluid, 575 576 such as the alkali-bearing and F-bearing fluids used in these experiments, it could be partially to 577 totally altered chemically with respect to it trace elements including U, Th, Pb, and the Y+REE. 578 This could result in the U-Th-Pb geochronometer in the altered areas being reset if all the Pb is 579 removed thus allowing for the metasomatic event responsible to be dated. Just as importantly any 580 inclusions in the altered areas of the zircon could also experience potential chemical alteration, 581 depending on their reactivity to the fluid, with respect to both major and trace element composition, 582 or be replaced by other minerals more in equilibrium with both the infiltrating fluid and the mineral 583 assemblage surrounding the zircon.

584

585 **Declaration of Competing Interest**

586 The authors declare that they have no known competing financial interests or personal relationships 587 that could have appeared to influence the work reported in this paper.

588

589 Acknowledgements

Richard Wirth and Anja Schreiber are thanked for their assistance with the focused ion beam sampling and the transmission electron microscopy. Dieter Rhede is thanked for helping to acquire the zircon EPMA data. Special thanks to Prof. Kazuyuki Shiraishi for making available the analytical facilities of the National Institute of Polar Research available to Daniel Dunkley and Daniel Harlov. Daniel Harlov was supported by an Invitational Fellowship for Research in Japan from the Japan Society for the Promotion of Science (or JSPS Invitational Fellowships for Research in Japan). Special thanks to the Polish Academy of Sciences (Polska Akademia Nauk, PAN) and the Foundation for Polish Science (Fundacja na rzecz Nauki Polskiej, FNP) for supporting the LA-ICPMS analytical facilities at the Krakow Research Centre (Robert Anczkiewicz) and making them
available to Daniel Harlov. Comments by Rongquing Zhang and two anonymous reviewers helped
to improve the manuscript.

601

602 Appendix A. Supplementary Material

- 603 The supplementary materials for this manuscript include four supplementary tables (Tables S1, S2,
- 604 S3, and S4) and one supplementary figure (Figure S1). Table S1 contains all EPMA data acquired
- from these zircon metasomatism experiments. Tables S2, S3, and S4 contain all the raw LA-ICP-
- 606 MS and SHRIMP data utilized to assemble Tables 2 and 3 and the REE chondrite-normalized plots
- 607 in Figure 7 and Figure S1. In Figure S1, the chondrite normalized REE data from the SHRIMP
- analyses (Table S3) and the LA-ICP-MS analyses (Table S4) are plotted for comparison.
- 609 Supplementary materials attached to this article can be found online at
- 610

611

613

- Altree-Williams, A., Pring, A., Ngothai, Y., Brügger, J., 2015. Textural and compositional
 complexities resulting from coupled dissolution–reprecipitation reactions in geomaterials.
 Earth Sci. Rev. 150, 628–651.
- 617 Aranovich, L.Y., Bortnikov, N.S., Zinger, T.F., Borisovskiy, S.E., Matrenichev, V.A., Pertsev,
- 618 A.N., Sharkov, E.V., Skolotnev, S.G., 2017. Morphology and impurity elements of zircon in
- 619 the oceanic lithosphere at the mid-Atlantic ridge axial zone (6° -13° N): evidence of
- specifics of magmatic crystallization and postmagmatic transformations. Petrology 25, 335–
 361.
- Ayers, J.C., Zhang, L., Luo, Y., Peters, T.J., 2012. Zircon solubility in alkaline aqueous fluids
 at upper crustal conditions. Geochim. Cosmochim. Acta 96, 18–28.
- Ayers, J.C., Peters, T.J., 2018. Zircon/fluid trace element partition coefficients measured by
 recrystallization of Mud Tank zircon at 1.5 GPa and 800–1000 °C. Geochim. Cosmochim.
 Acta 223, 60–74.
- Baker, D.R., Conte, A.M., Freda, C., Ottolini, L., 2002. The effect of halogens on Zr diffusion
 and zircon dissolution in hydrous metaluminous granitic melts. Contrib. Mineral. Petrol.
 142, 666–678.
- Bernini, D., Audètat, A., Dolejs, D., Keppler, H., 2013. Zircon solubility in aqueous fluids at high
 temperatures and pressures. Geochim. Cosmochim. Acta 119, 178–187.
- Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundilf, R.,
 Campbell, I.H., Korscha, I.J., Williams, I.S., Foudoulis, C., 2004. Improved ²⁰⁶Pb/²³⁸U
 microprobe geochronology by the monitoring of a trace-element-related matrix effect;
 SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of
 zircon standards. Chem. Geol. 205, 115–140.
- Borisov, A., Aranovich, L., 2019. Zircon solubility in silicate melts: New experiments and
 probability of zircon crystallization in deeply evolved basic melts. Chem. Geol. 510,
 103–112.
- Bottari, E., Ciavatta, L., 1965. On the complex formation between lead(II) and fluoride ions.
 J. Inorg. Nucl. Chem. 27, 133–141.
- Chatterjee, N., Crowley, J.L., Mukherjee, A., Das, S., 2008. Geochronology of the 983-Ma Chilka
 lake anorthosite, Eastern Ghats Belt, India: implications for Pre-Gondwana tectonics. J.
 Geol. 116, 105–118.
- 645 Chen, W.T., Zhou, M.-F., 2017. Hydrothermal alteration of magmatic zircon related to NaCl-rich

- brines: diffusion-reaction and dissolution-reprecipitation processes. Am. J. Sci. 317, 177–
 215.
- 648 Cherniak, D.J., Hanchar, J.M., Watson, E.B., 1997a. Diffusion of tetravalent cations in zircon.
 649 Contrib. Mineral. Petrol. 127, 383–390.
- Cherniak, D.J., Hanchar, J.M., Watson, E.B., 1997b. Rare earth diffusion in zircon. Chem. Geol.
 134, 289–301.
- 652 Cherniak, D.J., Watson, E.B., 2000. Pb diffusion in zircon. Chem. Geol. 172, 5–24.
- Ende, M., Chanmuang N.C., Reiners, P.W., Zamyatin, D.A., Gain, S.E.M., Wirth, R., Nasdala, L.,
 2021. Dry annealing of radiation-damaged zircon: single-crystal X-ray and Raman
 spectroscopy study. Lithos 406–407, 106523.
- Ferry, J.M., Watson, E.B., 2007. New thermodynamic models and revised calibrations for the
 Ti-in-zircon and Zr-in rutile thermometers. Contrib. Mineral. Petrol. 154, 429–437.
- 658 Finch, R.J., Hanchar, J.M., Hoskin, P.W.O., Burns, P.C., 2001. Rare-earth elements in synthetic
- circon: Part 2. a single-crystal X-ray study of xenotime substitution. Am. Mineral. 86, 681–
 660
 689.
- Finch, R.J., Hanchar, J.M., 2003. Structure and chemistry of zircon and zircon-group minerals.
 Rev. Mineral. Geochem. 53, 1–25.
- Fougerouse, D., Reddy, S.M., Saxey, D.W., Erickson, T.M., Kirkland, C.L., Rickard, W.D.A.,
 Seydoux-Guillaume, A.-M., Clark, C., Buick, I.S., 2018. Nanoscale distribution of Pb in
 monazite revealed by atom probe microscopy. Chem. Geol. 479, 251–258.
- Gao, X.-Y., Zheng, Y.-F., Chen, Y.-X., Tang H.-L., Li, W.-C., 2015. Zircon geochemistry
 records the action of metamorphic fluid on the formation of ultra-high-pressure jadeite
 quartzite in the Dabie orogen. Chem. Geol. 419, 158–175.
- 669 Gauthiez-Putallaz, L., Rubatto, D., Hermann, J., 2016. Dating prograde fluid pulses during
 670 subduction by in situ U-Pb and oxygen isotope analysis. Contrib. Mineral. Petrol. 171, 15.
- 671 Geisler, T., Ulonska, M., Schleicher, H., Pidgeon, R.T., van Bronswijk, W., 2001a. Leaching
 672 and differential recrystallization of metamict zircon under experimental hydrothermal
 673 conditions. Contrib. Mineral. Petrol. 141, 53–65.
- Geisler, T., Pidgeon, R.T., van Bronswijk, W., Pleysier, R., 2001b. Kinetics of thermal recovery
 and recrystallization of partially metamict zircon: a Raman spectroscopic study. Eur. J.
 Mineral. 13, 1163–1176.
- 677 Geisler, T., Pidgeon, R.T., van Bronswijk, W., Kurtz, R., 2002. Transport of uranium, thorium,
 678 and lead in metamict zircon under low-temperature hydrothermal conditions. Chem. Geol.
 679 191, 141–154.

- Geisler, T., Pidgeon, R.T., Kurtz, R., van Bronswijk, W., Schleicher, H., 2003. Experimental
 hydrothermal alteration of partially metamict zircon. Am. Mineral. 88, 1496–1513.
- 682 Geisler, T., Seydoux-Guillaume, A.-M., Wiedenbeck, M., Wirth, R., Berndt, J., Zhang, M.,
- Mihailova, B., Putnis, A., Salje, E.K.H., Schlüter, J., 2004. Periodic precipitation pattern
 formation in hydrothermally treated metamict zircon. Am. Mineral. 89, 1341–1347.
- Geisler, T., Schaltegger, U., Tomaschek, F., 2007. Re-equilibration of zircon in aqueous fluids and
 melts. Elements 3, 43-50.
- 687 Ginster, U., Reiners, P.W., Nasdala, L., Chanmuang N., C., 2019. Annealing kinetics of radiation
 688 damage in zircon. Geochim. Cosmochim. Acta 249, 225–246.
- 689 Gratz, R., Heinrich, W., 1997. Monazite-xenotime thermobarometry: Experimental calibration of
 690 the miscibility gap in the binary system CePO₄-YPO₄. Am. Mineral. 82, 772–780.
- Griffin, W., Powell, W., Pearson, N., O'Reilly, S., 2008. GLITTER: Data reduction software for
 laser ablation ICP-MS: Mineralogical Association of Canada Short Course, v. 40.
- Haas, J.R., Shock, E.L., Sassani, D.C., 1995. Rare earth elements in hydrothermal systems:
 estimates of standard partial molal thermodynamic properties of aqueous complexes of the
 rare earth elements at high pressures and temperatures. Geochim. Cosmochim. Acta 59,
 4329–4350.
- Harley, S.L., Kelly, N.M., 2007. Zircon tiny but timely. Elements 3, 13–18.
- Harlov, D.E., Förster, H.-J., Nijland, T.G., 2002. Fluid-induced nucleation of (Y + REE)-phosphate
 minerals within apatite: nature and experiment. Part I. chlorapatite. Am. Mineral. 87, 245–
 261.
- Harlov, D.E., Förster, H.-J., 2003. Fluid-induced nucleation of REE phosphate minerals within
 apatite: nature and experiment. Part II. fluorapatite. Am. Mineral. 88, 1209–1229.
- Harlov, D.E., Wirth, R., Förster, H.-J., 2005. An experimental study of dissolutionreprecipitation in fluorapatite: fluid infiltration and the formation of monazite.
 Contrib. Mineral. Petrol. 150, 268–286.
- Harlov, D.E., Wirth, R., Hetherington, C.J., 2007. The relative stability of monazite and huttonite at
 300–900 °C and 200–1000 MPa: metasomatism and the propagation of metastable mineral
 phases. Am. Mineral. 92, 1652–1664.
- Harlov, D.E., Wirth, R., Hetherington, C.J., 2011. Fluid-mediated partial alteration in monazite: the
- role of coupled dissolution-reprecipitation in element redistribution and mass transfer.
 Contrib. Mineral. Petrol. 162, 329–348.
- Harlov, D.E., Wirth, R., 2012. Experimental incorporation of Th into xenotime at middle to lower
 crustal P-T utilizing alkali-bearing fluids. Am. Mineral. 97, 641–652.

- Harlov, D.E., Meighan, C.J., Kerr, I.D., Samson, I.M., 2016. Mineralogy, chemistry, and fluidaided evolution of the Pea Ridge Fe oxide-(Y + REE) deposit, southeast Missouri, USA.
 Econ. Geol. 111, 1963–1984.
- Harlov, D.E., Dunkley, D.J., Hansen, E.C., Ishwar-Kumar, C., Samuel, V., Hokada, T., 2022.
 Zircon as a recorder of trace element changes during high grade metamorphism of
 Neoarchean lower crust, Shevaroy Block, Eastern Dharwar Craton, India. J. Petrol. 63,
 egac036.
- Härtel, B., Jonckheere, R., Ratschbacher, L., 2022. Multi-band Raman analysis of radiation damage
 in zircon for thermochronology: partial annealing and mixed signals. Geochem. Geophys.
 Geosys. 23, e2021GC010182.
- Herrmann, M., Söderlund, U., Scherstén, A., Næraa, T., Holm-Alwmark, S., Alwmark, C., 2021.
 The effect of low- temperature annealing on discordance of U–Pb zircon ages. Sci. Rept. 11, 726 7079.
- Hoskin, P.W.O., 2005. Trace-element composition of hydrothermal zircon and the alteration of
 Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta 69, 637–648.
- Hoskin, P.W.O., Black, L.P., 2000. Metamorphic zircon formation by solid-state recrystallization of
 protolith igneous zircon. J. Metamorph. Geol. 18, 423–439.
- Hoskin, P.W.O., Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic
 petrogenesis. Rev. Mineral. Geochem. 53, 27–62.
- Iizuka, T., Hirata, T., 2004. Simultaneous determinations of U-Pb age and REE abundances for
 zircons using ArF excimer laser ablation-ICPMS. Geochem. J. 38, 229–241.
- Jarosewich, E., Nelen, J.A., Norberg, J.A., 1980. Reference samples for electron microprobe
 analysis. Geostand. Newslett. 4, 43–47.
- Jarosewich, E., Boatner, L.A., 1991. Rare-earth element reference samples for electron
 microprobe analysis. Geostand. Newslett. 15, 397–399.
- Jochum, K.P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D.E., Stracke, A.,
 Birbaum, K., Frick, D.A., Günther, D., Enzweiler, J., 2011. Determination of reference
 values for NIST SRM 610-617 glasses following ISO guidelines. Geostand. Geoanal. Res.
 35, 397–429.
- Johannes, W., Bell, P.M., Mao, H.K., Boettcher, A.L., Chipman, D.W., Hays, J.F., et al., 1971.
 An interlaboratory comparison of piston-cylinder pressure calibration using the albitebreakdown reaction. Contrib. Mineral. Petrol. 32, 24–38.
- Johannes, W., 1973. A simplified piston-cylinder apparatus of high precision. N. Jahrb. Mineral.
 Monat. 7, 331–351.

- Kogawa, M., Watson, E.B., Ewing, R.C., Utsunomiya, S., 2012. Lead in zircon at the atomic scale.
 Am. Mineral. 97, 1094–1102.
- Krause, J., Harlov, D.E., Pushkarev, E.V., Brügmann, G.E., 2013. Apatite and clinopyroxene as
 tracers for metasomatic processes in nepheline clinopyroxenites of Uralian-Alaskan-type
 complexes in the Ural Mountains, Russian Federation. Geochim. Cosmochim. Acta 121,
 503–521.
- Lenting, C., Geisler, T., Gerdes, A., Kooijman, E., Scherer, E.E., Zeh, A., 2010. The behaviour
 of the Hf isotope system in radiation-damaged zircon during experimental hydrothermal
 alteration. Am. Mineral. 95, 1343–1348.
- Lewerentz, A., Harlov, D.E., Schersten, A., Whitehouse, M.J., 2019. Baddeleyite formation in
 zircon by Ca⁻ bearing fluids in silica⁻ saturated systems in nature and experiment: resetting
 of the U-Pb geochronometer. Contrib. Mineral. Petrol. 174, 64.
- Ludwig, K.R., 2001. SQUID: A User's Manual: Berkeley Geochronology Center, Special
 Publication 2, 22 pp.
- Ludwig, K.R., 2003. User's manual for Isoplot 3.00: A geochronological toolkit for Microsoft
 Excel: Berkeley Geochronology Center, Special Publication 4, 71 pp.
- Lyon, I.C., Kusiak, M.A., Wirth, R., Whitehouse, M.J., Dunkley, D.J., Wilde, S.A., Schaumlöffel,
 D., Malherbe, J., Moore, K.L., 2019. Pb nanospheres in ancient zircon yield model ages for
 zircon formation and Pb mobilization. Sci. Rept. 9, 13702.
- Mair, P., Tropper, P., Harlov, D.E., Manning, C.E., 2017. The solubility of CePO₄ monazite and
 YPO₄ xenotime in KCl-H₂O fluids at 800 °C and 1.0 GPa: implications for REE transport in
 high-grade crustal fluids. Am. Mineral. 102, 2457–2466.
- 770 McDonough, W.F., Sun S., 1995. The composition of the Earth. Chem. Geol. 120, 223–253.
- Menneken, M., Geisler, T., Nemchin, A.A., Whitehouse, M.J., Wilde, S.A., Gasharova, B.,
 Pidgeon, R.T., 2017. CO₂ fluid inclusions in Jack Hills zircons. Contrib. Mineral. Petrol.
 172, 66.
- Mezger, K., Krogstad, E.J., 1997. Interpretation of discordant U-Pb zircon ages: an evaluation. J.
 Metamorph. Geol. 15, 127–140.
- Mojzsis, S.J., Harrison, T.M., Pidgeon, R.T., 2001. Oxygen-isotope evidence from ancient zircons
 for liquid water at the Earth's surface 4,300 Myr ago. Nature 409, 178–181.
- Möller, A., O'Brien, P.J., Kennedy, A., Kröner, A., 2002. Polyphase zircon in ultrahigh-
- temperature granulites (Rogaland, SW Norway): constraints for Pb diffusion in zircon. J.
 Metamorph. Geol. 20, 727–740.
- 781 Montario, M.J., Garver, J.I., Marsellos, A., 2008. Annealing of radiation damage in a Grenville

- zircon, from the eastern Adirondacks, NY State. In Garver, J.I., and Montario, M.J. (eds.),
 Proceedings from the 11th International Conference on thermochronometry, Anchorage
 Alaska, Sept. 2008.
- Morales, I., Molina, J.F., Cambeses, A., Montero, P., Bea F., 2022. Experimental annealing of
 zircon: influence of inclusions on stability, intracrystalline melt migration, common lead
 leaching, and permeability to fluids. ACS Earth Space Chem. 6, 288–307.
- Nasdala, L., Wenzel, M., Vavra, G., Irmer, G., Wenzel, T., Kober, B., 2001. Metamictisation of
 natural zircon: accumulation versus thermal annealing of radioactivity-induced damage.
 Contrib. Mineral. Petrol. 141, 125–144.
- Nasdala, L., Lengauer, C.L., Hanchar, J.M., Kronz, A., Wirth, R., Blanc, P., Kennedy, A.K.,
 Seydoux-Guillaume, 2002. Annealing radiation damage and the recovery of
 cathodoluminescence. Chem. Geol. 191, 121–140.
- Nasdala, L., Hanchar, J.M., Kronz, A., Whitehouse, M.J., 2005. Long term stability of alpha
 particle damage in natural zircon. Chem. Geol. 220, 83–103.
- Newton, R.C., Manning, C.E., Hanchar, J.M., Colasanti, C.V., 2010. Free energy of formation of
 zircon based on solubility measurements at high temperature and pressure. Am. Mineral. 95,
 52–58.
- Park, C., Song, Y., Chung, D., Kang, I.-M., Khulganakhuu, C., Yi, K., 2016. Recrystallization
 and hydrothermal growth of high U–Th zircon in the Weondong deposit, Korea: record of
 post-magmatic alteration. Lithos 260, 268–285.
- Pedersen, R.B., Dunning, G.R., Robins, B., 1989. U-Pb ages of nepheline syenite pegmatites from
 the Seiland Magmatic Province, N. Norway. In Gayer, R.A., ed. The Caledonide Geology of
 Scandinavia. London, Graham and Trotman, pp. 3–9.
- Perera, W.N., Hefter, G., Sipos, P.M., 2001. An investigation of the lead(II)-hydroxide system.
 Inorg. Chem. 40, 3974–3978.
- Perry, E.P., Gysi, A.P., 2018. Rare earth elements in mineral deposits: speciation in hydrothermal
 fluids and partitioning in calcite. Geofluids 2018, 5382480.
- Peterman, E.M., Snoeyenbos, D.R., Jercinovic, M.J., Kylander-Clark, A., 2016. Dissolutionreprecipitation metasomatism and growth of zircon within phosphatic garnet in metapelites
 from western Massachusetts. Am. Mineral. 101, 1792–1806.
- Pidgeon, R.T., O'Neil, J.R., Silver, L.T., 1966. Uranium and lead isotopic stability in a metamict
 zircon under experimental hydrothermal conditions. Science 154, 1538–1540.
- 814 Pourtier, E., Devidal, J.-L., Gibert, F., 2010. Solubility measurements of synthetic neodymium

- 815 monazite as a function of temperature at 2 kbars, and aqueous neodymium speciation in 816 equilibrium with monazite. Geochim. Cosmochim. Acta 74, 1872–1891.
- Putnis, A., 2002. Mineral replacement reactions: from macroscopic observations to microscopic
 mechanisms. Mineral. Mag. 66, 689–708.
- 819 Putnis, A., 2009. Mineral replacement reactions. Rev. Mineral. Geochem. 70, 87–124.
- Putnis, A., Putnis, C., 2007. The mechanism of re-equilibration of solids in the presence of a fluid
 phase. J. Solid State Chem. 180, 1783–1786.
- Putnis, A., Austrheim, H., 2010. Fluid-induced processes: metasomatism and metamorphism.
 Geofluids 10, 254–269.
- Putnis, A., Austrheim, H., 2013. Mechanisms of metasomatism and metamorphism on the local
 mineral scale: the role of dissolution-reprecipitation during mineral re-equilibration. In D.E.
 Harlov and H. Austrheim, Metasomatism and the Chemical Transformation of Rock,
- 827 Lecture Notes in Earth System Sciences, Springer-Verlag Berlin Heidelberg, pp. 141–170.
- Putnis, C.V., Tsukamoto, K., Nishimura, Y., 2005. Direct observations of pseudomorphism:
 compositional and textural evolution at a fluid solid interface. Am. Mineral. 90, 1909–1912.
- Rasmussen, B., Fletcher, I.R., Muhling, J.R., Gregory, C.J., Wilde, S.A., 2011. Metamorphic
 replacement of mineral inclusions in detrital zircon from Jack Hills, Australia: implications
 for the Hadean Earth. Geology 39, 1143–1146.
- Rizvanova, N.G., Levchenkov, A., Belous, A.E., Bezmen, N.I., Maslenikov, A.V., Komarov, A.N.,
 Makeev, A.F., Levskiy, L.K., 2000. Zircon reaction and stability of the U-Pb isotope system
 during interaction with carbonate fluid: experimental hydrothermal study. Contrib. Mineral.
 Petrol. 139, 101–114.
- Rizvanova, N.G., Gaidamako, I.M., Levchenkov, O.A., Bezmen, N.I., Makeev, A.F., Levsky, L.K.,
 2007. Interaction of metamict zircon with fluids of various composition. Geochem. Internat.
 45, 465–477.
- 840 Schmidt, C., Rickers, K., Wirth, R., Nasdala, L., Hanchar, J.M., 2006. Low-temperature Zr 841 mobility: an in situ synchrotron-radiation XRF study of the effect of radiation damage in 842 zircon on the element release in $H_2O + HCl \pm SiO_2$ fluids. Am. Mineral. 91, 1211–1215.
- Schmidt, C., Steele-MacInnis, M., Watenphul, A., Wilke, M., 2013. Calibration of zircon as a
 Raman spectroscopic pressure sensor to high temperatures and application to water-silicate
 melt systems. Am. Mineral. 98, 643–650.
- Seydoux-Guillaume, A.-M., Bingen, B., Paquette, J.-L., Bosse, V., 2015. Nanoscale evidence for
 uranium mobility in zircon and the discordance of U–Pb chronometers. Earth Planet. Sci.
 Lett. 409, 43–48.

- Shannon, R.D., 1976. Revised effective ionic radii and systematic studies of interatomic distances
 in halides and chalcedonides. Acta Crystal. A32, 751–767.
- Soman, A., Geisler, T., Tomaschek, F., Grange, M., Berndt, J., 2010. Alteration of crystalline zircon
 solid solutions: a case study on zircon from an alkaline pegmatite from Zomba–Malosa,
 Malawi. Contrib. Mineral. Petrol. 160, 909–930.
- Speer, J.A., Cooper, B.J., 1982. Crystal structure of synthetic hafnon, HfSiO₄, comparison with
 zircon and the actinide orthosilicates. Am. Mineral. 67, 804–808.
- Stacey, J.C., Kramers, J., 1975. Approximation of terrestrial lead isotope evolution by a two-stage
 model. Earth Planet. Sci. Lett. 26, 207–221.
- Tailby, N.D., Walker, A.M., Berry, A.J., Hermann, J., Evans, K.A., Mavrogenes, J.A., O'Neill,
- H.St.C., Rodina, I.S., Soldatov, A.V., Rubatto, D., Sutton, S.R., 2011. Ti site occupancy in
 zircon. Geochim. Cosmochim. Acta 75, 905–921.
- 861 Taylor, R.J.M., Clark, C., Fitzsimons, I.C.W., Santosh, M., Hand, M., Evans, N., McDonald, B.,
- 2014. Post-peak, fluid-mediated modification of granulite facies zircon and monazite in the
 Trivandrum Block, southern India. Contrib. Mineral. Petrol. 168, 1044.
- Thomas, J.B., Watson, E.B., Spear, F.S., Shemella, P.T., Nayak, S.K., Lanzirotti, A., 2010.
 TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in
 quartz. Contrib. Mineral. Petrol. 160, 743–759.
- Tomaschek, F., 2004. Zircon re-equilibration by dissolution-reprecipitation: reaction textures from
 flux-grown solid solutions. Berichte der Deutschen Mineralogischen Geschellschaft Beihefte
 zum Eur. J. Mineral. 16, 147.
- Tomaschek, F., 2010. Praktische Aspekte der Mischkristallphase Zirkon: Reequilibrierungsprozess,
 Zirkon-Xenotim Mischungslücke, geochronologische Anwendungen in einem
- 872 polymetamorphen Kristallinkomplex (Syros, Kykladen, Griechenland). Ph.D. thesis
- 873 Mathematisch Naturwissenschaftlichen Fakultät der Westfälischen Wilhelms-Universität
 874 Münster, Münster, Germany, 431 pp.
- Trail, D., Cherniak, D.J., Watson, E.B., Harrison, T.M., Weiss, B.P., Szumila, I., 2016. Li
 zoning in zircon as a potential geospeedometer and peak temperature indicator. Contrib.
 Mineral. Petrol. 171, 25.
- Troch, J., Ellis, B.S., Schmitt, A.K., Bouvier, A.-S., Bachmann, O., 2018. The dark side of zircon:
 textural, age, oxygen isotopic and trace element evidence of fluid saturation in the
 subvolcanic reservoir of the Island Park-Mount Jackson Rhyolite, Yellowstone (USA).
 Contrib. Mineral. Petrol. 173, 54.
- 882 Tropper, P., Manning, C.E., Harlov, D.E., 2011. Solubility of CePO₄ monazite and YPO₄ xenotime

- in H₂O and H₂O-NaCl at 800 °C and 1 GPa: implications for REE and Y transport during
 high-grade metamorphism. Chem. Geol. 282, 58–66.
- Tropper, P., Manning, C.E., Harlov, D.E., 2013. Experimental determination of CePO₄ and
 YPO₄ solubilities in H₂O-NaF at 800 °C and 1 GPa: implications for rare earth element
 transport in high-grade metamorphic fluids. Geofluids 13, 372–380.
- Ushakov, S.V., Gong, W., Yagovkina, M.M., Helean, K.B., Lutze, W., Ewing, R.C., 1999.
 Solid solutions of Ce, U, and Th in zircon. Ceram. Trans. 93, 357–363.
- Utsunomiya, S., Palenik, C.S., Valley, J.W., Cavosie, A.J., Wilde, S.A., Ewing, R.C., 2004.
 Nanoscale occurrence of Pb in an Archean zircon. Geochim. Cosmochim. Acta 68, 4679–
 4686.
- Valley, J.W., Peck, W.H., King, E.M., Wilde, S.A.W., 2002. A cool early Earth. Geology 30,
 351–354.
- Valley, J.W., Cavosie, A.J., Ushikubo, T., Reinhard, D.A., Lawrence, D.F., Larson, D.J., Clifton,
 P.H., Kelly, T.F., Wilde, S.A., Moser, D.E., Spicuzza, M.J., 2014. Hadean age for a postmagma-ocean zircon confirmed by atom-probe tomography. Nature Geosci. 7, 219–223.
- Valley, J.W., Reinhard, D.A., Cavosie, A.J., Ushikubo, T., Lawrence, D.F., Larson, D.J., Kelly,
 T.F., Snoeyenbos, D.R., Strickland, A., 2015. Nano- and micro-geochronology in Hadean
 and Archean zircons by atom-probe tomography and SIMS: new tools for old minerals. Am.
 Mineral. 100, 1355–1377.
- Van Lankvelt, A., Schneider, D.A., Biczok, J., McFarlane, C.R.M., Hattori, K., 2016. Decoding
 zircon geochronology of igneous and alteration events based on chemical and
 microstructural features: a study from the Western Superior Province, Can. J. Petrol. 57,
 1309–1334.
- Vonlanthen, P., Fitz Gerald, J.D., Rubatto, D., Hermann, J., 2012. Recrystallization rims in
 zircon (Valle d'Arbedo, Switzerland): an integrated cathodoluminescence, LA-ICP-MS,
 SHRIMP, and TEM study. Am. Mineral. 97, 369–377.
- Wang, R., Jeon, H., Evans, N.J., 2018. Archaean hydrothermal fluid modified zircons at Sunrise
 Dam and Kanowna Belle gold deposits, Western Australia: implications for post-magmatic
 fluid activity and ore genesis. Am. Mineral. 103, 1891–1905.
- Wang, Y., Trail, D., 2022. Experimental partitioning of Li between zircon and different silicate
 melts: implications for Li contents in the Hadean and modern crust. Contrib. Mineral. Petrol.
 177, 15.
- Watson, B., Cherniak, D.J., Hanchar, J.M., Harrison, T.M., Wark, D.A., 1997. The incorporation of
 Pb into zircon. Chem. Geol. 141, 19–31.

- Watson, E.B., Harrison, T.M., 2005. Zircon thermometer reveals minimum melting conditions on
 earliest Earth. Science 308, 841–844.
- Watson, E.B., Wark, D.A., Thomas, J.B., 2006. Crystallization thermometers for zircon and rutile.
 Contrib. Mineral. Petrol. 151, 413–433.
- Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A.,
 Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Girard, J.-P., Greenwood, R.C., Hinton, R.,
- 923 Kita, N., Mason, P.R.D., Norman, M., Ogasawara, M., Piccoli, P.M., Rhede, D., Satoh, H.,
- 924 Schulz-Dobrick, B., Skår, O., Spicuzza, M.J., Terada, K., Tindle, A., Togashi, S.,
- 925 Vennemann, T., Xie, Q., Zheng, Y.-F., 2004. Further characterisation of the 91500 zircon
 926 crystal. Geostand. Geoanal. Res. 28, 9–39.
- Wilde, S.A., Valley, J.W., Peck, W.H., Graham, C.M., 2001. Evidence from detrital zircons for the
 existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178.
- Wilke, M., Schmidt, C., Dubrail, J., Appel, K., Borchert, M., Kvashina, K., Manning, C.E., 2012.
 Zircon solubility and zirconium complexation in H₂O + Na₂O + SiO₂ +/- Al₂O₃ fluids at
 high pressure and temperature. Earth Planet. Sci. Lett. 349-350, 15–25.
- Wirth, R., 2004. Focused ion beam (FIB): A novel technology for advanced application of microand nano-analysis in geosciences and applied mineralogy. Eur. J. Mineral. 15, 863–875.
- Wirth, R., 2009. Focused Ion Beam (FIB) combined with SEM and TEM: advanced analytical
 tools for studies of chemical composition, microstructure and crystal structure in
 geomaterials on a nanometre scale. Chem. Geol. 261, 217–229.
- Wood, S.A., Palmer, D.A., Wesolowski, D.J., B'en'ezeth, P., 2002. The aqueous geochemistry
 of the rare earth elements and yttrium. Part XI. the solubility of Nd(OH)₃ and hydrolysis of
- 939 Nd³⁺ from 30 to 290 °C at saturated water vapor pressure with in-situ pHm measurement. In
- Water-Rock Interactions, Ore Deposits, and Environmental Geochemistry: A Tribute to
 David A. Crerar, R. Hellmann and S. A. Wood, Eds., vol. 7, 229–256.
- Zi, J.W., Rasmussen, B., Muhling, J.R., Fletcher, I.R., 2022. In situ U-Pb and geochemical
 evidence for ancient Pb-loss during hydrothermal alteration producing apparent young
 concordant zircon dates in older tuffs. Geochim. Cosmochim. Acta 320, 324–338.
- 945

947 Figures

948	Figure 1: CL images of zircon from (a,b) the Shevaroy Massif (granulite-facies charnockite),
949	Tamil Nadu, southern India (Harlov et al., 2022); (c) an anorthsite, Eastern Ghats Belt, India
950	(Chatterjee et al., 2008; their Figure 2B); (d) polymetamorphic migmatites, Valle d'Arbedo, Ticino,
951	Switzerland (Vonlanthen et al., 2012); (e) high-grade granulite-facies metagranitoids, Queensland,
952	Australia (Hoskin and Black, 2000); and (f) a granitic gneiss in the contact aureole of the Rogaland
953	anorthosite-norite intrusive complex, southwest Norway (Möller et al., 2002). Terms sz, oz, and og
954	in Figure 1c stand for sector zoned, oscillatory zoned, and over growth, respectively. In Figure 1d,
955	the circles 5a, 5b, 5c, and 5d indicate areas where TEM foils were cut. In Figure 1e, P stands for
956	protolith zircon; C1 and C2 stands for inherited core; OZP stands for oscillatory zircon; and the scale
957	bars are all 50 μ m. Under CL imaging for all images, the light areas in the zircon are depleted in Th
958	and U relative to dark areas in the zircon.
959	
960	Figure 2: (a) BSE and (b) CL images of a grain fragment of the starting zircon from a nepheline
961	syenite pegmatite, Seiland igneous province, northern Norway.
962	
963	Figure 3: Sketch of the CaF ₂ assembly used in the experiments with the piston cylinder apparatus
964	showing the location of the four Pt capsules separated by biotite sheets.
965	
966	Figure 4: (a,c,d) CL images of a zircon grain fragment reacted in a Na ₂ Si ₂ O ₅ + H ₂ O solution +
967	$ThO_2 + ThSiO_4 + SiO_2$ at 900 °C and 1000 MPa. Altered areas (light areas in CL) are enriched in
968	Th and depleted in U, Pb, and (Y+REE) (see Tables 2 and 3). Figure 4b is a TEM foil taken from
969	the elongated area located across the reaction front shown in Figure 4a. Note the lack of any
970	reaction texture in the TEM foil nor the indication of a reaction front (the sharp boundary between
971 light and dark areas in Figure 4b). Dark ovals in the background are from the carbon foil upon972 which the TEM foil rests.

973

Figure 5: BSE (a) and CL (b) images of a zircon grain fragment reacted in a 2N NaOH solution + ThO₂ + ThSiO₄ + SiO₂ at 900 °C and 1000 MPa. Altered areas (light areas in CL) are enriched in Th and depleted in U, Pb, and (Y+REE) (see Tables 2 and 3). Figure 5b is a TEM foil taken from the elongated area across the reaction front shown in Figure 5a. Note the lack of any reaction texture in the TEM foil nor the indication of a reaction front (the sharp boundary between light and dark areas in Figure 5b). Dark ovals in the background are from the carbon foil upon which the TEM foil rests.

981

982 Figure 6: (a,c,d,e,f) CL images of zircon reacted in a NaF + H_2O solution + ThO_2 + $ThSiO_4$ + 983 SiO₂ at 900 °C and 1000 MPa. Altered areas (light areas in CL) are enriched in Th and depleted in 984 U, Pb, and (Y+REE) (see Tables 2 and 3). Figure 6b is a TEM foil taken from the elongated area 985 across the reaction front shown in Figure 6a. Note the lack of any reaction texture in the TEM foil 986 nor the indication of a reaction front (the sharp boundary between light and dark areas in Figure 6b). 987 Dark ovals in the background are from the carbon foil upon which the TEM foil rests. Note also the 988 overgrowth of zircon near the top of Figure 6a (sharp crystallographic faces) and compare this to 989 the lack of crystallographic faces along the bottom of the grain where intergrowth occurs into the 990 zircon body via fluid-aided coupled dissolution-reprecipitation. In Figures 6e and 6f alteration is 991 seen along cracks and possible cleavage planes in the zircon.

992

Figure 7: Chondrite normalized (McDonough and Sun, 1995) plots of Y + HREE from altered and
unaltered areas of zircon in experiments (a) ZF-5 (Na₂Si₂O₅ + H₂O), (b) ZF-9 (2N NaOH), (c) ZF16 (NaF + H₂O), and (d) ZF-40 (NaF + H₂O) (see Tables 2 and 3; Table S4).

Metasomatic alteration of zircon at lower crustal P-T conditions utilizing alkali-
and F-bearing fluids: trace element incorporation, depletion, and resetting the
zircon geochronometer
Daniel E. Harlov ^{1,2,3*} , Robert Anczkiewicz ⁴ , and Daniel J. Dunkley ^{5,6}
¹ Deutsches GeoForschungsZentrum-GFZ, Telegrafenberg, 14473 Potsdam, Germany
² School of Earth Resources, China University of Geosciences, Wuhan 430074, China
³ Department of Geology, University of Johannesburg P.O. Box 524, Auckland Park, 2006 South
Africa
⁴ Institute of Geological Sciences, Polish Academy of Sciences, Krakow Research Centre, Senacka
1, 31-002 Krakow, Poland
⁵ Department of Polar and Marine Research, Institute of Geophysics, Polish Academy of Sciences
Księcia Janusza 64, PL-01452 Warsaw, Poland
⁶ National Institute of Polar Research, 3-10 Midori-cho, Tachikawa-shi, Tokyo-to, 190-8518
Japan
*dharlov@gfz-potsdam.de
ABSTRACT
Natural alteration of zircon takes place in melts or fluids either via dissolution coupled with
overgrowth or via a coupled dissolution-reprecipitation process. The latter results in the zircon
being partially or totally replaced by new, compositionally re-equilibrated zircon or a new mineral
phase or both. In this study, fragments (50 – 300 $\mu m)$ from a large, inclusion-free, clear, 520 to 530
Ma euhedral zircon with light radiation damage from a nepheline syenite pegmatite, Seiland

25 Igneous Province, northern Norway, were experimentally reacted in 20 mg batches with 5 mg of

26	$ThO_2 + ThSiO_2 + SiO_2$ and a series of alkali-bearing fluids in sealed Pt capsules at 900 $^\circ C$ and 1000
27	MPa for 6 to 11 days in the piston cylinder press using a CaF_2 setup with a cylindrical graphite
28	oven. Th O_2 + Th SiO_2 + Si O_2 was present at the end of the experiment. In experiments involving
29	H_2O , $H_2O + NaCl$, $H_2O + KCl$, and 2N KOH, no reaction textures formed other than a slight
30	dissolution of the zircon grain fragments. Experiments involving 2N NaOH, Na $_2$ Si $_2$ O ₅ + H ₂ O, and
31	$NaF + H_2O$ resulted in zircon reaction textures with varying degrees of intensity, which took the
32	form of partial replacement by compositionally modified zircon via a coupled dissolution-
33	reprecipitation process. In the NaF + H_2O experiment some overgrowth also occurred. Altered
34	zircon is separated by sharp compositional boundaries from unaltered zircon. Secondary ion mass
35	spectrometry (SIMS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-
36	MS) analysis indicates that, relative to the unaltered zircon, the altered zircon is strongly enriched in
37	Th, and heavily to moderately depleted in U and (Y+REE). In all the experiments, 206 Pb (3 to 5
38	ppm in unaltered zircon) is depleted in the altered zircon to below the SIMS detection limit and to at
39	or below the LA-ICP-MS detection limit. Hafnium and Ti concentrations in the altered zircon
40	retained the same approximate value (within error) as the original zircon. The results from these
41	experiments demonstrate that zircon can be compositionally modified by alkali-bearing and alkali-
42	F-bearing fluids via a coupled dissolution-reprecipitation process. Near to total loss of radiogenic
43	Pb via such processes under high-grade conditions resets the internal zircon geochronometer.
44	Although the end result is the same as with zircon overgrowth, i.e. the production of new generation
45	zircon at the time of a metasomatic/metasomatic event, such replacement processes can explain
46	incomplete isotopic 'resetting'; inclusion production through unmixing of solid solutions in
47	metastable zircon compositions; and 'ghost' textures that preserve initial growth features but with
48	isotopic disturbance. Diagnostic replacement features produced in experiments, such as interface
49	geometries between altered and unaltered zircon, provide markers of the mechanism and aid in
50	zircon interpretation. A major implication from this study is that if zircon with low radiation
51	damage can be metasomatically altered under high-grade conditions this would have important

52	consequences with respect to zircons presumed role as an impregnable container for mineral
53	inclusions. Namely the mineral inclusions contained within zircon could also be altered, reset as a
54	geochronometer, or even replaced by another mineral.

Keywords: zircon, Th, U, Pb, REE, petrochronology, coupled dissolution-reprecipitation, alkalibearing fluids, experimental petrology

58

59 1. Introduction

In nature zircon is one of the principal accessory minerals used for the dating of geologic processes. 60 Its chemically and mineralogically robust nature allows it to survive its igneous origins and be re-61 62 incorporated into either successive igneous protoliths, through melting of zircon-bearing source 63 rocks, or into sedimentary protoliths, as detritus. Zircon can also survive metamorphism, 64 metasomatism, and/or partial melting of the host rock. However, such survival is typically partial. 65 The cores of the zircon grain tend to preserve its origins whereas the rims and replacement textures 66 can record changes wrought during diagenesis, metasomatism, metamorphism, and re-incorporation into a magma (e.g. Harlov et al., 2022). 67 Zircon is a principal host for U, Th, Hf, Y, and HREEs in various sedimentary, 68 69 metamorphic, and igneous rocks, and as such can contain a significant fraction of the whole rock 70 abundance of these elements depending on the presence or lack of other minerals such as monazite, 71 xenotime, allanite, apatite, and garnet. Despite its reputation as a refractory mineral, zircon can 72 interact with diverse fluids and/or melts under a range of crustal P-T conditions. For example, the 73 chemical stability of metamict zircon, radiation-damaged zircon, and synthetic (pristine) zircon with 74 respect to various fluids has been explored experimentally as well as speculated upon in a series of 75 studies of natural examples utilizing a variety of analytical techniques, as summarized in Geisler et 76 al. (2007); see also Pidgeon et al. (1966), Rizvanova et al. (2000), Geisler et al. (2002, 2003), 77 Tomaschek (2004, 2010), Lenting et al. (2010), and Lewerentz et al. (2019). Both experimentally

and in nature, compared to pristine zircon or zircon with a low degree of radiation damage,
metamict zircon and zircon with a high degree of radiation damage is highly susceptible to fluidassisted alteration down to relatively low P-T conditions (e.g., 175 °C and 250 bars) (Geisler et al.,
2007).

82 In addition to metamict and radiation damaged zircon, reaction textures, presumed to be 83 produced by fluids or melts, can also be seen in zircons with a low degree of radiation damage from 84 both igneous and high-grade metamorphic rocks under cathodoluminescence (CL) imaging. 85 Examples include zircons from a ca. 983 Ma anorthosite, Eastern Ghats Mobile Belt, India 86 (Chatterjee et al., 2008); orthopyroxene-bearing granulite-facies granitoids (charnockites) from the Shevaroy Massif, southern India (Harlov et al., 2022); polymetamorphic migmatites, Valle 87 88 d'Arbedo, Switzerland (Vonlanthen et al., 2012); granulite-facies meta-granitoids, Queensland, 89 Australia (Hoskin and Black, 2000); and granitic gneisses in a contact aureole associated with the 90 Rogaland anorthite-norite intrusive complex, southern Norway (Möller et al., 2002). Here CLbright or CL-dark areas of apparent alteration overprint the original magmatic zoning (Fig. 1). The 91 92 irregular and/or lobate shapes of these altered areas, which extend inward into the zircon from the 93 grain rim, are difficult to ascribe to overgrowth of either the original zircon grain or partially 94 dissolved zircon grain, but rather resemble the partial replacement textures in monazite that have 95 been shown to be the result of fluid-induced coupled dissolution-reprecipitation processes as 96 opposed to overgrowth (Harlov et al., 2011). 97 In this study, fragments of an inclusion-free, faintly banded zircon (CL imaging) with light

radiation damage from the Seiland Igneous Province, northern Norway (Fig. 2) are used in a series of piston cylinder metasomatism experiments involving both pure H₂O and a variety of alkalibearing solutions at 900 °C and 1000 MPa. A ThSiO₄ + ThO₂ + SiO₂ mix was added to all of the experiments with the goal of seeing whether or not Th could be metasomatically incorporated into the zircon crystal lattice replacing Zr utilizing reactive fluids. After quench and extraction, the reacted zircon grain fragments are then mounted, polished to cross section, and evaluated using

Δ

104	high-contrast backscattered electron (BSE) imaging, CL imaging, transmission electron
105	microscopic (TEM) imaging, electron microprobe (EMP) analysis, sensitive high-resolution ion
106	microprobe (SHRIMP) analysis, and laser ablation inductively coupled plasma mass spectrometry
107	(LA-ICP-MS) analysis. The results from the experimentally reacted zircons are then compared with
108	metasomatically altered zircons from nature and the reaction textures are interpreted chemically,
109	physically, and from a petrochronological perspective.

111 2. Experimental and Analytical Procedures

112 2.1 Experimental protocol

113 Experiments were run at 900 °C and 1000 MPa using the two piston cylinder apparatus as described 114 by Johannes et al. (1971) and Johannes (1973) and are summarized in Table 1. The zircon chosen 115 for the experiments was obtained from the Natural History Museum at the University of Oslo, Oslo, 116 Norway. It consists of a large (2 cm), transparent, inclusion-free, light brownish, euhedral crystal 117 fragment from a nepheline syenite pegmatite located in the Seiland Magmatic Province, northern 118 Norway (523 ± 2 to 531 ± 2 Ma; Pedersen et al., 1989). A fragment of this crystal was broken up 119 into 50 to 300 µm size irregular grains. The transparent, inclusion-free, lightly brown-pink grain 120 fragments were washed in ethanol in an ultrasonic bath. Size sorting was not done. High contrast 121 BSE and CL imaging reveal that the grains are totally texture-free except for a very faint magmatic 122 zoning (Fig. 2).

Solids in the experimental charge consisted of 20 mg of zircon, 5 mg of a ThSiO₄ + ThO₂ + SiO₂ mix, and 5 mg of fluid (Table 1). Reactants in the experimental charge included doubled distilled nanopore H₂O, NaCl + H₂O, KCl + H₂O, 2N NaOH, 2N KOH, Na₂Si₂O₅ + H₂O, and NaF + H₂O. All chemicals used were spec pure to 99.99% or better. The experimental charge was placed in a 3 mm wide, 1 cm long, tempered (1000 °C) Pt capsule, which was arc-welded shut and placed vertically, four at a time, in a CaF₂ setup with a cylindrical graphite oven (Fig. 3). The capsules were separated from each other by thin sheets of biotite. The presence of a graphite oven under the

130 airtight conditions of the experiment implies that the system/experiments, at least in theory, should 131 have been buffered to graphite-CO-CO₂ once the oven was heated to 900 $^{\circ}$ C. The thermocouple tip 132 was placed such that it reached halfway up alongside the Pt capsules (Fig. 3). The temperature 133 differential along the capsules was approximately 40 °C with either capsule end at 860 °C compared 134 to the sweet spot at the center of the capsules at the measured 900 °C. The pressure measured 135 during the experiment was corrected for friction due to the CaF₂ pressure medium. Non-isobaric 136 quench was achieved within 20 to 30 seconds by turning off the current. 137 After each experiment, the Pt capsule was cleaned, weighed, and punctured. The Pt capsules 138 were then dried at 105 °C for several hours, and weighed again to determine fluid loss. Due to the very small amounts of fluid used in the experiments (5 mg), accurate trace element analysis of the 139 140 fluid was not possible. The reacted charge was then carefully removed from the Pt capsule with as 141 little mechanical disturbance as possible. The charge was then mounted and polished down to cross 142 section in an epoxy grain mount.

143

144 2.2 Scanning electron microscope (SEM)

145 Experimental charges were first evaluated using high contrast BSE and CL imaging on a JEOL

JSM-5900LV Scanning Electron Microscope (SEM) equipped with a Gatan MiniCL detector and
 JEOL SmileStation stage automation and image-capture software at the National Institute for Polar

148 Research (NIPR), Tachikawa-shi, Tokyo-to, Japan.

149

150 2.3 Electron probe microanalysis (EPMA)

151 Electron probe microanalysis (EPMA) of zircon was carried out using the JEOL electron

152 hyperprobe with field emission gun at the GeoForschungsZentrum (GFZ) Potsdam using an

153 accelerating voltage of 15 kV and beam current of 15 nA. Individual spot analyses were made

154 using a focused electron beam with a diameter of 1 micron. Elements analyzed for in zircon

155 included P, Si, Ti, Zr, Hf, Th, U, Y, Gd, Tb, Dy, Ho, Er, Yb, Lu, Ca, Pb, and Na, with counting

156	times of 20 to 120 seconds depending on the relative amount of the element. Standards for the REE
157	were taken from synthetic REE phosphates prepared by Jarosewich and Boatner (1991). The
158	remaining standards were taken from both the CAMECA and Smithsonian standard sets
159	(Jarosewich et al., 1980). The full EMP analysis data set is contained in Supplementary Material
160	Table <u>S</u> 1.

- 161
- 162 2.4 Sensitive high-resolution ion microprobe (SHRIMP)
- 163 2.4.1 Zircon U-Th-Pb measurement
- 164 Mounted zircon grains were cleaned to eliminate surface contamination by common Pb, and coated
- 165 with 100 Angstroms of high-purity gold. Mounts were imaged at high resolution by CL and BSE
- 166 with a JEOL JSM-5900LV Scanning Electron Microscope (SEM) equipped with a Gatan MiniCL
- 167 detector and JEOL SmileStation stage automation and image-capture software, at NIPR,
- 168 Tachikawa-shi, Tokyo-to, Japan.

169 Spots were carefully chosen from SEM imaging for Th, U, and Pb analysis during multiple 170 sessions by a SHRIMP-II at NIPR, using a primary O2-ion beam with a typical sample surface 171 current of 4 to 7 nA to produce 25 to 30 µm long, flat-floored oval pits. Secondary ionization was 172 measured on a single electron multiplier on mass stations $196 (Zr_2O)$ through to 254 (UO), with a mass resolution of > 5000 for ²³⁸U¹⁶O and a sensitivity on ²⁰⁶Pb of 17 to 20 cps per ppm per nA of 173 174 primary current. Mass stations were measured through 5 to 6 cycles, with typical count times of 10 175 s per cycle for ²⁰⁴Pb, background (at 204.04 amu) and ²⁰⁶Pb, and 20s for ²⁰⁷Pb. Reduction of raw 176 data for standards and samples was performed using the SQUID v.1.12a (Ludwig, 2001), and 177 Isoplot v.3.71 (Ludwig, 2003) add-ins for Microsoft Excel 2003. Abundance of U was calibrated 178 against in-house reference zircon YBr157 (580 ppm U, as estimated by TIMS; provided by Allen 179 Kennedy of the John de Laeter Centre, Curtin University of Technology, Western Australia, 180 Australia). Corrections for common Pb on U/Pb values and ages were done with the common Pb estimated from ²⁰⁴Pb counts and the Stacey and Kramers (1975) common Pb model for the 181

182	approximate U-Pb age for each analysis. $(Pb/U)/(UO/U)^2$ values were calibrated against
183	measurements on reference zircon TEMORA-2 (417 Ma; Black et al., 2004). Zircon SHRIMP
184	mean U-Th-Pb data for the reacted zircons listed in Table 1 is contained in Table 2. The full
185	SHRIMP analytical U-Th-Pb zircon data set is contained in Supplementary Material-Table S2.
186	

187 2.4.2 Zircon Y+REE analysis

188 Yttrium, REEs, and Hf contents were estimated for a subset of U-Th-Pb isotopic analyses by re-189 analyzing the same spots (Table 2). Considering the small penetration depth (< 3 micron) of the 190 SHRIMP analytical spots, and the lack of strong chemical zoning ion in the starting material these 191 contents are considered to be equivalent to those in zircon analyzed for U-Th-Pb. Spot sizes and 192 mass resolutions were the same as for age analyses, with each station measured for 10 s through 6 193 cycles. To minimize the interference of LREE-MREE oxide peaks on MREE-HREE and Hf 194 measurements, energy filtering was applied to reduce ¹⁸⁰Hf to 10% of the unfiltered signal. This 195 reduces potential REEO⁺ interference to less than 1% of the unfiltered signals. Counts were 196 normalized against 92Zr from the NIST610 standard glass, and compared periodically against 197 published values for zircon reference material 91500 (Wiedenbeck et al., 2004; Iizuka and Hirata, 198 2004). All estimates were within 10% of published values. Zircon SHRIMP mean REE data for 199 the reacted zircons listed in Table 1 is contained in Table 2. The full SHRIMP analytical zircon 200 REE data set is contained in Supplementary Material Table S3. Chondrite-normalized REE plots of 201 the SHRIMP REE data are contained in Supplementary Material Figure S1.

202

203 2.5 Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)

Trace element abundances in zircon were measured at the Institute of Geological Sciences, Polish
Academy of Sciences, Kraków Research Centre, Krakow, Poland using an ArF excimer laserablation system RESOlution M50 by Resonetics coupled with a quadrupole ICP-MS XSeriesII by
FisherScientific. Ablation took place in a double volume Laurine technology cell in pure He (flow

208	rate of 0.9 L/min), for which the Ar nebuliser gas (flow rate of $0.5 - 0.55$ L/min) was mixed
209	downstream from the sample cell. After passing through a signal-smoothing manifold, the analyte
210	was delivered to the ICP source. A small addition of nitrogen $(0.005 - 0.008 \text{ L/min})$ was used to
211	enhance the sensitivity of the ICP-MS. The oxide to metal ratio $^{248}\mathrm{ThO}/^{232}\mathrm{Th}$ was kept below 0.5 %.
212	Analyses were performed using a rotating rectangular slit with a length of 50 μm and a width of 8
213	and 16 $\mu m.$ An energy density of 4 to 5 J/cm^2 at a repetition rate of 5 Hz was applied. Twenty
214	seconds of gas blank was measured prior to each 30 s ablation, which was followed by 30 s washout
215	time. Sample runs were bracketed by measurements of the NIST 612 glass (Jochum et al., 2011).
216	The zircon reference material 91500 (Wiedenbeck et al., 2004; Iizuka and Hirata, 2004) was
217	frequently measured as a secondary standard along with the unknowns. The ZrO_2 content from
218	previously acquired electron microprobe analyses of the Seiland zircon ($ZrO_2 = 66.65$; $SiO_2 =$
219	32.20; HfO ₂ = 0.70) was used as an internal standard (Supplementary Material-Table S1). Data
220	processing was performed using the Glitter 4.0 software from Macquarie University, Australia
221	(Griffin et al., 2008). Zircon LA-ICP-MS mean U-Th-Pb and REE analyses for the reacted zircons
222	listed in Table 1 is contained in Table 3. The full LA-ICP-MS analytical U-Th-Pb and REE zircon
223	data set is contained in Supplementary Material Table S4.
224	
225	2.6 Transmission electron microscopy (TEM)
226	Reacted zircon grains, suitable for TEM investigation, were first selected using BSE and SEM
227	images. Sampling was accomplished by using focused ion beam (FIB) milling (Wirth, 2004, 2009).
228	FIB preparation was conducted under ultra-high vacuum conditions in an oil-free vacuum system
229	using a FEI FIB200 instrument at the GeoForschungsZentrum Potsdam. TEM-ready foils of
230	approximately 15 x 8 x 0.15 μm representing cross sections perpendicular to and across the reaction
231	front (separating the altered and unaltered zircon) were sputtered directly from the zircon grain in
232	the epoxy grain mount using a 30 kV Ga-ion beam. The TEM foil was protected from sputtering by

233 the Ga-ion beam by a 1 μ m thick, Pt layer deposited using a high-purity organic Pt gas (C₉H₁₆Pt,

234 99.9 %), which decomposes under the Ga-ion beam. Once cut, the TEM foils were placed on a 235 perforated carbon film, which was placed on a copper grid. Carbon coating to prevent charging in 236 the TEM was not applied. 237 TEM on the zircon foils was carried out in a TECNAI F20 XTwin instrument operated at 238 200 kV and equipped with a FEG electron source. The TEM is equipped with a Gatan imaging filter 239 (GIF Tridiem), a Fishione high-angle annular dark field detector (HAADF), and an EDAX X-ray 240 analyzer with an ultrathin window. TEM bright field images (HREM) were acquired as energy-241 filtered images applying a 10 eV window to the zero-loss peak. 242

243 3. Results

244 All experiments were run at 900 °C and 1000 MPa over periods of 144 to 192 hours (6 – 8 days). 245 Whereas, the zircon grain fragments were a light pinkish brown before the experiment, at quench 246 the reacted zircon grain fragments were colorless and transparent, which suggests that any radiation 247 damage in the zircon had been healed. This is supported by a variety of annealing experiments at 248 comparable or lower temperatures and/or pressures (cf. Nasdala et al., 2001, 2002; Montario et al., 2008; Ginster et al., 2019; Herrmann et al., 2021; Ende et al., 2021; Härtel et al., 2022). Of the 249 250 eight experimental runs reported here and listed in Table 1, in those experiments involving pure 251 H₂O, NaCl + H₂O, KCl + H₂O, and 2N KOH, the zircon did not react with the fluid, other than 252 showing a little dissolution along the grain fragment edge. In contrast, zircon in experiments 253 involving Na₂Si₂O₅ + H₂O (Fig. 4), 2N NaOH (Fig. 5), and NaF + H₂O (2 experiments; Table 1, 254 Fig. 6) developed reaction textures under CL imaging to varying degrees. In each of these 255 experiments, due to the relatively large amount of the ThSiO₄ + ThO₂ + SiO₂ mix added (Table 1), 256 all three phases persisted to the end of the experiment and were visible in the reacted charge. 257 While not obvious in high contrast BSE images, under CL imaging the altered areas in these 258 four experimental runs appear lighter (CL-light) than the unaltered areas (CL-dark). CL-light areas

are separated from CL-dark areas by sharp boundaries. In the experiments involving $Na_2Si_2O_5 + Carbon CL$

260	H ₂ O (ZF-5; Fig. 4) and 2N NaOH (ZF-9; Fig. 5), the reaction textures are considerably less
261	extensive than in runs involving NaF + H_2O (ZF-16, ZF-40; Fig. 6). In the case of run ZF-9, only
262	two zircon fragments with a reaction texture were found amongst 30 grain fragments exposed in the
263	polished mount, which makes up about half of the total experimental product. In the case of ZF-5,
264	about half of the grains in the grain mount had reaction textures. In contrast, in the $NaF+H_2O$
265	experiment (ZF-16, ZF-40), all the zircon grains developed reaction textures ranging from slight to
266	extensive. In runs ZF-5 and ZF-9, a lack of crystal face formation and the preservation of irregular
267	grain fragment boundaries would suggest that the reaction textures are due to the replacement of the
268	original zircon by altered zircon. In runs ZF-16 and ZF-40, the development of new crystal faces as
269	a product of overgrowth is evident on some of the grains (e.g. Fig. 6a). However, reaction textures
270	have also developed that are lobate and convex inwards, away from edges of zircon grain regardless
271	of whether they have overgrowths or not (e.g. Figs. 6a,c,d). A second type of reaction texture occurs
272	along cracks and possible cleavage planes inside of the zircon grains, which extends outwards from
273	the crack into the zircon (Figs. 6e,f). There is a general lack of crystal face formation despite the
274	fact that, due to the high ratio of fluid to zircon grain fragments by mass (Table 1), each individual
275	grain was totally surrounded by fluid during the experiment and, hence, not in direct contact with
276	any of the other grains unless it was overgrown by a neighboring grain (e.g. Fig. 6a).
277	TEM bright field images of foils sampled across the reaction front, as defined by CL
278	imagery, in zircon grains from runs ZF-5 (Figs. 4a,b), ZF-9 (Figs. 5a,b), and ZF-16 (Figs. 6a,b),
279	show no differences in texture on the sub-micron scale between the altered and unaltered areas in
280	the zircon, no mineral inclusions, nor any evidence of a boundary or reaction front between the
281	unaltered and altered zircon.
282	In general, both SHRIMP and LA-ICP-MS spot analyses indicate that the CL-light altered
283	areas are moderately to heavily depleted in U and Y + HREE and enriched in Th relative to the CL-
284	dark unaltered areas of the zircon grains, which retain the trace element abundances of the original

zircon grain (Tables 2 and 3; Fig. 7; Supplementary Material-Fig. <u>S1; and Tables S2, S3, and S</u>-4)

286	The low Th and U contents in the original Seiland zircon would imply that the amount of radiation
287	damage to the crystallographic lattice should be relatively minor after some 520 to 530 Ma (Table
288	3; <u>Supplementary Material Tables S2 and S4</u>). One exception was ZF-5 (Na ₂ Si ₂ O ₅ + H ₂ O). Here
289	Gd showed no depletion within the altered areas (Fig. 7a, Supplementary Material Fig.ure S1;
290	Tables 3 and 4). In contrast, altered areas in all the experiments are heavily depleted in Pb to or
291	below the detection limit in both the SHRIMP and LA-ICP-MS analytical data, whereas Hf and Ti
292	show little difference in their abundances (within analytical error) between the altered and unaltered
293	areas in the zircon (Tables 2 and 3; Supplementary Material-Tables S3 and S4).
I 294	

295 4. Discussion

296 4.1 Formation of reaction textures in zircon

297 A series of previous studies have focused on the experimental alteration of zircon, though most of 298 these have involved metamict or zircon with a high degree of radiation damage under temperatures 299 and pressures lower than the ones considered in this study (Pidgeon et al., 1966; Geisler et al., 300 2001a,b, 2002, 2003, 2004, 2007; Rizvanova et al., 2000, 2007; Lenting et al., 2010; Lewerentz et 301 al., 2019). In general, these experiments have involved a variety of fluids (H₂O, HCl, Ca(OH)₂ + 302 H₂O, CaCl₂ + H₂O, and AlCl₃ + H₂O) over a broad range of temperatures $(200 - 700 \degree C)$ and 303 pressures (100 - 500 MPa). The zircon in these experiments generally shows a high degree of 304 reactivity during the experiment due to the large amount of chemical potential energy stored in the 305 disordered, amorphous areas in the zircon or in the radiation-damaged zircon crystallographic 306 lattice (see discussion in Geisler et al., 2007). Other experiments at high P-T have focused on 307 annealing of zircon in restricted chemical systems (Morales et al., 2022), the relationship between 308 zircon and baddeleyite as a function of the Ca and Si activity in fluids (Lewerentz et al., 2019), or 309 on the dissolution of zircon in a variety of silicate melts (Borisov and Aranovich, 2019; Baker et al., 310 2002; Schmidt et al., 2013) and in a series of fluids (Schmidt et al., 2006; Newton et al., 2010; 311 Ayers et al., 2012; Wilke et al., 2012; Bernini et al., 2013; Ayers and Peters, 2018).

312	In this study, utilizing pressures and temperatures that are normally characteristic of the
313	lower crust/lithospheric mantle, the goal was to partially alter a natural zircon with a low degree of
314	radiation damage metasomatically while at the same time incorporating Th in the altered areas. The
315	reaction textures produced in the experimentally metasomatized zircon show a sharp contrast, both
316	texturally and compositionally (trace elements), between the altered (CL-bright) and unaltered (CL-
317	dark) zircon (Figs. 4, 5, and 6). The lobate intergrowths of altered zircon into the unaltered zircon as
318	seen in Figures 6a, 6c, and 6d can be argued as not being a product of overgrowth, but rather a
319	product of mineral replacement (see comments above). Similar textures, both lobate and otherwise,
320	have been recognized in metasomatically altered monazite (cf. Harlov et al., 2011), xenotime
321	(Harlov and Wirth, 2012), and apatite (Harlov et al., 2002, 2003, 2005) both experimentally and
322	from nature, and have been interpreted as partial replacement textures due to a coupled dissolution-
323	reprecipitation process (Putnis, 2002, 2009; Putnis et al., 2005; Putnis and Putnis, 2007; Putnis and
324	Austrheim, 2010, 2013; Altree-Williams et al., 2015). This is especially obvious in Figures 4c, 6e,
325	and 6f where alteration occurs along cracks and possible cleavage planes within the zircon grains as
326	partial replacement textures extending into the zircon, similar to that seen in partial replacement
327	textures involving experimental replacement of monazite by huttonite (ThSiO ₄) (cf. Harlov et al.,
328	2007, their figure 2h). During coupled dissolution-reprecipitation, the original zircon is dissolved in
329	the presence of these alkali-bearing fluids while simultaneously being replaced by new zircon that
330	compositionally is in thermodynamic equilibration with the fluid chemistry under the particular P-T
331	conditions of the system. During this process, the new zircon uses the original zircon as a
332	crystallographic template for purposes of nucleation and subsequent growth/replacement. In
333	essence coupled dissolution-reprecipitation is the basis for mineral pseudomorphism, and is a
334	commonly observed process in nature for many minerals. It is also the principal process by which
335	fossilization of organic material, such as bone and wood, occurs.
336	In minerals, the process of coupled dissolution-reprecipitation has been shown to occur

337 along a very thin (10 nm wide or less) fluid-filled reaction front between the original dissolving

338	mineral and the newly growing mineral (Putnis, 2002, 2009; Altree-Williams et al., 2015). This
339	reaction front is physically connected to the fluid surrounding the mineral grain via an actively
340	evolving, non-static, interconnected porosity prevalent throughout the newly grown mineral phase.
341	This allows for active fluid-aided mass transfer between the fluid along the reaction front and the
342	fluid surrounding the grain during the replacement process. Porosity formation can result from a
343	variety of causes such as differences in the molar volume between the original and replacement
344	phase or differences in solubility between the two phases (Putnis, 2009). Once this replacement
345	process stops due to changing P-T-X conditions in an open fluid-mineral system or, in the case of a
346	closed system, due to limited amounts of the reactive fluid (e.g. the experiments in this study), the
347	reaction front will cease to advance and the altered areas of the mineral will begin to recrystallize
348	such that the original interconnected porosity will evolve into isolated nano- and micron-size fluid
349	inclusions often along with mineral inclusions, both those genetically derived from the host mineral
350	and those originating from minerals outside of the host mineral (Putnis, 2002, 2009; Harlov et al.,
351	2005, 2011; Harlov and Wirth, 2012; Harlov et al., 2016).
352	As can be seen in Figures 4b, 5c, and 6b, for each of the alkali-bearing fluid-zircon
353	metasomatism experiments, neither a remnant porosity nor mineral inclusions remain in the altered
354	areas of the zircon under CL imaging nor in TEM foils taken perpendicular to the reaction front,
355	which includes both altered zircon and unaltered zircon. Here the reaction front, so clearly visible
356	under CL imaging, is not visible in the TEM foils, i.e. the altered zircon appears texturally
357	indistinguishable from the unaltered zircon (cf. Figs. 4b, 5b, and 6b). This is not what is seen in the
358	reaction textures and accompanying TEM foils taken across reaction fronts in experimentally
359	metasomatized fluorapatite (Harlov et al., 2005), monazite (Harlov et al., 2011), and xenotime
360	(Harlov et al., 2012) from experiments done under the same approximate P-T conditions. It is also
361	not seen in experimentally metasomatized metamict or radiation-damaged zircon (Geisler et al.,
362	2007), nor in metamict or radiation-damaged zircon from nature (Geisler et al., 2002, 2003, 2007).
2.62	In all of these second the materian discussion in the materian discussion of the dis

inclusions and mineral inclusions, such as ThSiO₄, USiO₄, ThO₂, UO₂, ZrO₂, xenotime, feldspar,
 quartz, etc..

366	One explanation for this striking difference in zircon textures is that the alteration textures
367	seen in Figures 4, 5, and 6 appear to be specific to zircon with low amounts of radiation damage,
368	characteristic of the 520 to 530 Ma Seiland zircon, the high P-T conditions of the experiments, and
369	the reactivity of the alkali-bearing and F-bearing fluid chemistry of the system. Total elimination of
370	the porosity during the course of the experiment, after growth of the altered area had stopped, could
371	be due to a rapid coarsening effect, which would be consistent with attaining textural equilibration
372	driven by reduction in the surface area as defined by the interior surface area of the pores. Hence,
373	the original porosity, which was transient to begin with, would have totally disappeared as textural
374	equilibration was achieved, and in this particular case achieved rather quickly during the course of
375	the experiment. Similar phenomena have been observed in the KBr-KCl-H2O replacement
376	experiments of Putnis et al. (2005). Rapid disappearance of the porosity would have also
377	discouraged mineral inclusion formation since the pores normally act as nucleation sites for
378	inclusions in the altered/reacted areas (see discussion in Harlov et al., 2005). What overgrowth that
379	did occur was also totally recrystallized as per the above mechanism eliminating any porosity that
380	might have formed during crystal growth outwards. The sharp compositional boundary seen
381	between the altered zircon and unaltered zircon under CL imaging would indicate that element
382	diffusion across the boundary was negligible at 900 $^\circ$ C and 1000 MPa over the course of the
383	experiment. This observation agrees with the U, Th, and Hf diffusion experiments of Cherniak et al.
384	(1997a) and REE diffusion experiments of Cherniak et al. (1997b), both of which indicate very
385	slow diffusion rates at high temperatures for these elements in zircon.
386	Comparison of the reaction textures resulting from the experiments (Figs. $4-6$) with similar
387	textures in natural zircons in Figure 1 support the proposition that high-grade, high pH, alkali-
388	bearing/F-bearing fluids could have been responsible for them. The examples provided in Figure 1

389 are found in both metamorphic and igneous rocks in a fluid-rich environment with broadly granitoid

390	and hence alkali-rich compositions or else are associated with such rocks. These observations are
391	supported by Aranovich et al. (2017) who make a strong case for alkali-bearing fluids causing
392	partial to total alteration of zircon grains in gabbroids and plagiogranites from the Mid-Atlantic
393	Ridge. In another example, zircons from a leucocratic granite of the Weondong region of South
394	Korea show four types of partial metasomatic alteration, which the authors attribute to the action of
395	F-rich fluids during post-magmatic alteration (Park et al., 2016; their figures 3 and 5). The textures
396	of these metasomatised zircon grains broadly mimic some of the reaction textures obtained in the
397	NaF-fluid experiments (Fig. 6).

399 4.2 Alteration of the zircon trace element chemistry

400	Relative to the original unaltered Seiland zircon, the altered areas in the zircon are significantly
401	enriched in Th, significantly depleted in U, moderately to strongly depleted in Y + HREE, and
402	nearly to totally depleted in Pb to within the detection limit of both SIMS and LA-ICP-MS. In
403	contrast, there is little or no change in the Hf or Ti content within the measurement precision
404	(Tables 2 and 3; Fig. 7). These abundances contrast with the fluids used in the experiments, which
405	were saturated in Th + Si, and totally devoid of U, Pb, Y+REE, Ti, and Hf (Table 1). $\ .$
406	In the zircon crystallographic lattice, U ⁴⁺ , Th ⁴⁺ , and Hf ⁴⁺ are conventionally considered to
407	substitute for Zr ⁴⁺ on the 8-fold Zr site (Finch and Hanchar, 2003; Hoskin and Schaltegger, 2003).
408	While, Th and U have a limited solid solution with zircon as tetragonal thorite (ThSiO ₄), and
409	tetragonal coffinite (USiO ₄), respectively (Ushakov et al., 1999), Hf has a complete solid solution
410	with zircon as tetragonal hafnon (HfSiO ₄) (Speer and Cooper, 1982). This is due to the fact that on
411	the 8-fold Zr site Hf ⁴⁺ (0.83 Å) can completely substitute for Zr^{4+} (0.84 Å) (effective ionic radii;
412	Shannon, 1976; Harley and Kelly, 2007). In contrast, the relatively larger 8-fold ionic radii of U^{4+}
413	(0.86 Å) and Th ⁴⁺ (1.05 Å) (Shannon, 1976; Harley and Kelly, 2007), compared to 8-fold Zr ⁴⁺ (0.84 Compared to 8-fold Zr ⁴⁺) (0.84 Compared to 8-fold Zr ⁴
414	Å), would explain their relatively limited solid solution in zircon. It would also explain as to why

 U^{4+} was so easily removed and Th^{4+} only incorporated in limited amounts during each of the

416	metasomatism experiments despite the fluid being supersaturated with Th (Table 3; Supplementary	
417	Material-Tables S2 and S4).	
418	Yttrium and the REE are generally thought to be incorporated into zircon via a xenotime-	
419	type coupled substitution or:	
420	^{VIII} (Y+REE) ³⁺ + ^{IV} P ⁵⁺ = ^{VIII} Zr ⁴⁺ + ^{IV} Si ⁴⁺ (1)	
421	(Finch and Hanchar, 2003; Hoskin and Schaltegger, 2003) with (Y+REE) ³⁺ going on the 8-fold Zr	
422	site and P ⁵⁺ (0.17 Å) on the 4-fold Si ⁴⁺ (0.26 Å) site (effective ionic radii; Shannon, 1976). Other	
423	possible coupled substitutions for (Y+REE) in zircon which have been described in the literature	
424	include:	
425	$Li^{+}_{(interstitial)} + VIII(Y + REE)^{3+} = VIIIZr^{4+} $ (2)	
426	(Finch et al., 2001; Wang and Trail, 2022), and:	
427	$H^{+}_{(interstitial)} + {}^{VIII}(Y + REE)^{3+} = {}^{VIII}Zr^{4+} $ (3)	
428	(Trail et al., 2016) where Li and H substitute on interstitial sites in the zircon structure (Finch and	
429	Hanchar, 2003). In all of these cases, 8-fold $(Y + HREE)^{3+}$ (1.019, 1.079 – 0.977 Å) are strongly	
430	preferred over the 8-fold LREE ³⁺ (1.160 – 1.109 Å) due to their better fit on the 8-fold Zr (0.84 Å)	
431	site (Hoskin and Schaltegger, 2003; Shannon, 1976).	
432	From the LA-ICP-MS data in Supplementary Material-Table S4, (Y+HREE) ³⁺ plus the	
433	approximate value for P^{5+} when plotted vs. $Zr^{4+} + Si^{4+}$ for both unaltered and altered zircon in each	
434	of the experiments show an approximate linear relationship with a positive shallow slope. This	
435	indicates that an additional coupled substitution mechanism must have been responsible for	
436	Y+HREE incorporation in both the altered and unaltered zircon. These additional mechanisms	
437	could have included coupled substitutions (2) and/or (3), each to varying degrees, though this must	
438	be treated as speculation since neither Li nor H ⁺ were measured.	
439	The observation that Ti was not depleted in the altered areas (Table 3) is more curious	
440	considering that the alkali-bearing solutions in each of the experiments were not buffered by rutile,	
441	i.e. TiO ₂ , or some other Ti-rich mineral such as ilmenite or titanite; though each of the solutions was	

442 buffered to an SiO₂ activity of 1 due to the presence of free SiO₂ in the capsule at the end of the experiment. In zircon, relatively limited amounts of Ti, as ^{IV}Ti⁴⁺ (0.42 Å) are believed to substitute 443 444 for ^{IV}Si⁴⁺ (0.26 Å) (effective ionic radii; Shannon, 1976) on the tetrahedral site with the amount of 445 Ti present increasing as a function of increasing temperature for a system nominally buffered at a 446 constant TiO₂ activity (Watson and Harrison, 2005; Watson et al., 2006; Ferry and Watson, 2007; 447 Harley and Kelly, 2007; Tailby et al., 2011). The fact that Ti remained in the altered areas of the 448 zircon at 900 °C and 1000 MPa in a Ti-free system (Table 1), as opposed to selectively partitioning 449 into the solution, would suggest that for minor amounts of Ti, the partitioning coefficients for NaF-, 450 NaOH-, and Na₂Si₂O₅-bearing solutions apparently favor Ti remaining on the tetrahedral site in 451 zircon at the P-T of the experiments. Such an observation could have implications for the Ti-in-452 zircon geothermometer in alkali fluid-bearing systems whether they are buffered with respect to 453 TiO₂ or not (cf. Ferry and Watson, 2007). 454 Lead appears to be broadly incompatible in the zircon structure with respect to substitution on either the tetrahedral Si site or the octahedral Zr site due to its much larger size, i.e. ^{IV}Pb⁴⁺ (0.65 455 Å) vs. ^{IV}Si⁴⁺ (0.26 Å) and ^{VIII}Pb⁴⁺ (0.94 Å) vs. ^{VIII}Zr⁴⁺ (0.84 Å) (effective ionic radii; Shannon, 456 457 1976; Watson et al., 1997; Mezger and Krogstad, 1997; Geisler et al., 2003; Utsunomiya et al., 458 2004; Kogawa et al., 2012). This assumes that Pb would occur as Pb⁴⁺ in the zircon structure, 459 which would seem highly unlikely assuming that the experiments were presumably buffered to 460 graphite-CO2 (see above). If Pb in the original, unaltered zircon existed only as Pb2+, in addition to 461 there being a question of charge balance, the misfit of Pb on both the Si and Zr sites becomes even 462 greater, i.e. 0.98 vs. 0.26 Å and 1.29 vs. 0.84 Å, respectively. This would imply that the only Pb 463 present in the original zircon should be from the radioactive decay of U, Th, and their short-lived 464 daughter isotopes in the form of small accumulations in amorphous radiation-damaged domains 465 and/or along cleavage planes, or as nano-inclusions in annealed zircon (Geisler et al., 2003; Nasdala 466 et al., 2005; Kogawa et al., 2012; Seydoux-Guillaume et al., 2015; Valley et al., 2014, 2015; Lyon

467 et al., 2019). A similar case has been made for Pb accumulation in monazite (Fougerouse et al.,

468 2018). The fact that Pb is so readily removed from the altered areas of the zircon to the extent of 469 being at or below the detection limits of both LA-ICP-MS and SIMS implies that Pb, at least in 470 trace amounts, is apparently highly soluble in NaF-, NaOH-, and Na₂Si₂O₅-bearing fluids at 900 °C 471 and 1000 MPa most likely due to complexing with either OH⁻ or F⁻ in solution (Bottari and 472 Ciavatta, 1965; Perera et al., 2001).

473 The addition of Th, loss of U, and near to total loss of Pb in the altered areas of the zircon 474 would imply that the U-Th-Pb geochronometer has been near to totally reset compared to the 475 unaltered areas. This obviously has major implications with regard to zircon geochronology. 476 Namely that the zircon U-Th-Pb geochronometer can be metasomatically reset, which is an idea 477 that has long been speculated upon in the literature (Hoskin and Schaltegger, 2003; Hoskin, 2005; 478 Geisler et al., 2007; Soman et al., 2010; Van Lankvelt et al., 2016; Peterman et al., 2016; Aranovich 479 et al., 2017; Chen and Zhou, 2017; Wang et al., 2018; Zi et al., 2022). Natural resetting of this 480 geochronometer via Pb diffusion in zircon under fluid-absent conditions has been demonstrated to 481 be a very slow, almost negligible process even if the zircon experiences relatively high temperatures 482 (> 900 °C) for at least 1 Myr (Möller et al., 2002; see also Cherniak and Watson, 2000). In the 483 experiments from this study, the geochronometer was reset due to alkali-bearing high pH or alkali-484 fluoride fluids at 900 °C and 1000 MPa over a period of days. Such fluids might explain the zircon 485 alteration textures seen in Figure 1 since each of these examples occur in granitoid rocks rich in 486 alkali-bearing feldspars, which have experienced metasomatism/metamorphism under high-grade 487 conditions. In each of these cases, the CL-bright metasomatized areas tend to be younger by some 488 millions to 10's of millions of years than the CL-dark zircon cores, which the authors generally tend 489 to attribute to metamorphic/metasomatic processes. Similar conclusions were reached by 490 Lewerentz et al. (2019) in experiments (600 - 900 °C; 600 - 1000 MPa) involving the partial 491 alteration of a natural zircon in CaCl₂- and Ca(OH)₂-bearing fluids to baddeleyite. While the newly

492 formed baddeleyite and altered areas in the zircon contained U, Th, and Y + REE derived from the

494 of the SIMS. 495 The depletion of the Y + HREE in the altered areas of the zircon (Fig. 7) is due in part to 496 the fact that the alkali-bearing fluids used in these experiments contained negligible amounts of 497 REE. This apparently allowed for a fraction of the Y+HREE to be partitioned into the fluid where 498 they presumably complexed with OH⁻ (ZF-5 and ZF-9) (Haas et al., 1995; Wood et al., 2002; 499 Pourtier et al., 2010; Perry and Gysi, 2018) and/or with F⁻ (ZF-16 and ZF-40) (Haas et al., 1995; 500 Tropper et al., 2011, 2013; Mair et al., 2017). Depletion or enrichment of REE in zircon is a 501 commonly observed phenomena in granitoid rocks and generally presumed due to metasomatically 502 induced alteration via fluids and/or melts. Examples include zircons with metasomatically altered 503 areas depleted in REE from fluid-induced charnockite patches in granitoid rocks from Kottavattom, 504 Trivandrum Block, southern India (Taylor et al., 2014); metasomatically altered areas depleted in 505 REE in metamorphosed zircons from the leucocratic portion of a migmatite, Ticino, Switzerland 506 (Vonlanthen et al., 2012); and zircons from high grade metagranitoids, Queensland, Australia where 507 the metasomatically altered areas are depleted in REE (Hoskin and Black, 2000). 508 509 5. Summary and implications 510 In this study it has been demonstrated in a series of experiments that natural zircon with relatively

zircon, Pb in both the baddeleyite and the altered areas of the zircon was below the detection limit

493

small amounts of radiation damage can be metasomatically altered using alkali- and F-bearing solutions under the high grade P-T conditions commonly found in the lower crust. This involved the incorporation of Th and the removal of U and REE, and the near to total removal of Pb to below LA-ICP-MS and SIMS detection limits in the altered areas, which implies a basic resetting of the U-Th-Pb geochronometer. If this is also the case for zircons in nature, then this would imply that similar textures, as illustrated in Figure 1, could be metasomatically induced and thus could potentially be used to date metasomatic events.

518 A second major implication from these experiments is that if zircon with low radiation 519 damage can be metasomatically altered this would have important consequences with respect to 520 zircons presumed role as an impregnable container for mineral inclusions. Namely the mineral 521 inclusions contained within the zircon could also be altered, reset as a geochronometer, or even 522 replaced by another mineral. This has important consequences especially with respect to how the 523 mineral inclusions within the Hadean detrital zircons from Jack Hills, Australia have been utilized 524 in an attempt to discern the geochemical and physical conditions on the very early Earth during the 525 Hadean period (4.0 - 4.54 Ga) (Mojzsis et al., 2001; Wilde et al., 2001; Valley et al., 2002, 2014). 526 The fact that these inclusions have apparently experienced varying degrees of alteration has been 527 amply demonstrated by Rasmussen et al. (2011) who, in a study of monazite and xenotime 528 inclusions in the 4.35 to 3.35 Ga Jack Hills detrital zircons, concluded that these inclusions formed 529 as the result of a metamorphic event at either 2.68 or 0.8 Ga and at monazite-xenotime temperatures 530 (Gratz and Heinrich, 1997) of around 420 to 475 °C. The Ti content of the quartz inclusions in these same zircons gave temperatures of 350 to 490 °C using the geothermometer of Thomas et al. 531 532 (2010). They also noted that most of the mineral inclusions have the same composition and 533 abundances as the minerals in the original metamorphic matrix in which the zircons were found. 534 This is consistent with the idea that these inclusions, which include K-feldspar, albite, muscovite, 535 and biotite, formed during metamorphism due perhaps to the replacement of what could have been originally apatite inclusions, which are one of the more common types of mineral inclusions in 536 537 zircon and generally not observed in Jack Hills zircons. If this replacement of mineral inclusions 538 did occur, it would probably have occurred via a coupled dissolution-reprecipitation process as 539 outlined by the experiments in this study. These observations are backed by a CO2 fluid inclusion 540 study of the Jack Hills zircons by Menneken et al. (2017). Here the formation of these CO2 541 inclusions appears to be related to a later metamorphic event as opposed to the primary igneous 542 event presumed responsible for the genesis of the zircons.

543	Mineral inclusion formation in zircon grain interiors via a fluid-aided coupled dissolution-
544	reprecipitation process are not limited to the Jack Hills zircons. For example, Troch et al. (2018)
545	documented the fluid-aided formation, via coupled dissolution-reprecipitation, of U-Th-REE phases
546	as mineral inclusions in trace element-rich zircons from the Island Park-Mount Jackson rhyolite,
547	Yellowstone volcanic field, Wyoming, USA. Similar conclusions have also been reached for ultra-
548	high pressure mineral inclusions, such as coesite and jadeite, in zircon from a jadeite quartzite,
549	Dabie orogen, central China (Gao et al., 2015). While the zircons here are presumed to have a
550	detrital, igneous mid-crustal origin, the inclusions could only have formed during a fluid-rich event,
551	perhaps as a result of coupled dissolution-reprecipitation, under the ultra-high pressure
552	metamorphic conditions present during the continental subduction conditions experienced by the
553	jadeite quartzite during the Dabie orogeny.
554	Similar conclusions have been reached for entirely different mineral systems. For example,
555	Krause et al. (2013) documented metasomatically altered apatite inclusions in clinopyroxene from a
556	nepheline-bearing clinopyroxenite located in the Uralian-Alaskan-type complexes of Kytlym and
557	Nizhny Tagil, Ural Mountains, Russian Federation. Here the clinopyroxene experienced partial
558	metasomatic alteration via coupled dissolution-reprecipitation by a CaCl2-enriched saline fluid,
559	which also altered the apatite inclusions in these areas from fluor-chlorapatite to chlor-fluorapatite
560	giving them a composition similar to the apatites in the surrounding mineral matrix. In those areas
561	of the clinopyroxene not metasomatically altered, the apatites retained their original fluor-
562	chlorapatite composition. In another example, where apatite is the host mineral, the formation of
563	magnetite and quartz inclusions in metasomatically altered areas of fluorapatite from the Pea Ridge
564	iron oxide-apatite ore body is attributed to fluid-aided mass transfer of Fe and Si into the
565	fluorapatite from magnetite and quartz in the surrounding mineral matrix, again during a process of
566	coupled dissolution-reprecipitation (Harlov et al., 2016).
567	In all of these cases, the key point here is that the chemistry of a fluid encountered by

568 zircon, or any other mineral, will dictate whether or not the mineral will experience alteration, and

569	whether this alteration occurs by simple partial dissolution, overgrowth, or metasomatic alteration,
570	either partial or total, via a coupled dissolution-reprecipitation process. This last process can also
571	result in the total replacement of one mineral phase by another mineral phase as proposed for the
572	inclusions in the zircon, clinopyroxene, or fluorapatite as discussed above. The pressure and
573	temperature under which such a process will or could occur is of less importance since nature has
574	time on its side as opposed to the very finite lifetime of laboratory experiments (see discussion in
575	Harlov et al., 2002, 2003, 2005).
576	The basic conclusion here is that if the typical sort of zircon commonly found in crustal

577 rocks, with radiation damage ranging from light to metamict, encounters a chemically reactive fluid, 578 such as the alkali-bearing and F-bearing fluids used in these experiments, it could be partially to 579 totally altered chemically with respect to it trace elements including U, Th, Pb, and the Y+REE. 580 This could result in the U-Th-Pb geochronometer in the altered areas being reset if all the Pb is 581 removed thus allowing for the metasomatic event responsible to be dated. Just as importantly any 582 inclusions in the altered areas of the zircon could also experience potential chemical alteration, 583 depending on their reactivity to the fluid, with respect to both major and trace element composition, or be replaced by other minerals more in equilibrium with both the infiltrating fluid and the mineral 584 585 assemblage surrounding the zircon.

586

587 Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationshipsthat could have appeared to influence the work reported in this paper.

590

591 Acknowledgements

- 592 Richard Wirth and Anja Schreiber are thanked for their assistance with the focused ion beam
- sampling and the transmission electron microscopy. Dieter Rhede is thanked for helping to acquire
- 594 the zircon EPMA data. Special thanks to Prof. Kazuyuki Shiraishi for making available the

595	analytical facilities of the National Institute of Polar Research available to Daniel Dunkley and
596	Daniel Harlov. Daniel Harlov was supported by an Invitational Fellowship for Research in Japan
597	from the Japan Society for the Promotion of Science (or JSPS Invitational Fellowships for Research
598	in Japan). Special thanks to the Polish Academy of Sciences (Polska Akademia Nauk, PAN) and the
599	Foundation for Polish Science (Fundacja na rzecz Nauki Polskiej, FNP) for supporting the LA-ICP-
600	MS analytical facilities at the Krakow Research Centre (Robert Anczkiewicz) and making them
601	available to Daniel Harlov. Comments by Rongquing Zhang and two anonymous reviewers helped
602	to improve the manuscript.
603	
604	Appendix A. Supplementary Material
605	The supplementary materials for this manuscript include four supplementary tables (Tables S1, S2,
606	S3, and S4) and one supplementary figure (Figure S1). Table S1 contains all EPMA data acquired
607	from these zircon metasomatism experiments. Tables S2, S3, and S4 contain all the raw LA-ICP-
608	MS and SHRIMP data utilized to assemble Tables 2 and 3 and the REE chondrite-normalized plots
609	in Figure 7 and Figure S1. In Figure S1, the chondrite normalized REE data from the SHRIMP
610	analyses (Table S3) and the LA-ICP-MS analyses (Table S4) are plotted for comparison.
611	Supplementary materials attached to this article can be found online at
612	
613	Supplementary Table 1: Electron probe microanalytical data from experimentally metasomatised
614	zircons
615	Supplementary Table 2: Zircon U-Th-Pb SHRIMP analyses
616	Supplementary Table 3: SHRIMP REE analyses of experimentally metasomatised zircons
617	Supplementary Table 4: GLITTER4.4.2: Laser Th, U, Pb, and REE Ablation Analysis Results
618	Supplementary Figure 1: Chondrite normalized plots of SHRIMP and LA-ICP-MS zircon data
619	

Formatted: Font: Bold

Formatted: Font color: Red

Formatted: Font color: Red

Formatted: Font color: Red Formatted: Font color: Red Formatted: Font color: Red Formatted: Font color: Red

Formatted: Font color: Red Formatted: Font color: Red

Formatted: Font color: Custom Color(RGB(4,50,255))

Formatted: Font color: Custom Color(RGB(4,50,255)) Formatted: Font color: Custom Color(RGB(4,50,255))

621	References

021	Netternes	
622		
623	Altree-Williams, A., Pring, A., Ngothai, Y., Brügger, J., 2015. Textural and compositional	
624	complexities resulting from coupled dissolution-reprecipitation reactions in geomaterials.	
625	Earth Sci. Rev. 150, 628–651.	
626	Aranovich, L.Y., Bortnikov, N.S., Zinger, T.F., Borisovskiy, S.E., Matrenichev, V.A., Pertsev,	
627	A.N., Sharkov, E.V., Skolotnev, S.G., 2017. Morphology and impurity elements of zircon in	
628	the oceanic lithosphere at the mid-Atlantic ridge axial zone (6°-13° N): evidence of	
629	specifics of magmatic crystallization and postmagmatic transformations. Petrology 25, 335-	
630	361.	
631	Ayers, J.C., Zhang, L., Luo, Y., Peters, T.J., 2012. Zircon solubility in alkaline aqueous fluids	
632	at upper crustal conditions. Geochim. Cosmochim. Acta 96, 18-28.	
633	Ayers, J.C., Peters, T.J., 2018. Zircon/fluid trace element partition coefficients measured by	
634	recrystallization of Mud Tank zircon at 1.5 GPa and 800-1000 °C. Geochim. Cosmochim.	
635	Acta 223, 60–74.	
636	Baker, D.R., Conte, A.M., Freda, C., Ottolini, L., 2002. The effect of halogens on Zr diffusion	
637	and zircon dissolution in hydrous metaluminous granitic melts. Contrib. Mineral. Petrol.	
638	142, 666–678.	
639	Bernini, D., Audètat, A., Dolejs, D., Keppler, H., 2013. Zircon solubility in aqueous fluids at high	
640	temperatures and pressures. Geochim. Cosmochim. Acta 119, 178-187.	
641	Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundilf, R.,	
642	Campbell, I.H., Korscha, I.J., Williams, I.S., Foudoulis, C., 2004. Improved ²⁰⁶ Pb/ ²³⁸ U	
643	microprobe geochronology by the monitoring of a trace-element-related matrix effect;	
644	SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of	
645	zircon standards. Chem. Geol. 205, 115–140.	
646	Borisov, A., Aranovich, L., 2019. Zircon solubility in silicate melts: New experiments and	
647	probability of zircon crystallization in deeply evolved basic melts. Chem. Geol. 510,	
648	103–112.	
649	Bottari, E., Ciavatta, L., 1965. On the complex formation between lead(II) and fluoride ions.	
650	J. Inorg. Nucl. Chem. 27, 133–141.	
651	Chatterjee, N., Crowley, J.L., Mukherjee, A., Das, S., 2008. Geochronology of the 983-Ma Chilka	
652	lake anorthosite, Eastern Ghats Belt, India: implications for Pre-Gondwana tectonics. J.	
653	Geol. 116, 105–118.	
654	Chen, W.T., Zhou, MF., 2017. Hydrothermal alteration of magmatic zircon related to NaCl-rich	_

655	brines: diffusion-reaction and dissolution-reprecipitation processes. Am. J. Sci. 317, 177–	
656	215.	
657	Cherniak, D.J., Hanchar, J.M., Watson, E.B., 1997a. Diffusion of tetravalent cations in zircon.	
658	Contrib. Mineral. Petrol. 127, 383–390.	
659	Cherniak, D.J., Hanchar, J.M., Watson, E.B., 1997b. Rare earth diffusion in zircon. Chem. Geol.	
660	134, 289–301.	
661	Cherniak, D.J., Watson, E.B., 2000. Pb diffusion in zircon. Chem. Geol. 172, 5-24.	
662	Ende, M., Chanmuang N.C., Reiners, P.W., Zamyatin, D.A., Gain, S.E.M., Wirth, R., Nasdala, L.,	
663	2021. Dry annealing of radiation-damaged zircon: single-crystal X-ray and Raman	
664	spectroscopy study. Lithos 406-407, 106523.	
665	Ferry, J.M., Watson, E.B., 2007. New thermodynamic models and revised calibrations for the	
666	Ti-in-zircon and Zr-in rutile thermometers. Contrib. Mineral. Petrol. 154, 429-437.	
667	Finch, R.J., Hanchar, J.M., Hoskin, P.W.O., Burns, P.C., 2001. Rare-earth elements in synthetic	
668	zircon: Part 2. a single-crystal X-ray study of xenotime substitution. Am. Mineral. 86, 681-	
669	689.	
670	Finch, R.J., Hanchar, J.M., 2003. Structure and chemistry of zircon and zircon-group minerals.	
671	Rev. Mineral. Geochem. 53, 1–25.	
672	Fougerouse, D., Reddy, S.M., Saxey, D.W., Erickson, T.M., Kirkland, C.L., Rickard, W.D.A.,	
673	Seydoux-Guillaume, AM., Clark, C., Buick, I.S., 2018. Nanoscale distribution of Pb in	
674	monazite revealed by atom probe microscopy. Chem. Geol. 479, 251-258.	
675	Gao, XY., Zheng, YF., Chen, YX., Tang HL., Li, WC., 2015. Zircon geochemistry	
676	records the action of metamorphic fluid on the formation of ultra-high-pressure jadeite	
677	quartzite in the Dabie orogen. Chem. Geol. 419, 158-175.	
678	Gauthiez-Putallaz, L., Rubatto, D., Hermann, J., 2016. Dating prograde fluid pulses during	
679	subduction by in situ U-Pb and oxygen isotope analysis. Contrib. Mineral. Petrol. 171, 15.	
680	Geisler, T., Ulonska, M., Schleicher, H., Pidgeon, R.T., van Bronswijk, W., 2001a. Leaching	
681	and differential recrystallization of metamict zircon under experimental hydrothermal	
682	conditions. Contrib. Mineral. Petrol. 141, 53-65.	
683	Geisler, T., Pidgeon, R.T., van Bronswijk, W., Pleysier, R., 2001b. Kinetics of thermal recovery	
684	and recrystallization of partially metamict zircon: a Raman spectroscopic study. Eur. J.	
685	Mineral. 13, 1163–1176.	
686	Geisler, T., Pidgeon, R.T., van Bronswijk, W., Kurtz, R., 2002. Transport of uranium, thorium,	Formatted: English (United States)
687	and lead in metamict zircon under low-temperature hydrothermal conditions. Chem. Geol.	
688	191, 141–154.	

689	Geisler, T., Pidgeon, R.T., Kurtz, R., van Bronswijk, W., Schleicher, H., 2003. Experimental
690	hydrothermal alteration of partially metamict zircon. Am. Mineral. 88, 1496-1513.
691	Geisler, T., Seydoux-Guillaume, AM., Wiedenbeck, M., Wirth, R., Berndt, J., Zhang, M.,
692	Mihailova, B., Putnis, A., Salje, E.K.H., Schlüter, J., 2004. Periodic precipitation pattern
693	formation in hydrothermally treated metamict zircon. Am. Mineral. 89, 1341-1347.
694	Geisler, T., Schaltegger, U., Tomaschek, F., 2007. Re-equilibration of zircon in aqueous fluids and
695	melts. Elements 3, 43-50.
696	Ginster, U., Reiners, P.W., Nasdala, L., Chanmuang N., C., 2019. Annealing kinetics of radiation
697	damage in zircon. Geochim. Cosmochim. Acta 249, 225-246.
698	Gratz, R., Heinrich, W., 1997. Monazite-xenotime thermobarometry: Experimental calibration of
699	the miscibility gap in the binary system CePO ₄ -YPO ₄ . Am. Mineral. 82, 772–780.
700	Griffin, W., Powell, W., Pearson, N., O'Reilly, S., 2008. GLITTER: Data reduction software for
701	laser ablation ICP-MS: Mineralogical Association of Canada Short Course, v. 40.
702	Haas, J.R., Shock, E.L., Sassani, D.C., 1995. Rare earth elements in hydrothermal systems:
703	estimates of standard partial molal thermodynamic properties of aqueous complexes of the
704	rare earth elements at high pressures and temperatures. Geochim. Cosmochim. Acta 59,
705	4329–4350.
706	Harley, S.L., Kelly, N.M., 2007. Zircon tiny but timely. Elements 3, 13-18.
707	Harlov, D.E., Förster, HJ., Nijland, T.G., 2002. Fluid-induced nucleation of (Y + REE)-phosphate
708	minerals within apatite: nature and experiment. Part I. chlorapatite. Am. Mineral. 87, 245-
709	261.
710	Harlov, D.E., Förster, HJ., 2003. Fluid-induced nucleation of REE phosphate minerals within
711	apatite: nature and experiment. Part II. fluorapatite. Am. Mineral. 88, 1209-1229.
712	Harlov, D.E., Wirth, R., Förster, HJ., 2005. An experimental study of dissolution-
713	reprecipitation in fluorapatite: fluid infiltration and the formation of monazite.
714	Contrib. Mineral. Petrol. 150, 268–286.
715	Harlov, D.E., Wirth, R., Hetherington, C.J., 2007. The relative stability of monazite and huttonite at
716	300-900 °C and 200-1000 MPa: metasomatism and the propagation of metastable mineral
717	phases. Am. Mineral. 92, 1652–1664.
718	Harlov, D.E., Wirth, R., Hetherington, C.J., 2011. Fluid-mediated partial alteration in monazite: the
719	role of coupled dissolution-reprecipitation in element redistribution and mass transfer.
720	Contrib. Mineral. Petrol. 162, 329–348.
721	Harlov, D.E., Wirth, R., 2012. Experimental incorporation of Th into xenotime at middle to lower
722	crustal P-T utilizing alkali-bearing fluids. Am. Mineral. 97, 641–652.

125	Harlov, D.E., Melghan, C.J., Kerr, I.D., Samson, I.M., 2010. Mineralogy, chemistry, and huid-
724	aided evolution of the Pea Ridge Fe oxide-(Y + REE) deposit, southeast Missouri, USA.
725	Econ. Geol. 111, 1963–1984.
726	Harlov, D.E., Dunkley, D.J., Hansen, E.C., Ishwar-Kumar, C., Samuel, V., Hokada, T., 2022.
727	Zircon as a recorder of trace element changes during high grade metamorphism of
728	Neoarchean lower crust, Shevaroy Block, Eastern Dharwar Craton, India. J. Petrol. 63,
729	egac036.
730	Härtel, B., Jonckheere, R., Ratschbacher, L., 2022. Multi-band Raman analysis of radiation damage
731	in zircon for thermochronology: partial annealing and mixed signals. Geochem. Geophys.
732	Geosys. 23, e2021GC010182.
733	Herrmann, M., Söderlund, U., Scherstén, A., Næraa, T., Holm-Alwmark, S., Alwmark, C., 2021.
734	The effect of low- temperature annealing on discordance of U-Pb zircon ages. Sci. Rept. 11,
735	7079.
736	Hoskin, P.W.O., 2005. Trace-element composition of hydrothermal zircon and the alteration of
737	Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta 69, 637-648.
738	Hoskin, P.W.O., Black, L.P., 2000. Metamorphic zircon formation by solid-state recrystallization of
739	protolith igneous zircon. J. Metamorph. Geol. 18, 423-439.
740	Hoskin, P.W.O., Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic
741	petrogenesis. Rev. Mineral. Geochem. 53, 27-62.
742	Iizuka, T., Hirata, T., 2004. Simultaneous determinations of U-Pb age and REE abundances for
743	zircons using ArF excimer laser ablation-ICPMS. Geochem. J. 38, 229-241.
744	Jarosewich, E., Nelen, J.A., Norberg, J.A., 1980. Reference samples for electron microprobe
745	analysis. Geostand. Newslett. 4, 43-47.
746	Jarosewich, E., Boatner, L.A., 1991. Rare-earth element reference samples for electron
747	microprobe analysis. Geostand. Newslett. 15, 397-399.
748	Jochum, K.P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D.E., Stracke, A.,
749	Birbaum, K., Frick, D.A., Günther, D., Enzweiler, J., 2011. Determination of reference
750	values for NIST SRM 610-617 glasses following ISO guidelines. Geostand. Geoanal. Res.
751	35, 397–429.
752	Johannes, W., Bell, P.M., Mao, H.K., Boettcher, A.L., Chipman, D.W., Hays, J.F., et al., 1971.
753	An interlaboratory comparison of piston-cylinder pressure calibration using the albite-
754	breakdown reaction. Contrib. Mineral. Petrol. 32, 24–38.
755	Johannes, W., 1973. A simplified piston-cylinder apparatus of high precision. N. Jahrb. Mineral.
756	Monat. 7, 331–351.

сı..: л

757	Kogawa, M., Watson, E.B., Ewing, R.C., Utsunomiya, S., 2012. Lead in zircon at the atomic scale.
758	Am. Mineral. 97, 1094–1102.
759	Krause, J., Harlov, D.E., Pushkarev, E.V., Brügmann, G.E., 2013. Apatite and clinopyroxene as

- tracers for metasomatic processes in nepheline clinopyroxenites of Uralian-Alaskan-type
 complexes in the Ural Mountains, Russian Federation. Geochim. Cosmochim. Acta 121,
 503–521.
- Lenting, C., Geisler, T., Gerdes, A., Kooijman, E., Scherer, E.E., Zeh, A., 2010. The behaviour
 of the Hf isotope system in radiation-damaged zircon during experimental hydrothermal
 alteration. Am. Mineral. 95, 1343–1348.
- Lewerentz, A., Harlov, D.E., Schersten, A., Whitehouse, M.J., 2019. Baddeleyite formation in
 zircon by Ca- bearing fluids in silica- saturated systems in nature and experiment: resetting
 of the U-Pb geochronometer. Contrib. Mineral. Petrol. 174, 64.
- Ludwig, K.R., 2001. SQUID: A User's Manual: Berkeley Geochronology Center, Special
 Publication 2, 22 pp.
- Ludwig, K.R., 2003. User's manual for Isoplot 3.00: A geochronological toolkit for Microsoft
 Excel: Berkeley Geochronology Center, Special Publication 4, 71 pp.
- Lyon, I.C., Kusiak, M.A., Wirth, R., Whitehouse, M.J., Dunkley, D.J., Wilde, S.A., Schaumlöffel,
 D., Malherbe, J., Moore, K.L., 2019. Pb nanospheres in ancient zircon yield model ages for
 zircon formation and Pb mobilization. Sci. Rept. 9, 13702.

776 Mair, P., Tropper, P., Harlov, D.E., Manning, C.E., 2017. The solubility of CePO₄ monazite and

- YPO₄ xenotime in KCl-H₂O fluids at 800 °C and 1.0 GPa: implications for REE transport in
 high-grade crustal fluids. Am. Mineral. 102, 2457–2466.
- 779 McDonough, W.F., Sun S., 1995. The composition of the Earth. Chem. Geol. 120, 223–253.
- 780 Menneken, M., Geisler, T., Nemchin, A.A., Whitehouse, M.J., Wilde, S.A., Gasharova, B.,
- Pidgeon, R.T., 2017. CO₂ fluid inclusions in Jack Hills zircons. Contrib. Mineral. Petrol.
 172, 66.
- Mezger, K., Krogstad, E.J., 1997. Interpretation of discordant U-Pb zircon ages: an evaluation. J.
 Metamorph. Geol. 15, 127–140.
- Mojzsis, S.J., Harrison, T.M., Pidgeon, R.T., 2001. Oxygen-isotope evidence from ancient zircons
 for liquid water at the Earth's surface 4,300 Myr ago. Nature 409, 178–181.
- 787 Möller, A., O'Brien, P.J., Kennedy, A., Kröner, A., 2002. Polyphase zircon in ultrahigh-
- temperature granulites (Rogaland, SW Norway): constraints for Pb diffusion in zircon. J.
 Metamorph. Geol. 20, 727–740.
- 790 Montario, M.J., Garver, J.I., Marsellos, A., 2008. Annealing of radiation damage in a Grenville

791	zircon, from the eastern Adirondacks, NY State. In Garver, J.I., and Montario, M.J. (eds.),
792	Proceedings from the 11th International Conference on thermochronometry, Anchorage
793	Alaska, Sept. 2008.
794	Morales, I., Molina, J.F., Cambeses, A., Montero, P., Bea F., 2022. Experimental annealing of
795	zircon: influence of inclusions on stability, intracrystalline melt migration, common lead
796	leaching, and permeability to fluids. ACS Earth Space Chem. 6, 288-307.
797	Nasdala, L., Wenzel, M., Vavra, G., Irmer, G., Wenzel, T., Kober, B., 2001. Metamictisation of
798	natural zircon: accumulation versus thermal annealing of radioactivity-induced damage.
799	Contrib. Mineral. Petrol. 141, 125–144.
800	Nasdala, L., Lengauer, C.L., Hanchar, J.M., Kronz, A., Wirth, R., Blanc, P., Kennedy, A.K.,
801	Seydoux-Guillaume, 2002. Annealing radiation damage and the recovery of
802	cathodoluminescence. Chem. Geol. 191, 121-140.
803	Nasdala, L., Hanchar, J.M., Kronz, A., Whitehouse, M.J., 2005. Long term stability of alpha
804	particle damage in natural zircon. Chem. Geol. 220, 83-103.
805	Newton, R.C., Manning, C.E., Hanchar, J.M., Colasanti, C.V., 2010. Free energy of formation of
806	zircon based on solubility measurements at high temperature and pressure. Am. Mineral. 95,
807	52–58.
808	Park, C., Song, Y., Chung, D., Kang, IM., Khulganakhuu, C., Yi, K., 2016. Recrystallization
809	and hydrothermal growth of high U-Th zircon in the Weondong deposit, Korea: record of
810	post-magmatic alteration. Lithos 260, 268–285.
811	Pedersen, R.B., Dunning, G.R., Robins, B., 1989. U-Pb ages of nepheline syenite pegmatites from
812	the Seiland Magmatic Province, N. Norway. In Gayer, R.A., ed. The Caledonide Geology of
813	Scandinavia. London, Graham and Trotman, pp. 3-9.
814	Perera, W.N., Hefter, G., Sipos, P.M., 2001. An investigation of the lead(II)-hydroxide system.
815	Inorg. Chem. 40, 3974–3978.
816	Perry, E.P., Gysi, A.P., 2018. Rare earth elements in mineral deposits: speciation in hydrothermal
817	fluids and partitioning in calcite. Geofluids 2018, 5382480.
818	Peterman, E.M., Snoeyenbos, D.R., Jercinovic, M.J., Kylander-Clark, A., 2016. Dissolution-
819	reprecipitation metasomatism and growth of zircon within phosphatic garnet in metapelites
820	from western Massachusetts. Am. Mineral. 101, 1792-1806.
821	Pidgeon, R.T., O'Neil, J.R., Silver, L.T., 1966. Uranium and lead isotopic stability in a metamict

- zircon under experimental hydrothermal conditions. Science 154, 1538–1540.
- 823 Pourtier, E., Devidal, J.-L., Gibert, F., 2010. Solubility measurements of synthetic neodymium

824	monazite as a function of temperature at 2 kbars, and aqueous neodymium speciation in
825	equilibrium with monazite. Geochim. Cosmochim. Acta 74, 1872-1891.
826	Putnis, A., 2002. Mineral replacement reactions: from macroscopic observations to microscopic
827	mechanisms. Mineral. Mag. 66, 689–708.
828	Putnis, A., 2009. Mineral replacement reactions. Rev. Mineral. Geochem. 70, 87-124.
829	Putnis, A., Putnis, C., 2007. The mechanism of re-equilibration of solids in the presence of a fluid
830	phase. J. Solid State Chem. 180, 1783–1786.
831	Putnis, A., Austrheim, H., 2010. Fluid-induced processes: metasomatism and metamorphism.
832	Geofluids 10, 254–269.
833	Putnis, A., Austrheim, H., 2013. Mechanisms of metasomatism and metamorphism on the local
834	mineral scale: the role of dissolution-reprecipitation during mineral re-equilibration. In D.E.
835	Harlov and H. Austrheim, Metasomatism and the Chemical Transformation of Rock,
836	Lecture Notes in Earth System Sciences, Springer-Verlag Berlin Heidelberg, pp. 141–170.
837	Putnis, C.V., Tsukamoto, K., Nishimura, Y., 2005. Direct observations of pseudomorphism:
838	compositional and textural evolution at a fluid solid interface. Am. Mineral. 90, 1909–1912.
839	Rasmussen, B., Fletcher, I.R., Muhling, J.R., Gregory, C.J., Wilde, S.A., 2011. Metamorphic
840	replacement of mineral inclusions in detrital zircon from Jack Hills, Australia: implications
841	for the Hadean Earth. Geology 39, 1143–1146.
842	Rizvanova, N.G., Levchenkov, A., Belous, A.E., Bezmen, N.I., Maslenikov, A.V., Komarov, A.N.,
843	Makeev, A.F., Levskiy, L.K., 2000. Zircon reaction and stability of the U-Pb isotope system
844	during interaction with carbonate fluid: experimental hydrothermal study. Contrib. Mineral.
845	Petrol. 139, 101–114.
846	Rizvanova, N.G., Gaidamako, I.M., Levchenkov, O.A., Bezmen, N.I., Makeev, A.F., Levsky, L.K.,
847	2007. Interaction of metamict zircon with fluids of various composition. Geochem. Internat.
848	45, 465–477.
849	Schmidt, C., Rickers, K., Wirth, R., Nasdala, L., Hanchar, J.M., 2006. Low-temperature Zr
850	mobility: an in situ synchrotron-radiation XRF study of the effect of radiation damage in
851	zircon on the element release in $H_2O + HCl \pm SiO_2$ fluids. Am. Mineral. 91, 1211–1215.
852	Schmidt, C., Steele-MacInnis, M., Watenphul, A., Wilke, M., 2013. Calibration of zircon as a
853	Raman spectroscopic pressure sensor to high temperatures and application to water-silicate
854	melt systems. Am. Mineral. 98, 643-650.
855	Seydoux-Guillaume, AM., Bingen, B., Paquette, JL., Bosse, V., 2015. Nanoscale evidence for
856	uranium mobility in zircon and the discordance of U-Pb chronometers. Earth Planet. Sci.
857	Lett. 409, 43–48.

858 Shannon, R.D., 1976. Revised effective ionic radii and systematic studies of interatomic distances 859 in halides and chalcedonides. Acta Crystal. A32, 751-767. 860 Soman, A., Geisler, T., Tomaschek, F., Grange, M., Berndt, J., 2010. Alteration of crystalline zircon 861 solid solutions: a case study on zircon from an alkaline pegmatite from Zomba-Malosa, 862 Malawi. Contrib. Mineral. Petrol. 160, 909-930. 863 Speer, J.A., Cooper, B.J., 1982. Crystal structure of synthetic hafnon, HfSiO₄, comparison with zircon and the actinide orthosilicates. Am. Mineral. 67, 804-808. 864 865 Stacey, J.C., Kramers, J., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26, 207-221. 866 Tailby, N.D., Walker, A.M., Berry, A.J., Hermann, J., Evans, K.A., Mavrogenes, J.A., O'Neill, 867 868 H.St.C., Rodina, I.S., Soldatov, A.V., Rubatto, D., Sutton, S.R., 2011. Ti site occupancy in 869 zircon. Geochim. Cosmochim. Acta 75, 905-921. Taylor, R.J.M., Clark, C., Fitzsimons, I.C.W., Santosh, M., Hand, M., Evans, N., McDonald, B., 870 871 2014. Post-peak, fluid-mediated modification of granulite facies zircon and monazite in the 872 Trivandrum Block, southern India. Contrib. Mineral. Petrol. 168, 1044. 873 Thomas, J.B., Watson, E.B., Spear, F.S., Shemella, P.T., Nayak, S.K., Lanzirotti, A., 2010. 874 TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in 875 quartz. Contrib. Mineral. Petrol. 160, 743-759. 876 Tomaschek, F., 2004. Zircon re-equilibration by dissolution-reprecipitation: reaction textures from 877 flux-grown solid solutions. Berichte der Deutschen Mineralogischen Geschellschaft Beihefte 878 zum Eur. J. Mineral. 16, 147. 879 Tomaschek, F., 2010. Praktische Aspekte der Mischkristallphase Zirkon: Reequilibrierungsprozess, 880 Zirkon-Xenotim Mischungslücke, geochronologische Anwendungen in einem 881 polymetamorphen Kristallinkomplex (Syros, Kykladen, Griechenland). Ph.D. thesis 882 Mathematisch Naturwissenschaftlichen Fakultät der Westfälischen Wilhelms-Universität 883 Münster, Münster, Germany, 431 pp. 884 Trail, D., Cherniak, D.J., Watson, E.B., Harrison, T.M., Weiss, B.P., Szumila, I., 2016. Li 885 zoning in zircon as a potential geospeedometer and peak temperature indicator. Contrib. 886 Mineral. Petrol. 171, 25. 887 Troch, J., Ellis, B.S., Schmitt, A.K., Bouvier, A.-S., Bachmann, O., 2018. The dark side of zircon: 888 textural, age, oxygen isotopic and trace element evidence of fluid saturation in the 889 subvolcanic reservoir of the Island Park-Mount Jackson Rhyolite, Yellowstone (USA). 890 Contrib. Mineral. Petrol. 173, 54. Tropper, P., Manning, C.E., Harlov, D.E., 2011. Solubility of CePO4 monazite and YPO4 xenotime 891

892	in H ₂ O and H ₂ O-NaCl at 800 °C and 1 GPa: implications for REE and Y transport during	
893	high-grade metamorphism. Chem. Geol. 282, 58-66.	
894	Tropper, P., Manning, C.E., Harlov, D.E., 2013. Experimental determination of CePO ₄ and	
895	YPO4 solubilities in H2O-NaF at 800 °C and 1 GPa: implications for rare earth element	
896	transport in high-grade metamorphic fluids. Geofluids 13, 372-380.	
897	Ushakov, S.V., Gong, W., Yagovkina, M.M., Helean, K.B., Lutze, W., Ewing, R.C., 1999.	
898	Solid solutions of Ce, U, and Th in zircon. Ceram. Trans. 93, 357-363.	
899	Utsunomiya, S., Palenik, C.S., Valley, J.W., Cavosie, A.J., Wilde, S.A., Ewing, R.C., 2004.	
900	Nanoscale occurrence of Pb in an Archean zircon. Geochim. Cosmochim. Acta 68, 4679-	
901	4686.	
902	Valley, J.W., Peck, W.H., King, E.M., Wilde, S.A.W., 2002. A cool early Earth. Geology 30,	
903	351–354.	
904	Valley, J.W., Cavosie, A.J., Ushikubo, T., Reinhard, D.A., Lawrence, D.F., Larson, D.J., Clifton,	
905	P.H., Kelly, T.F., Wilde, S.A., Moser, D.E., Spicuzza, M.J., 2014. Hadean age for a post-	
906	magma-ocean zircon confirmed by atom-probe tomography. Nature Geosci. 7, 219-223.	
907	Valley, J.W., Reinhard, D.A., Cavosie, A.J., Ushikubo, T., Lawrence, D.F., Larson, D.J., Kelly,	
908	T.F., Snoeyenbos, D.R., Strickland, A., 2015. Nano- and micro-geochronology in Hadean	
909	and Archean zircons by atom-probe tomography and SIMS: new tools for old minerals. Am.	
910	Mineral. 100, 1355–1377.	
911	Van Lankvelt, A., Schneider, D.A., Biczok, J., McFarlane, C.R.M., Hattori, K., 2016. Decoding	
912	zircon geochronology of igneous and alteration events based on chemical and	
913	microstructural features: a study from the Western Superior Province, Can. J. Petrol. 57,	Formatted: Eng
914	1309–1334.	
915	Vonlanthen, P., Fitz Gerald, J.D., Rubatto, D., Hermann, J., 2012. Recrystallization rims in	
916	zircon (Valle d'Arbedo, Switzerland): an integrated cathodoluminescence, LA-ICP-MS,	
917	SHRIMP, and TEM study. Am. Mineral. 97, 369–377.	
918	Wang, R., Jeon, H., Evans, N.J., 2018. Archaean hydrothermal fluid modified zircons at Sunrise	
919	Dam and Kanowna Belle gold deposits, Western Australia: implications for post-magmatic	
920	fluid activity and ore genesis. Am. Mineral. 103, 1891–1905.	
921	Wang, Y., Trail, D., 2022. Experimental partitioning of Li between zircon and different silicate	
922	melts: implications for Li contents in the Hadean and modern crust. Contrib. Mineral. Petrol.	
923	177, 15.	
924	Watson, B., Cherniak, D.J., Hanchar, J.M., Harrison, T.M., Wark, D.A., 1997. The incorporation of	
925	Pb into zircon. Chem. Geol. 141, 19-31.	

rmatted: English (United States)

- Watson, E.B., Harrison, T.M., 2005. Zircon thermometer reveals minimum melting conditions on
 earliest Earth. Science 308, 841–844.
- Watson, E.B., Wark, D.A., Thomas, J.B., 2006. Crystallization thermometers for zircon and rutile.
 Contrib. Mineral. Petrol. 151, 413–433.
- 930 Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley. J., Whitehouse, M., Kronz, A.,
- Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Girard, J.-P., Greenwood, R.C., Hinton, R.,
 Kita, N., Mason, P.R.D., Norman, M., Ogasawara, M., Piccoli, P.M., Rhede, D., Satoh, H.,
- 933 Schulz-Dobrick, B., Skår, O., Spicuzza, M.J., Terada, K., Tindle, A., Togashi, S.,
- Vennemann, T., Xie, Q., Zheng, Y.-F., 2004. Further characterisation of the 91500 zircon
 crystal. Geostand. Geoanal. Res. 28, 9–39.
- Wilde, S.A., Valley, J.W., Peck, W.H., Graham, C.M., 2001. Evidence from detrital zircons for the
 existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178.
- Wilke, M., Schmidt, C., Dubrail, J., Appel, K., Borchert, M., Kvashina, K., Manning, C.E., 2012.
 Zircon solubility and zirconium complexation in H₂O + Na₂O + SiO₂ +/- Al₂O₃ fluids at
 high pressure and temperature. Earth Planet. Sci. Lett. 349-350, 15–25.
- Wirth, R., 2004. Focused ion beam (FIB): A novel technology for advanced application of microand nano-analysis in geosciences and applied mineralogy. Eur. J. Mineral. 15, 863–875.
- Wirth, R., 2009. Focused Ion Beam (FIB) combined with SEM and TEM: advanced analytical
 tools for studies of chemical composition, microstructure and crystal structure in
 geomaterials on a nanometre scale. Chem. Geol. 261, 217–229.
- geomaterials on a nanometre scale. Chem. Geol. 201, 217–229.
- 946 Wood, S.A., Palmer, D.A., Wesolowski, D.J., B'en'ezeth, P., 2002. The aqueous geochemistry
- 947 of the rare earth elements and yttrium. Part XI. the solubility of Nd(OH)₃ and hydrolysis of
- 948Nd3+ from 30 to 290 °C at saturated water vapor pressure with in-situ pHm measurement. In949Water-Rock Interactions, Ore Deposits, and Environmental Geochemistry: A Tribute to
- 950 David A. Crerar, R. Hellmann and S. A. Wood, Eds., vol. 7, 229–256.
- 251 Zi, J.W., Rasmussen, B., Muhling, J.R., Fletcher, I.R., 2022. In situ U-Pb and geochemical
- 952 evidence for ancient Pb-loss during hydrothermal alteration producing apparent young
- 953 concordant zircon dates in older tuffs. Geochim. Cosmochim. Acta 320, 324–338.
- 954

955 Figures956

957	Figure 1: CL images of zircon from (a,b) the Shevaroy Massif (granulite-facies charnockite),
958	Tamil Nadu, southern India (Harlov et al., 2022); (c) an anorthsite, Eastern Ghats Belt, India
959	(Chatterjee et al., 2008; their Figure 2B); (d) polymetamorphic migmatites, Valle d'Arbedo, Ticino,
960	Switzerland (Vonlanthen et al., 2012); (e) high-grade granulite-facies metagranitoids, Queensland,
961	Australia (Hoskin and Black, 2000); and (f) a granitic gneiss in the contact aureole of the Rogaland
962	anorthosite-norite intrusive complex, southwest Norway (Möller et al., 2002). Terms sz, oz, and og
963	in Figure 1c stand for sector zoned, oscillatory zoned, and over growth, respectively. In Figure 1d,
964	the circles 5a, 5b, 5c, and 5d indicate areas where TEM foils were cut. In Figure 1e, P stands for
965	protolith zircon; C_1 and C_2 stands for inherited core; OZP stands for oscillatory zircon; and the scale
966	bars are all 50 μ m. Under CL imaging for all images, the light areas in the zircon are depleted in Th
967	and U relative to dark areas in the zircon.
968	
969	Figure 2: (a) BSE and (b) CL images of a grain fragment of the starting zircon from a nepheline
970	syenite pegmatite, Seiland igneous province, northern Norway.
971	
972	Figure 3: Sketch of the CaF ₂ assembly used in the experiments with the piston cylinder apparatus
973	showing the location of the four Pt capsules separated by biotite sheets.

- 974
- 975 **Figure 4:** (a,c,d) CL images of a zircon grain fragment reacted in a Na₂Si₂O₅ + H₂O solution +
- $976 \qquad ThO_2 + ThSiO_4 + SiO_2 \ at \ 900 \ ^\circ C \ and \ 1000 \ MPa. \ Altered \ areas \ (light \ areas \ in \ CL) \ are \ enriched \ in$
- 977 Th and depleted in U, Pb, and (Y+REE) (see Tables 2 and 3). Figure 4b is a TEM foil taken from
- 978 the elongated area located across the reaction front shown in Figure 4a. Note the lack of any
- 979 reaction texture in the TEM foil nor the indication of a reaction front (the sharp boundary between
980 light and dark areas in Figure 4b). Dark ovals in the background are from the carbon foil upon981 which the TEM foil rests.

982

Figure 5: BSE (a) and CL (b) images of a zircon grain fragment reacted in a 2N NaOH solution + ThO₂ + ThSiO₄ + SiO₂ at 900 °C and 1000 MPa. Altered areas (light areas in CL) are enriched in Th and depleted in U, Pb, and (Y+REE) (see Tables 2 and 3). Figure 5b is a TEM foil taken from the elongated area across the reaction front shown in Figure 5a. Note the lack of any reaction texture in the TEM foil nor the indication of a reaction front (the sharp boundary between light and dark areas in Figure 5b). Dark ovals in the background are from the carbon foil upon which the TEM foil rests.

990

991 Figure 6: (a,c,d,e,f) CL images of zircon reacted in a NaF + H₂O solution + ThO₂ + ThSiO₄ + 992 SiO₂ at 900 °C and 1000 MPa. Altered areas (light areas in CL) are enriched in Th and depleted in 993 U, Pb, and (Y+REE) (see Tables 2 and 3). Figure 6b is a TEM foil taken from the elongated area 994 across the reaction front shown in Figure 6a. Note the lack of any reaction texture in the TEM foil 995 nor the indication of a reaction front (the sharp boundary between light and dark areas in Figure 6b). 996 Dark ovals in the background are from the carbon foil upon which the TEM foil rests. Note also the 997 overgrowth of zircon near the top of Figure 6a (sharp crystallographic faces) and compare this to 998 the lack of crystallographic faces along the bottom of the grain where intergrowth occurs into the 999 zircon body via fluid-aided coupled dissolution-reprecipitation. In Figures 6e and 6f alteration is 1000 seen along cracks and possible cleavage planes in the zircon.

1001

Figure 7: Chondrite normalized (McDonough and Sun, 1995) plots of Y + HREE from altered and unaltered areas of zircon in experiments (a) ZF-5 (Na₂Si₂O₅ + H₂O), (b) ZF-9 (2N NaOH), (c) ZF-1004
16 (NaF + H₂O), and (d) ZF-40 (NaF + H₂O) (see Tables 2 and 3; Supplementary Material-Table S4).

Experiment	P (MPa)	$T(^{\circ}C)$	Time (h)	Zrn	Th,Si Mix	NaCl	KCl	NaF	$Na_2Si_2O_5$	H_2O	2N NaOH	2N KOH	Results
ZF-4	1000	900	144	22.54	5.2					6.4			no reaction
ZF-5	1000	900	144	21.03	5.08				10.23	5.6			reaction
ZF-6	1000	900	144	20.43	4.09							6.17	no reaction
ZF-9	1000	900	147	21.79	4.83						5.55		reaction
ZF-12	1000	900	142	19.24	4.97		3.19			2.18			no reaction
ZF-13	1000	900	144	21.85	5.02	2.63				2.18			no reaction
ZF-16	1000	900	132	20.31	4.42			1.12		4.98			strong reaction
ZF-40	1000	900	192	13.06	2.00			2.41		7.27			strong reaction

Table 1. Experimental results from metasomatic alteration of zircon.

Solid and fluid in mg

		ZF-5	5		Z	ZF-16						
fluid	$\hline ThO_2 + ThSiO_4 + SiO_2 + Na_2Si_2O_5 + H_2O$				$ThO_2 + ThSiO_4 + S$	iO ₂ + 2N NaOH	$ThO_2 + ThSiO_4 + SiO_2 + NaF + H_2O$					
zircon area	unaltered		altered		unaltered	altered	unaltered	altered	altered			
Element		1s ^a	Mean	1s ^b			Mean	1s ^b	Mean	1s ^b		
Y89	240	1.30	123	1.63			209	2.19	24.3	10.2		
La139	0.01	0.01	0.03	0.01			0.03	0.02	0.03	0.00		
Ce140	3.23	0.08	0.06	0.03			2.67	0.18	0.05	0.01		
Pr141	0.01	0.01	0.02	0.00			0.01	0.01	0.02	0.01		
Nd146	0.15	0.13	0.06	0.09			0.17	0.15	0.10	0.08		
Sm147	0.33	0.04	0.01	0.02			0.38	0.19	0.02	0.03		
Eu153	0.57	0.04	0.06	0.02			0.40	0.05	0.02	0.02		
Gd157	2.19	0.26	3.63	2.09			2.36	0.24	0.02	0.03		
Tb159	1.21	0.03	0.16	0.04			1.18	0.09	0.08	0.03		
Dy163	16.8	0.60	2.19	1.51			15.2	0.94	1.53	0.78		
Ho165	7.09	0.15	1.64	0.72			6.69	0.12	1.18	0.52		
Er166	37.4	0.46	10.1	6.07			31.8	0.15	7.91	3.21		
Tm169	8.43	0.20	3.49	2.29			7.77	0.16	2.53	0.63		
Yb172	88.1	4.48	40.1	25.5			78.1	1.18	28.1	8.36		
Lu175	17.2	1.24	7.87	7.40			16.8	0.93	7.29	1.65		
Hf178	4731	152	4598	<i>58.3</i>			4360	116	4715	207		
Rad 206Pb	4.56		bd		5.06	bd	3.68		bd			
Th	51.1		1197		50.6	1070	37.4		457			
U	61.1		5.5		66.8	4.22	47.8		0.33			

Table 2. Representative SHRIMP analyses of zircon (ppm) experimentally metasomatised at 900 °C and 1000 MPa in a series of alkali-bearing fluids.

a - instrumental error; b - mean error; c - REE not measured; bd - below detection limit; Rad - radiogenic.

Table 3. LA-ICPMS analysis of zircon (ppm) experimentally metasomatised at 900 °C and 1000 MPa in a series of alkali-bearing fluids.

	ZF-5					ZF-9			ZF	-16		ZF-40				
fluid	$ThO_2 + TI + H_2O$	$hSiO_4 + S$	$SiO_2 + Na_2S$	$5i_2O_5 +$	$\frac{ThO_2 + ThSiO_4 + SiO_2 + 2N}{+ NaOH}$			$ThO_2 + T$	$hSiO_4 + S$	$GiO_2 + NaF$	+ H ₂ O	$\hline ThO_2 + ThSiO_4 + SiO_2 + NaF + \\ + H_2O$				
zircon area	unaltered		altered		unaltered		altered	unaltered		altered		unaltered	unaltered		altered	
#pts	2		2		7		1	4		5		16		18		
Element	Mean	1s	Mean	1s	Mean	1s		Mean	1s	Mean	1s	Mean	1s	Mean	1s	
P31*	72.0	4.2	89.2	24.5	90.8	45.2	19.7	38.7	14.2	35.8	9.13	65.4	19.4	52.1	16.7	
Ti47	2350	40.3	2214	96.6	2254	<i>79.3</i>	2152	2340	28.3	2343	60.1	2182	31.5	2188	27.3	
Y89	243	0.50	116	3.40	213	22.9	90.5	209	3.64	44.8	17.9	250	27.5	67.9	17.5	
La139	0.00	0.00	0.01	0.01	0.01	0.02	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	
Ce140	3.68	0.08	0.02	0.03	3.11	0.26	0.26	3.16	0.17	0.03	0.06	3.39	0.40	6.97	1.03	
Pr141	0.02	0.02	0.00	0.01	0.01	0.02	0.00	0.01	0.01	0.00	0.01	0.01	0.02	0.00	0.00	
Nd146	0.11	0.16	0.06	0.09	0.16	0.12	0.00	0.15	0.04	0.01	0.02	0.24	0.18	0.02	0.02	
Sm147	0.56	0.00	0.03	0.04	0.34	0.23	0.00	0.43	0.10	0.02	0.02	0.63	0.28	0.05	0.04	
Eu153	0.59	0.02	0.00	0.00	0.43	0.10	0.00	0.49	0.06	0.03	0.04	0.59	0.19	0.03	0.02	
Gd157	3.25	0.16	4.95	1.58	3.27	0.66	0.49	3.14	0.09	0.15	0.12	3.83	0.87	0.73	0.20	
Tb159	1.58	0.16	0.24	0.05	1.29	0.18	0.39	1.32	0.04	0.19	0.06	1.60	0.33	0.55	0.14	
Dy163	20.4	0.72	3.50	0.66	18.2	2.29	3.92	18.0	0.33	3.67	1.56	21.9	2.93	8.84	2.29	
Ho165	8.37	0.35	2.10	0.61	7.45	1.10	3.02	7.46	0.24	2.39	1.05	8.81	1.13	4.23	1.05	
Er166	46.5	1.66	16.9	2.52	38.9	4.85	18.5	38.3	1.13	17.0	7.22	45.9	5.02	25.4	6.12	
Tm169	10.2	0.33	5.51	0.79	9.54	1.21	6.12	9.18	0.26	5.61	2.41	10.6	0.90	6.52	1.61	
Yb172	106	1.59	65.6	4.68	93.3	11.1	54.0	93.5	3.41	62.0	24.0	108	8.79	70.6	17.1	
Lu175	21.0	0.50	15.7	0.40	18.8	2.08	18.7	17.8	0.56	14.7	5.43	20.9	1.61	14.9	3.45	
Hf178	6242	203	5770	169	6160	567	5483	5772	58.9	5996	495	5622	288	5752	87.7	
Pb208	2.88	0.07	0.23	0.32	2.39	0.33	0.33	1.93	0.17	0.01	0.02	2.48	0.64	0.01	0.01	
Th232	49.7	2.57	775	5.46	45.5	6.41	693	42.5	2.39	23124	48201	47.6	11.4	601	142	
U238	62.4	1.85	3.13	0.49	53.7	5.03	6.76	52.3	2.16	5.84	1.99	56.1	9.28	0.00	0.01	

* - approximate values for P, i.e. less than the value stated.

(f)

Click here to access/download **Supplementary Material** Table S1 - EPMA Data.xls

Click here to access/download Supplementary Material Table S2 - SHRIMP UThPb.xls

Click here to access/download Supplementary Material Table S3 - SHRIMP YBaREEHf.xls

Click here to access/download Supplementary Material Table S4 LA-ICPMS reduced.xls Supplementary Material Figure S1

Click here to access/download Supplementary Material Figure S1.pdf

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: