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Abstract
Although river water storage contributes to Total TerrestrialWater Storage (TWS) variations obtained
fromGRACE satellite gravimetry, it is unclear if computationally expensive river routing schemes are
requiredwhenGRACEdata is used for calibration and validation in global hydrologicalmodeling
studies. Here, we investigate the role of river water storage on calibration and validation of a
parsimonious global hydrologicalmodel. In amulti-criteria calibration approach, themodel is
constrained against eitherGRACETWSor TWS fromwhich river water storage is removed.While we
find that removing river water storage changes the TWS constraint regionally and globally, there are
no significant implications formodel calibration and the resulting simulations.However, adding
modeled river water storage a-posteriori to calibrated TWS simulations improvesmodel validation
against seasonal GRACETWS variations globally and regionally, especially in tropics andNorthern
low- andwetlands.While ourfindings justify the exclusion of explicit river routing for globalmodel
calibration, wefind that the inclusion of river water storage is relevant formodel evaluation.

1. Introduction

Over the last decade, terrestrial water storage variations fromGRACE andGRACE-FO satellite gravimetry
provided valuable information for calibration and validation of global hydrologicalmodeling approaches
(GHMs) (Werth et al 2009, Döll et al 2014, Kumar et al 2016, Scanlon et al 2016,Mostafaie et al 2018, Trautmann
et al 2018). However, satellite gravimetrymeasures the vertically integrated total water storage (TWS), that
includeswater stored in ice, snow, canopy, soilmoisture, groundwater, but also inwetlands, surface water
bodies and river channels (Watkins et al 2015). GHMs, on the contrary, do not necessarily simulate all these
storages, and also vary significantly in their complexity and the represented hydrologic processes (Schellekens
et al 2017, Telteu et al 2021). Among others, their inability to correctly simulate GRACETWSvariations is often
attributed to neglected processes, such as river and floodplain storage dynamics (Kim et al 2009). Getirana et al
2017 showed that river and surface water storages contribute to 8%of TWS variability globally, those storages
are especially relevant at regional scale. Significant contribution of river water storages to TWS variations have
been shown for the tropics, themonsoon-impacted sub-tropics,major river basins in arid regions, and in high
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latitudeswhere the increase in river water due to snowmelt is relevant (Felfelani et al 2017, Getirana et al 2017).
While not all GHMs include a river water storage (Telteu et al 2021), a river routing scheme is the essential
component to simulate lateral water flow and thus enable calibration ofmodel parameters against river
discharge observations, as it is traditionally done in hydrology.

However, the increasing availability and quality of global Earth observation data over the past decades, not
only of GRACETWSbut also of other water storages andfluxes, allows to constrainmodel parameters not only
against the single river discharge constraint, but againstmultiple, complementary observational data streams. In
this context,multi-criteria calibration approaches evolve (Trautmann et al 2022,Dembélé et al 2020, Sirisena
et al 2020,Mostafaie et al 2018), inwhich including river routing duringmodel calibrationmight be dispensable
to define parameter values. Furthermore, the variety of global observational data enablesmore data-driven
approaches of hydrologicalmodeling, that either usemachine-learning techniques (Mosaffa et al 2022, Shen and
Lawson 2021, Xu and Liang 2021) or combine thesewith process-basedmodeling knowledge in hybridmodels
(Kraft et al 2020, Reichstein et al 2022). Both such approaches require thousands of thousands ofmodel runs
during the calibration process and the parameter testing in the learning phase. Hence, it is computational not
feasible, or evenmethodological possible, to perform a full globalmodel run, including the lateral routing of
discharge, in each iteration.Whilemany efforts to reduce the computational costs of global routing schemes
exist (Yamazaki et al 2013,Mizukami et al 2021), they remain a considerable factor for time and computational
performancewhen compared to amodel runwithout river routing. Additionally, the spatial contextmust be
preserved to simulate the lateral water flow in routing schemes, what hinders the possibilities for spatial sub-
sampling of grid cells for calibration and the parallelization of computational processes.

At the same time, the actual relevance of river routing for parameter calibration and validation against
GRACETWS at a global scale is rather unclear, also given the broad spatial and temporal resolution of
GRACETWS.

In the context of the development of new, largely data-drivenmodeling schemes and enhancedmodel
calibration approaches againstmultiple observational data streams , it’s essential to knowwhether
computational resources need to be invested in river routing during parameter calibration, andwhat the
consequences are if routing is only applied as a post-processing, i.e. after definingmodel parameters, to validate
model simulations.

Therefore, we specifically investigate the need for consideration of river storage and its potential effect on
model calibration and validation in global hydrological studies that applyGRACETWS.

To do so, we use a parsimonious hydrologicalmodel that does not explicitly account for river dynamics.We
constrain themodel in amulti-criteria calibration approach either against original GRACETWS estimates, or
against TWS estimates fromwhich river storage was removed, and compare the resulting simulations. In the
second step, we apply a routing scheme on the calibratedmodel and validate the performance with andwithout
additional consideration of river storage compared to the original GRACETWS. Specifically, we focus on:

I. the sensitivity ofmodel calibration and resulting hydrological simulations to the removal of river storage
fromGRACETWS.

II. the need of river routing for validation of hydrological simulationswithGRACETWSobservations at
regional and global scales.

In the following, we provide an overview on themethodology of this study. In section 3, we present and
discuss the results regarding the effect of river storage onmodel calibration, followed by its influence on
validation against GRACETWS. Finally, section 4 summarizes the implications for future global hydrological
studies.

2.Data andmethods

This study consists of 2 parts:

I) the effect of river storage onmodel calibration, and

II) the effect of river storage onmodel validation.

An overview on themethodologies and data for both parts is given infigure 1, and described in detail in
sections 2.2 and 2.3. For all analysis, we apply the same hydrologicmodel, which is introduced in the following
section.
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While themodel is run for the time period 03/2000 to 12/2014,model calibration and validation are limited
to the availability of observational data, such asGRACETWS. Thusmodel calibration and validation are
conducted for the period 2002 to 2014. Although all calibration and analysis considers this entire time series, the
shown results focus on seasonal variations because of the rather short time period and the inability of themodel
to represent trends in TWSdue to, e.g., groundwater depletion andmelting of glaciers that hinder the analysis of
trends.

2.1.Hydrologicalmodel
Exemplary for the variety of global hydrologicalmodels, we apply the conceptual hydrologicmodel introduced
in Trautmann et al (2022).While beingmore parsimonious than its established counterparts, its structure
reflects classical process representation ofGHMs and the calibratedmodel achieves equally good and partially
better performance as, e.g.models from the EartH2Observemodel ensemble (Schellekens et al 2017), regarding
different observational data (figure S5).

Forced by precipitation, air temperature and net radiation, themodel simulates evapotranspiration (ET) and
runoff (QR), and considers 4water storages: a snow component, a 2-layer soil water storage, a delayedwater
storage component, and a deep soil water storage that interacts with the soil and delayed storage components.
Simulated total water storage (TWS) is the sumof these 4 storages.While groundwater, surface water and river
water are not implemented explicitly, they are assumed to be effectively included in the deep and slow storage
components after calibration of associatedmodel parameters against GRACETWS.

We run themodel on a 1°× 1° latitude/longitude spatial resolution on daily time steps for the period 03/
2000 to 12/2014, focusing on vegetated land area under near-natural conditions.

For regional analysis, we consider hydro-climatic regions obtained from cluster analysis of latitude,mean
seasonal dynamics and amplitudes of TWS, ET andQR observational data (figure 2).

Further details are available in Trautmann et al (2022).

Figure 1. Schematic structure of the applied data andmethodologies to assess the effect of river storage onmodel (I) calibration, and
(II) validation. In (I) the TRIPy and theCaMa-Flood routing schemes are forced byGRUNQR to estimate wRiver, which is then
removed fromGRACETWS. Either GRACETWSor TWS-noRiver data is then used alongwith other observational data to calibrate a
global hydrologicmodel. In thefirst step (1A)we compareGRACETWS against TWS-noRiver to identify thewRiver signal inGRACE
TWSdata (section 3.1.1), and in the second step (1B) simulations fromdifferent calibrations are compared against each other to assess
the effect of wRiver onmodel calibration (section 3.1.2). In II)we force the TRIPy and theCaMa-Flood routing schemewithmodeled
QR from I) and add it tomodeled TWS to assess the effect of accounting for wRiver onmodel validation against the original GRACE
TWSwRiver.
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2.2. Effect of river storage onmodel calibration
To assess the effect of river water storage (wRiver) included inGRACETWS estimates onmodel calibration, we
constrain themodel againstmonthlyGRACETWSvariations of the JPLmascon solution (RLM06v2;Wiese et al
2018), fromwhich estimates of wRiver were removed or not. To do so, wefirst estimate river storage variations,
and then calibrate the hydrologicalmodel against GRACEdatawith orwithout river storage.

To estimate wRiver variations, we force spatially-explicit river routing schemeswith observation-based
runoff QR reconstructions fromGRUNv1 (Ghiggi et al 2019). To do so, themonthly average griddedQR

estimates are resampled to dailymodeling time steps by replicating themonthly value.
Since the choice of the river routing scheme essentially affects simulatedwRiver and discharge (QDis) (Zhao

et al 2017)we consider 2 different river routing schemes: 1) the simple routing schemeTRIPy (Oki et al 1999),
and 2) themore sophisticated, widely usedCatchment-basedMacro-scale Floodplain (CaMa-Flood) river
routing scheme (Yamazaki et al 2011).

TRIPy calculatesQDis from each grid cell along the river network based onQR andmaps offlowdirection
and river sequence, using a linear reservoir algorithm. Thereby, the parameter effective flowvelocity (eff_vel)
[ms−1] defines how fastQR is discharged fromone grid cell to the next, i.e. how longwater is stored in the grid
cell’s wRiver.While in reality,flow velocity varies spatially as it depends on land surface characteristics such as
slope, TRIPy uses a globally uniform value for simplicity. To yet assess the sensitivity to eff_vel in TRIPy, we
consider a range of global eff_vel values in different experiments, from low (0.1ms−1) tomedium (0.5ms−1) to
high (2.5ms−1) values, to derive corresponding estimates of wRiver that produce a range of river storage
dynamics with large and fast variability for high eff_vel, and small and slow variability for low eff_vel.

Similar to TRIPy, CaMa-Flood v4.01 derives the time evolution of water storage from thewater balance
equation, considering the inflow fromupstream grid cells, the input from runoff forcing generated at the
respective grid cell, and the outflow to downstream grid cells. However, in contrast to TRIPy, it, next toQDis,
explicitly calculatesflow velocity along a prescribed river network that is automatically generatedwith the
Flexible Location ofWaterways (FLOW) (Yamazaki et al 2009)method.Utilizing a parametrization based on the
sub-grid topography obtained fromHydroSHEDS, CaMa-Flood simulates water storagewithin the river
channel, but alsowater storage inflood plains. Thus, CaMa-Flood allows amore dynamic simulation ofQDis and
wRiver while considering the spatial variability of discharge-generating characteristics.

In the following, the experiments with river routing fromCaMa-Flood and the 3 experiments fromTRIPy
are summarizedwith#, or denotedwithCaMa, 01, 05, or 25 if referred to explicitly.

Estimates of wRiver# are removed fromGRACETWS to obtain new estimates of TWS-noRiver#. Before
using either GRACETWSor TWS-noRiver# formodel calibration, we compare them to assess the contribution
of wRiver to the TWS constraint regionally and globally (figure 1(1A); section 3.1.1). For this purpose, we
calculate theNash-Sutcliffe Efficiency (MEF, equation (1)) betweenGRACETWS and eachTWS-noRiver# to
quantify their similarity for different spatial scales.

Figure 2.Hydro-climatic clusters of the study areawith red dots indicating grid cells used inmodel calibration.

4

Environ. Res. Commun. 5 (2023) 081005



å

å
= -

-

-

=

=

( )

( ̅ )
( )MEF

x x

x x

1 1i

n

obs i i

i

n

obs i obs i

1
, mod,

2

1
, ,

2

where xmod,i corresponds to TWS-noRiver#, xobs,i corresponds toGRACETWS, and x̅obs is the average of
GRACETWS at each data point i.

Either GRACETWSor TWS-noRiver# estimates are then used alongwith other observational data
includingGRUNQR, FLUXCOMET (Jung et al 2019), and ESACCI soilmoisture (Dorigo et al 2017) to
constrainmodel parameters in amulti-criteria calibration approach. The approach (Text S1), described in
Trautmann et al 2022, aims to derive the globally best performing parameter set regarding all constraints
simultaneously, while considering each data stream’s strengths and uncertainties. For each observational
constraint we calculate a costmetric that is summed up to a total cost value which is optimized (minimized)
using theCMAES algorithm (Hansen andKern 2004) to derive the globally best performing parameter set.We
perform calibration for a spatial subset of grid cells that is obtained by stratified random sampling among
Koeppen-Geiger zones. The calibration subsetmirrors the global and regional distribution of observed TWS,
ET,QR, andwRiver, and therefore allows for efficient calibration of parameter values that are globally applicable.
To appraise parameter equifinality and uncertainties of the optimization procedure, the calibration of each
experiment is performed 10 times independently, with each of the 10 calibration runs comprising up to 10000
model runs, to derive 10 optimal parameter sets.

Finally, we analyze and compare the simulations that were calibrated against GRACETWS (MOD) and those
calibrated against the 4 different TWS-noRiver# estimates regarding TWS, ET andQR (figure 1(1B)) for global
and regionalmean seasonal dynamics.While taking into account the spread between 10 different calibration
runs of each experiment, we focus on the best performing calibration runwhen calculatingMEFbetweenMOD
(xobs in equation (1)) and eachMOD-R# (xmod in equation (1)).

2.3. Effect onmodel validation
To assess the relevance of wRiver for validation of TWS simulations against GRACETWS,we addwRiver to
model simulations aftermodel calibration. For this purpose, we apply theCaMa-Flood and the TRIPy routing
scheme for each calibratedMOD-R#, i.e., using the calibratedQR as forcing for the routing schemes. Thereby,
we use the same routing scheme and parametrization as for the TWS-noRiver# constraint that was used for the
respective calibration (e.g. TRIPywith eff_vel of 0.1ms−1 forMOD-R01 that was calibrated against TWS-
noRiver-01; andCaMa-Flood forMOD-CaMa that was calibtated against TWS-noRiver-CaMa).

We then add simulatedwRiver to TWSof eachMOD-R# and compare it against the TWS simulations from
MODwithout additional wRiver, as well as against the original GRACETWS. Formodel validation, we calculate
MEFbetweenGRACETWS andMODresp.MOD-R# at the local grid-cell scale, as well as for global and
regionally aggregatedmean seasonal dynamics.

3. Results and discussion

3.1. Effect of river storage onmodel calibration
3.1.1. Effect of river storage on TWS patterns
Figure 3 compares the decrease in similarity between the original GRACETWS and estimates of TWS from
whichwRiver is removed.

As expected, low eff_vel increases wRiver, and therefore, the lowest correspondencewith the original
GRACETWS can be seen for TWS-noRiver-01, while the similarity increases with increasing eff_vel, so that
TWS-noRiver-25 is nearly identical with the original GRACETWS, because the high eff_vel causes the
immediate depletion of wRiver to the next downstream grid cell and prevents the accumulation of wRiver except
for grid cells in downstream areas of large catchments. Spatially, differences betweenGRACETWS andTWS-
noRiver-CaMa are similar to those fromTRIPywith amedium eff_flow (TWS_noRiver-05).

Overall, spatial correspondence withGRACETWSmainly decreases along larger river networkswith a large
water accumulation (figure 3(a)). The largest grid-wise changes are obtained in theCold andHumid regions,
where river networks are dense and streamflow and, thus, wRiver is large in absolute terms. On the contrary,
removingwRiver fromGRACETWShas little effect in the Semi-arid region, wherewater accumulation is
smaller than in humid regions.

Regarding seasonal dynamics (figure 3(b)), removingwRivermainly changes the amplitude of TWS
variations, which increases in snow affected regions and tends to decrease otherwise. In theCold region, gradual
snowmelt, retarded infiltration due to shallow and frozen soils, slow discharge to downstream areas, as well as
additional water input fromupstream areas in large river networks dampenTWS variations. RemovingwRiver
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attenuates these delaying effects, causing increased TWS variations and shifts the TWSpeak to onemonth
earlier.While in theCold region seasonal TWS variations aremainly affected by snow accumulation andmelt,
TWS in other regions is dominated by liquidwater storages (Trautmann et al 2018). In non-snow affected
regions, QR increases withwetness, i.e. with TWS,which in turn reduces TWS.Due to this negative feedback,
removingwRiver fromTWS reduces the TWS amplitude. Due to the spatial variability of parametrization and

Figure 3.Comparison of the different TWS estimates (GRACETWS andTWS-noRiver#) that are used formodel calibration in
different experiments. (a) similarity between the original GRACETWS andTWS-noRiver# in terms of gridwiseNash-Sutcliff
efficiency (MEF); (b) global and regionalmean seasonal dynamics of GRACETWS andTWS-noRiver#. For (a) and (b)MEFof TWS-
noRiver#with the original GRACETWS is calculated and subtracted from the optimalMEF of 1. Note the different ranges on the y-
axis for TWS variations in panel (b).
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flow velocity inCaMa-Flood, TWS-noRiver-CaMa agrees with different TRIPy TWS-noRiver estimates in
different regions, e.g. rather with high eff_vel parametrization inTemperate,Humid and Sub-humid regions, but
with low eff_vel parametrization in the Semi-arid region.

3.1.2. Effect of river storage onmodel calibration
Figure 4 shows themean seasonal dynamics of TWS, ET andQR simulated byMODandMOD-R# aftermodel
calibration. Respective observations are plotted for better evaluation of the calibration results, yet the following
focuses on differences betweenMODandMOD-R#. A detailed evaluation of performance ofMODagainst
TWS, ET andQR observations can be found in Trautmann et al (2022).

Despite being calibrated against either GRACETWSor TWS-noRiver#, overall little variance between
calibratedMODandMOD-R# is evident.While we expected themodel parameters to adapt to differences in the
TWS constraint, themean seasonal TWS simulations are nearly identical among experiments, globally and
regionally. The same holds for ET. Some differences between calibration runs are obtained regardingQR,
especially forCold,Temperate and Semi-arid regions. However, while the spread is larger than for the other
simulated variables, the differences of the best performing calibration runs are still negligible.

High agreement in simulated fluxes andTWS variations goes alongwith no systematic differences between
calibrated parameter values ofMODand differentMOD-R#. Hence, we do notfind any evidence for biases
between experiments that result from either considering wRiver or not inmodel calibration.While the
calibrated parameter values don’t vary significantly between different experiments, different calibration runs
point to two parameter sets that achieve (nearly) equal good performance (figure S1). Affected are parameters
that regulate the size of soil water storage and it’s depletion by ET. The interplay of these parameters with the
other outgoing fluxQR also explains the spread of simulatedQR. This parameter equifinality is not related to
wRiver, but to the equifinality of baseflow and ETdecay, especially under water limitation as discussed in
Trautmann et al (2022).

The absence of a qualitative effect of usingGRACETWSor TWS-noRiver# formodel calibration is also
evident when inspecting the total costs and cost components among the experiments (figure S1). They are fairly
similar on average, while the spread of costs between different calibration runs of one experiment tends to be
larger than the differences between experiments. This underlines that uncertainties arisemainly fromother
aspects of hydrologicalmodeling than from the effect of wRiver included in the TWS constraint. However, we do
see a tendency for elevated TWS costs forMOD-R01 andMOD-R05.Higher TWS costs and thus total costs
suggest difficulties of themodel to adapt to the TWS constraint, when the removedwRiver is large. This suggests
that the comparatively large removal of wRiver is harder to reconcile with the other constraints of ET andQR,
and thusmay indicate that such largewRiver based on low eff_vel is not plausible.While it is notable that the
spread in total, TWS, andQR costs ofMOD-CaMa is comparatively smaller and it achieves the overall lowest
total costs due to low soilmoisture and ET costs, the general difference to the other calibratedmodels remains
small, indicating no significant impact of the chosen routing scheme on the globalmulti-criteria calibration.

3.2. Effect of river storage on globalmodel validation
While we did notfind systematic differences between TWS simulations ofMODandMOD-R# after calibration,
explicitly accounting forwRiver and adding it to TWSofMOD-R# causes systematic differences ofmodel
performance against the original GRACETWS, locally as well as for regional and globalmean seasonal dynamics
(figure 5). The largest differences are notable for considering wRiver based on low eff_vel, while the largest
improvement ofmodel performance relative to the original GRACETWS is achievedwhen addingwRiver based
onmedium eff_vel - globally and inmost regions (figure 5(b)).While the choice of the routing scheme does not
significantly affectmodel performance regarding seasonal dynamics of TWS for large spatial regions
(figure 5(b)), it is relevant for simulating hydrological dynamics at smaller, e.g. catchment, scale. As such, QDis

fromMOD-CaMa provides consistently good estimates ofQDis at variousGRDC stations, while different
MOD-R# fromTRIPy performbetter for different stations, highlighting the benefit of spatially distributed river
flowparameters as opposed to global average parameter values of eff_vel in TRIPy (figure S6). However, locally,
the differences inmodel performancewithGRACETWS are less pronouncedwhenwRiver fromCaMa-Flood is
added (MOD-CaMa). Overall, includingwRiver improves TWS simulations at local scale especially in the
tropics andNorthern low- andwetlandswhere rivers accumulate water over large catchments (figure 5(a)). The
importance of wRiver in the tropics has already been shownby previous studies (Getirana et al 2017). Similarly,
the inability to reproduce observed TWS variations bymodels in theCold region is among others attributed to
missing representations offloodplain and river flowprocesses (Kim et al 2009). Indeed, in theCold region,
accounting forwRiver improvesMEF for themajority of grid cells (figure 5(a)), highlighting the importance of
additional inflow fromupstream grid cells and the delay of water outflow in these regions.WhileMOD-R01
matches the timing of TWS variations slightly better, it underestimates the seasonal TWS amplitude
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(figure 5(b)). On the contrary,MOD-R05 andMOD-CaMa reproduce TWS amplitude, yet still precede TWS
variations, although not asmuch asMODorMOD-R25.Hence, the phase-shift issue of simulated TWS inCold
regions, which is prevalent inmanyGHMs (Schellekens et al 2017), is unlikely to arise fromunaccounted river
storage variations only. The underestimation of TWS amplitude (and peak spring discharge, figure S6)) can also
be affected by deficiencies in the precipitation forcing (Huffman et al 2000, Contractor et al 2020), but remaining

Figure 4.Mean seasonal dynamics of TWS, ET, andQR observations and calibrated simulations, summarized globally and for
different regions. Uncertainty bands denote the spread between 10 different calibration runs of each experiment, while dashed/solid
lines indicate the best performing calibration run of each experiment. Black dotted lines denote observational GRACETWS,
FLUXCOMET, andGRUNQR. ListedMEF compares the best performing calibration runMOD# against the best performing
calibration run ofMOD (dashed line).
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difficulties in reproducing the timing of TWSdynamics indicate the potential importance of othermissing
processes such as freeze/thaw dynamics and permafrost (Yu et al 2020), and ice jam in river channels (Kim et al
2009).

The preceding of simulated TWS compared toGRACETWS can also slightly be reduced at global scale,
whenwRiver is considered (figure 5(b)). However, a preceding of simulated TWS variations is still apparent for
large areas, especially theTemperate region (figure 5(b)), indicating again the relevance of other processes than
water delay inwRiver, such as irrigation, land cover changes and interactions between groundwater and surface
water dynamics.

While includingwRiver improves agreement withGRACETWSover large areas,MEFdecreases notably in
the Semi-arid regionwhen the TRIPy routing scheme is used (figure 5). The slightly better performance of

Figure 5.Comparison of the original GRACETWS, TWS simulated byMOD (without river water storage) andTWS+wRiver
simulated byMOD# (accounting for river water storage based on different routing schemes). (a) gridwiseNash Sutcliff efficiency
(MEF) betweenGRACETWS andMOD (upper leftmap), and differences ofMEFobtained byMODandMEFobtained byMOD-
CaMa,MOD-R01,MOD-R05,MOD-R25, respectively; including their global and regional distributions (outlier are not plotted). (b)
mean seasonal dynamics averaged globally and for different regions. ListedMEF comparesMOD resp.MOD#with the original
GRACETWS.Note: InMODbest, individual storage components contribute with 0.22% (snow), 0.17% (soil), 0.4% (deep soil) resp.
0.20% (slow storage) to the global average seasonal TWS variations (Trautmann et al 2022).
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MOD-CaMa in semi-arid regions locally (figure 5(a)) aswell as for the average seasonal dynamics in the Semi-
arid region (figure 5(b)) indicates the benefits of the variable flow velocity and the accounting offlooding in
CaMa-Flood, which is relevant in such regions that are characterized by rain- and dry-seasons.However,
especially the regional average dynamics are not notably different from the other simulations by TRIPy and the
local improvement remains low. AlreadyMODdoes not agreewell withGRACETWS in the Semi-arid regions
(figure 5(a)), where TWS variability is sensitive to parameters that control ET underwater limited conditions,
which are poorly constrained (Trautmann et al 2022). In addition to the parameter equifinality issues, poor
(initial) performance points tomodel structure uncertainties and deficiencies, such asmissing processes of
evaporation and percolation to groundwater fromopenwater surfaces. Besides, theGRUNQR constraint is
known for larger uncertainties in arid regions (Ghiggi et al 2019) and tends to inconsistencies with the other
observation-based data in the Semi-arid region (Trautmann et al 2022). Therefore, comparatively goodMEF of
modeled and observedQR (figure 4)does not necessarily reflect good representation ofQR, which is also
underlined by poor representation of observed discharge at semi-arid GRDC stations (figure S6). AsmodeledQR

is used to derivemodeledwRiver, this further leads to poorermodel performance in semi-arid regionswhen
wRiver is added to TWS.

Besides, the general improvement of TWSwhenwRiver is added tomodeled TWS, in all regions except for
the semi-arid regions, highlights potential room for improvements in our approach ofmodeling the hydrology
in semi-arid regions. Among others, the improvedmodel performance by using CaMa-Flood in such regions
indicates especially the importance of seasonal flooding and associated processes for TWS variability in semi-
arid regions.

3.3. Transferability of results to other global hydrologicalmodeling studies
While we cannot exclude that the findings shown in the previous sections are conditional on the specificmodel
structure, calibration approach and data used in this study, we argue that our findings are of general relevance for
global hydrologicalmodeling studies across a spectrumofGHMs and data-driven approaches. Themodel used
in this study is based on classic hydrologic process representation and despite its simple structure achieves good
performance that is comparable tomore complex state-of-the-art GHMs (figure S5). The identified key issues of
model-datamismatches in cold and semi-arid regions are also shared amongGHMs in general (Schellekens et al
2017) and appear unrelated to river storage variations. The identified problemof parameter and thus process
identifiability is due to insufficient observational constraints, and this problem is expected to be even larger for
more complexmodels withmore parameters and for data-driven approaches that includemachine learning
methods and thus evenmore rely on the available data.

4. Implications

In this study, we showed that river storage has a relevant impact on seasonal TWSdynamics, in particular in cold
and humid regions, and accounting for it when simulating TWS improves performance against GRACETWS
observations (section 3.2). However, we did notfind a systematic impact of either including or excluding river
storage in TWS for global-scalemodel calibration (section 3.1). Compared to river storage, restrictions from
other observational constraints seem to bemore relevant to definemodel parameters in such amodel-data
integration approach as presented here. For example, themain discrepancies between observed andmodeled
TWSmay be related tomissing processes other than the river water storage (especially in cold and semi-arid
regions, see section 3.2), and issues of parameter identifiability due to insufficient and partly conflicting data
constraints. Ourfindings hold across sensitivity experiments with different routing schemes and effective flow
velocity parameters that produce awide range of river storage dynamics.While we do not argue that river
routing is of relevance at local and smaller regional scales, ourfindings show that the impact at larger regional up
to global scales vanishes. Especially when usingGRACETWS formodel calibration, the effect of small rivers and
less dense river networks is likely smoothed out by its 250 kmnative resolution (Wiese et al 2018). As discussed,
ourfindings are of general relevance for other global hydrologicalmodeling approaches as well (section 3.3).
Especially in the Era of Earth observations, they are of particular relevance for future global hydrological
modeling approaches that follow amore data-driven perspective and such approaches inwhichmodel
parameters are calibrated not only against a single river discharge constraint, but againstmultiple large-scale
observational data streams of complementary water fluxes and storages. Based on the presented findings, it
seems advisable to save the comparatively large computational resources needed by routing schemeswhen
model parameters are calibrated against GRACETWS and other Earth observation based data. Omitting the
routing itself, butmore significantly the resulting ability to subsample grid cells for calibration instead of
demanding a full global simulation in each calibration iteration, as well as the easier implementation of parallel
programming strategies can reduce the computational costs of globalmodel calibration. The saved
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computational resources can then be better used to address other issues, such as parameter and process
identifiability,more efficiently.

Overall, we highly recommend considering river water storagewhen evaluating and analyzingmodeled
TWS, especially on regional scale. However, we suggest there is no need to apply river routing in globalmodel
calibration against GRACETWS, especially if complementary observational data streams are considered or
when a data-driven approach, with high computational demand is used.
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