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Abstract

Although river water storage contributes to Total Terrestrial Water Storage (TWS) variations obtained
from GRACE satellite gravimetry, it is unclear if computationally expensive river routing schemes are
required when GRACE data is used for calibration and validation in global hydrological modeling
studies. Here, we investigate the role of river water storage on calibration and validation of a
parsimonious global hydrological model. In a multi-criteria calibration approach, the model is
constrained against either GRACE TWS or TWS from which river water storage is removed. While we
find that removing river water storage changes the TWS constraint regionally and globally, there are
no significant implications for model calibration and the resulting simulations. However, adding
modeled river water storage a-posteriori to calibrated TWS simulations improves model validation
against seasonal GRACE TWS variations globally and regionally, especially in tropics and Northern
low- and wetlands. While our findings justify the exclusion of explicit river routing for global model
calibration, we find that the inclusion of river water storage is relevant for model evaluation.

1. Introduction

Over the last decade, terrestrial water storage variations from GRACE and GRACE-FO satellite gravimetry
provided valuable information for calibration and validation of global hydrological modeling approaches
(GHMs) (Werth et al 2009, Doll et al 2014, Kumar et al 2016, Scanlon et al 2016, Mostafaie et al 2018, Trautmann
etal 2018). However, satellite gravimetry measures the vertically integrated total water storage (TWS), that
includes water stored in ice, snow, canopy, soil moisture, groundwater, but also in wetlands, surface water
bodies and river channels (Watkins et al 2015). GHMs, on the contrary, do not necessarily simulate all these
storages, and also vary significantly in their complexity and the represented hydrologic processes (Schellekens
etal2017, Telteu et al 2021). Among others, their inability to correctly simulate GRACE TWS variations is often
attributed to neglected processes, such as river and floodplain storage dynamics (Kim et al 2009). Getirana et al
2017 showed that river and surface water storages contribute to 8% of TWS variability globally, those storages
are especially relevant at regional scale. Significant contribution of river water storages to TWS variations have
been shown for the tropics, the monsoon-impacted sub-tropics, major river basins in arid regions, and in high
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latitudes where the increase in river water due to snow melt is relevant (Felfelani et al 2017, Getirana et al 2017).
While not all GHMs include a river water storage (Telteu et al 2021), a river routing scheme is the essential
component to simulate lateral water flow and thus enable calibration of model parameters against river
discharge observations, as it is traditionally done in hydrology.

However, the increasing availability and quality of global Earth observation data over the past decades, not
only of GRACE TWS but also of other water storages and fluxes, allows to constrain model parameters not only
against the single river discharge constraint, but against multiple, complementary observational data streams. In
this context, multi-criteria calibration approaches evolve (Trautmann et al 2022, Dembélé et al 2020, Sirisena
et al 2020, Mostafaie et al 2018), in which including river routing during model calibration might be dispensable
to define parameter values. Furthermore, the variety of global observational data enables more data-driven
approaches of hydrological modeling, that either use machine-learning techniques (Mosaffa er al 2022, Shen and
Lawson 2021, Xu and Liang 2021) or combine these with process-based modeling knowledge in hybrid models
(Kraft et al 2020, Reichstein et al 2022). Both such approaches require thousands of thousands of model runs
during the calibration process and the parameter testing in the learning phase. Hence, it is computational not
feasible, or even methodological possible, to perform a full global model run, including the lateral routing of
discharge, in each iteration. While many efforts to reduce the computational costs of global routing schemes
exist (Yamazaki et al 2013, Mizukami et al 2021), they remain a considerable factor for time and computational
performance when compared to a model run without river routing. Additionally, the spatial context must be
preserved to simulate the lateral water flow in routing schemes, what hinders the possibilities for spatial sub-
sampling of grid cells for calibration and the parallelization of computational processes.

At the same time, the actual relevance of river routing for parameter calibration and validation against
GRACE TWS at a global scale is rather unclear, also given the broad spatial and temporal resolution of
GRACETWS.

In the context of the development of new, largely data-driven modeling schemes and enhanced model
calibration approaches against multiple observational data streams, it’s essential to know whether
computational resources need to be invested in river routing during parameter calibration, and what the
consequences are if routing is only applied as a post-processing, i.e. after defining model parameters, to validate
model simulations.

Therefore, we specifically investigate the need for consideration of river storage and its potential effect on
model calibration and validation in global hydrological studies that apply GRACE TWS.

To do so, we use a parsimonious hydrological model that does not explicitly account for river dynamics. We
constrain the model in a multi-criteria calibration approach either against original GRACE TWS estimates, or
against TWS estimates from which river storage was removed, and compare the resulting simulations. In the
second step, we apply a routing scheme on the calibrated model and validate the performance with and without
additional consideration of river storage compared to the original GRACE TWS. Specifically, we focus on:

I. thesensitivity of model calibration and resulting hydrological simulations to the removal of river storage
from GRACETWS.
II. theneed of river routing for validation of hydrological simulations with GRACE TWS observations at

regional and global scales.

In the following, we provide an overview on the methodology of this study. In section 3, we present and
discuss the results regarding the effect of river storage on model calibration, followed by its influence on
validation against GRACE TWS. Finally, section 4 summarizes the implications for future global hydrological
studies.

2.Data and methods
This study consists of 2 parts:

I) the effect of river storage on model calibration, and
II) theeffect of river storage on model validation.
An overview on the methodologies and data for both parts is given in figure 1, and described in detail in

sections 2.2 and 2.3. For all analysis, we apply the same hydrologic model, which is introduced in the following
section.
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Figure 1. Schematic structure of the applied data and methodologies to assess the effect of river storage on model (I) calibration, and
(II) validation. In (I) the TRIPy and the CaMa-Flood routing schemes are forced by GRUN Qg to estimate wRiver, which is then
removed from GRACE TWS. Either GRACE TWS or TWS-noRiver data is then used along with other observational data to calibrate a
global hydrologic model. In the first step (1A) we compare GRACE TWS against TWS-noRiver to identify the wRiver signal in GRACE
TWS data (section 3.1.1), and in the second step (1B) simulations from different calibrations are compared against each other to assess
the effect of wRiver on model calibration (section 3.1.2). In IT) we force the TRIPy and the CaMa-Flood routing scheme with modeled
Qg fromI) and add it to modeled TWS to assess the effect of accounting for wRiver on model validation against the original GRACE
TWS wRiver.

While the model is run for the time period 03 /2000 to 12/2014, model calibration and validation are limited
to the availability of observational data, such as GRACE TWS. Thus model calibration and validation are
conducted for the period 2002 to 2014. Although all calibration and analysis considers this entire time series, the
shown results focus on seasonal variations because of the rather short time period and the inability of the model
to represent trends in TWS due to, e.g., groundwater depletion and melting of glaciers that hinder the analysis of
trends.

2.1. Hydrological model

Exemplary for the variety of global hydrological models, we apply the conceptual hydrologic model introduced
in Trautmann et al (2022). While being more parsimonious than its established counterparts, its structure
reflects classical process representation of GHMs and the calibrated model achieves equally good and partially
better performance as, e.g. models from the EartH2Observe model ensemble (Schellekens et al 2017), regarding
different observational data (figure S5).

Forced by precipitation, air temperature and net radiation, the model simulates evapotranspiration (ET) and
runoff (Qg), and considers 4 water storages: a snow component, a 2-layer soil water storage, a delayed water
storage component, and a deep soil water storage that interacts with the soil and delayed storage components.
Simulated total water storage (TWS) is the sum of these 4 storages. While groundwater, surface water and river
water are not implemented explicitly, they are assumed to be effectively included in the deep and slow storage
components after calibration of associated model parameters against GRACE TWS.

We run the model ona 1° x 1° latitude/longitude spatial resolution on daily time steps for the period 03/
2000 to 12/2014, focusing on vegetated land area under near-natural conditions.

For regional analysis, we consider hydro-climatic regions obtained from cluster analysis of latitude, mean
seasonal dynamics and amplitudes of TWS, ET and Qg observational data (figure 2).

Further details are available in Trautmann et al (2022).
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e calibration grid cells

Figure 2. Hydro-climatic clusters of the study area with red dots indicating grid cells used in model calibration.

2.2. Effect of river storage on model calibration

To assess the effect of river water storage (wRiver) included in GRACE TWS estimates on model calibration, we
constrain the model against monthly GRACE TWS variations of the JPL mascon solution (RLMO06v2; Wiese et al
2018), from which estimates of wRiver were removed or not. To do so, we first estimate river storage variations,
and then calibrate the hydrological model against GRACE data with or without river storage.

To estimate wRiver variations, we force spatially-explicit river routing schemes with observation-based
runoff Qg reconstructions from GRUN v1 (Ghiggi et al 2019). To do so, the monthly average gridded Qg
estimates are resampled to daily modeling time steps by replicating the monthly value.

Since the choice of the river routing scheme essentially affects simulated wRiver and discharge (Qpj;,) (Zhao
etal2017) we consider 2 different river routing schemes: 1) the simple routing scheme TRIPy (Oki et al 1999),
and 2) the more sophisticated, widely used Catchment-based Macro-scale Floodplain (CaMa-Flood) river
routing scheme (Yamazaki et al 2011).

TRIPy calculates Qp;s from each grid cell along the river network based on Qg and maps of flow direction
and river sequence, using a linear reservoir algorithm. Thereby, the parameter effective flow velocity (eff_vel)
[ms~ '] defines how fast Qg is discharged from one grid cell to the next, i.e. how long water is stored in the grid
cell’s wRiver. While in reality, flow velocity varies spatially as it depends on land surface characteristics such as
slope, TRIPy uses a globally uniform value for simplicity. To yet assess the sensitivity to eff_velin TRIPy, we
consider a range of global eff_vel values in different experiments, from low (0.1 ms ) to medium (0.5 ms ™) to
high (2.5 ms™ ") values, to derive corresponding estimates of wRiver that produce a range of river storage
dynamics with large and fast variability for high eff_vel, and small and slow variability for low eff_vel.

Similar to TRIPy, CaMa-Flood v4.01 derives the time evolution of water storage from the water balance
equation, considering the inflow from upstream grid cells, the input from runoff forcing generated at the
respective grid cell, and the outflow to downstream grid cells. However, in contrast to TRIPy, it, next to Qp,
explicitly calculates flow velocity along a prescribed river network that is automatically generated with the
Flexible Location of Waterways (FLOW) (Yamazaki et al 2009) method. Utilizing a parametrization based on the
sub-grid topography obtained from HydroSHEDS, CaMa-Flood simulates water storage within the river
channel, but also water storage in flood plains. Thus, CaMa-Flood allows a more dynamic simulation of Qp;; and
wRiver while considering the spatial variability of discharge-generating characteristics.

In the following, the experiments with river routing from CaMa-Flood and the 3 experiments from TRIPy
are summarized with *, or denoted with CaMa, 01, 05, or 25 if referred to explicitly.

Estimates of wRiver™ are removed from GRACE TWS to obtain new estimates of TWS-noRiver*. Before
using either GRACE TWS or TWS-noRiver* for model calibration, we compare them to assess the contribution
of wRiver to the TWS constraint regionally and globally (figure 1(1A); section 3.1.1). For this purpose, we
calculate the Nash-Sutcliffe Efficiency (MEF, equation (1)) between GRACE TWS and each TWS-noRiver* to
quantify their similarity for different spatial scales.
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n
Z(-xobs,i - xmod,i)2

MEF =1 — =1 (1)
Z(xubs,i - fabs,i)z

i=1

where X4, corresponds to TWS-noRiver*, X, ; corresponds to GRACE TWS, and X, is the average of
GRACE TWS at each data point i.

Either GRACE TWS or TWS-noRiver* estimates are then used along with other observational data
including GRUN Qg, FLUXCOM ET (Jung et al 2019), and ESA CCI soil moisture (Dorigo et al 2017) to
constrain model parameters in a multi-criteria calibration approach. The approach (Text S1), described in
Trautmann et al 2022, aims to derive the globally best performing parameter set regarding all constraints
simultaneously, while considering each data stream’s strengths and uncertainties. For each observational
constraint we calculate a cost metric that is summed up to a total cost value which is optimized (minimized)
using the CMAES algorithm (Hansen and Kern 2004) to derive the globally best performing parameter set. We
perform calibration for a spatial subset of grid cells that is obtained by stratified random sampling among
Koeppen-Geiger zones. The calibration subset mirrors the global and regional distribution of observed TWS,
ET, Qg and wRiver, and therefore allows for efficient calibration of parameter values that are globally applicable.
To appraise parameter equifinality and uncertainties of the optimization procedure, the calibration of each
experiment is performed 10 times independently, with each of the 10 calibration runs comprising up to 10000
model runs, to derive 10 optimal parameter sets.

Finally, we analyze and compare the simulations that were calibrated against GRACE TWS (MOD) and those
calibrated against the 4 different TWS-noRiver* estimates regarding TWS, ET and Qg (figure 1(1B)) for global
and regional mean seasonal dynamics. While taking into account the spread between 10 different calibration
runs of each experiment, we focus on the best performing calibration run when calculating MEF between MOD
(Xobs in equation (1)) and each MOD-R* (x,,04 in equation (1)).

2.3. Effect on model validation

To assess the relevance of wRiver for validation of TWS simulations against GRACE TWS, we add wRiver to
model simulations after model calibration. For this purpose, we apply the CaMa-Flood and the TRIPy routing
scheme for each calibrated MOD-R*, i.e., using the calibrated Qg as forcing for the routing schemes. Thereby,
we use the same routing scheme and parametrization as for the TWS-noRiver* constraint that was used for the
respective calibration (e.g. TRIPy with eff_vel of 0.1 ms~' for MOD-RO01 that was calibrated against TWS-
noRiver-01; and CaMa-Flood for MOD-CaMa that was calibtated against TWS-noRiver-CaMa).

We then add simulated wRiver to TWS of each MOD-R* and compare it against the TWS simulations from
MOD without additional wRiver, as well as against the original GRACE TWS. For model validation, we calculate
MEF between GRACE TWS and MOD resp. MOD-R* at the local grid-cell scale, as well as for global and
regionally aggregated mean seasonal dynamics.

3. Results and discussion

3.1. Effect of river storage on model calibration

3.1.1. Effect of river storage on TWS patterns

Figure 3 compares the decrease in similarity between the original GRACE TWS and estimates of TWS from
which wRiver is removed.

As expected, low eff_vel increases wRiver, and therefore, the lowest correspondence with the original
GRACE TWS can be seen for TWS-noRiver-01, while the similarity increases with increasing eff_vel, so that
TWS-noRiver-25 is nearly identical with the original GRACE TWS, because the high eff vel causes the
immediate depletion of wRiver to the next downstream grid cell and prevents the accumulation of wRiver except
for grid cells in downstream areas of large catchments. Spatially, differences between GRACE TWS and TWS-
noRiver-CaMa are similar to those from TRIPy with a medium eff_flow (TWS_noRiver-05).

Opverall, spatial correspondence with GRACE TWS mainly decreases along larger river networks with a large
water accumulation (figure 3(a)). The largest grid-wise changes are obtained in the Cold and Humid regions,
where river networks are dense and streamflow and, thus, wRiver is large in absolute terms. On the contrary,
removing wRiver from GRACE TWS has little effect in the Semi-arid region, where water accumulation is
smaller than in humid regions.

Regarding seasonal dynamics (figure 3(b)), removing wRiver mainly changes the amplitude of TWS
variations, which increases in snow affected regions and tends to decrease otherwise. In the Cold region, gradual
snow melt, retarded infiltration due to shallow and frozen soils, slow discharge to downstream areas, as well as
additional water input from upstream areas in large river networks dampen TWS variations. Removing wRiver

5
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a) Difference in MEF with GRACE TWS

0 0.05 0.1

TWS-noRiver-25 ) TWS-noRiver-05

b) Mean Seasonal Dynamics

Global R1- Cold R2- Temperate
40 TEET, 100 50
MEF = 0.9
— 20 MEF =0.97 50
E MEF = 1
£ 0 0 0
(2]
E MEF = 0.97 MEF =0.99
20 -50 | MEF = 0.89 MEF =0.97
MEF = 0.95 MEF =0.99
40 -100 LMEE = 1 .50 LMEF =1
3 6 9 12 3 6 9 12 3 6 9 12
500 R3- Humid 500 R4- Sub-humid R5- Semi-arid
MEF = 0.97 E
MEF = 0.85
— 100 MEF = 0.97
E MEF=1| 100
£ 0
2 0
E MEF = 0.99
-100 MEF = 0.89
100 e
-200
3 6 9 12 3 6 9 12 3 6 9 12
weewmnens GRACE-TWS ———— TWS-noRiver-25 TWS-noRiver-05

TWS-noRiver-CaMa

TWS-noRiver-01

Figure 3. Comparison of the different TWS estimates (GRACE TWS and TWS-noRiver*) that are used for model calibration in
different experiments. (a) similarity between the original GRACE TWS and TWS-noRiver* in terms of gridwise Nash-Sutcliff
efficiency (MEF); (b) global and regional mean seasonal dynamics of GRACE TWS and TWS-noRiver*. For (a) and (b) MEF of TWS-
noRiver* with the original GRACE TWS is calculated and subtracted from the optimal MEF of 1. Note the different ranges on the y-
axis for TWS variations in panel (b).

attenuates these delaying effects, causing increased TWS variations and shifts the TWS peak to one month
earlier. While in the Cold region seasonal TWS variations are mainly affected by snow accumulation and melt,
TWS in other regions is dominated by liquid water storages (Trautmann et al 2018). In non-snow affected
regions, Qg increases with wetness, i.e. with TWS, which in turn reduces TWS. Due to this negative feedback,
removing wRiver from TWS reduces the TWS amplitude. Due to the spatial variability of parametrization and
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flow velocity in CaMa-Flood, TWS-noRiver-CaMa agrees with different TRIPy TWS-noRiver estimates in
different regions, e.g. rather with high eff _vel parametrization in Temperate, Humid and Sub-humid regions, but
with low eff_vel parametrization in the Semi-arid region.

3.1.2. Effect of river storage on model calibration

Figure 4 shows the mean seasonal dynamics of TWS, ET and Qg simulated by MOD and MOD-R* after model
calibration. Respective observations are plotted for better evaluation of the calibration results, yet the following
focuses on differences between MOD and MOD-R™. A detailed evaluation of performance of MOD against
TWS, ET and Qg observations can be found in Trautmann et al (2022).

Despite being calibrated against either GRACE TWS or TWS-noRiver*, overall little variance between
calibrated MOD and MOD-R* is evident. While we expected the model parameters to adapt to differences in the
TWS constraint, the mean seasonal TWS simulations are nearly identical among experiments, globally and
regionally. The same holds for ET. Some differences between calibration runs are obtained regarding Qg,
especially for Cold, Temperate and Semi-arid regions. However, while the spread is larger than for the other
simulated variables, the differences of the best performing calibration runs are still negligible.

High agreement in simulated fluxes and TWS variations goes along with no systematic differences between
calibrated parameter values of MOD and different MOD-R*. Hence, we do not find any evidence for biases
between experiments that result from either considering wRiver or not in model calibration. While the
calibrated parameter values don’t vary significantly between different experiments, different calibration runs
point to two parameter sets that achieve (nearly) equal good performance (figure S1). Affected are parameters
that regulate the size of soil water storage and it’s depletion by ET. The interplay of these parameters with the
other outgoing flux Qg also explains the spread of simulated Qg. This parameter equifinality is not related to
wRiver, but to the equifinality of baseflow and ET decay, especially under water limitation as discussed in
Trautmann et al (2022).

The absence of a qualitative effect of using GRACE TWS or TWS-noRiver* for model calibration is also
evident when inspecting the total costs and cost components among the experiments (figure S1). They are fairly
similar on average, while the spread of costs between different calibration runs of one experiment tends to be
larger than the differences between experiments. This underlines that uncertainties arise mainly from other
aspects of hydrological modeling than from the effect of wRiver included in the TWS constraint. However, we do
see a tendency for elevated TWS costs for MOD-R01 and MOD-R05. Higher TWS costs and thus total costs
suggest difficulties of the model to adapt to the TWS constraint, when the removed wRiver is large. This suggests
that the comparatively large removal of wRiver is harder to reconcile with the other constraints of ET and Qg,
and thus may indicate that such large wRiver based on low eff_velis not plausible. While it is notable that the
spread in total, TWS, and Qg costs of MOD-CaMa is comparatively smaller and it achieves the overall lowest
total costs due to low soil moisture and ET costs, the general difference to the other calibrated models remains
small, indicating no significant impact of the chosen routing scheme on the global multi-criteria calibration.

3.2. Effect of river storage on global model validation

While we did not find systematic differences between TWS simulations of MOD and MOD-R* after calibration,
explicitly accounting for wRiver and adding it to TWS of MOD-R* causes systematic differences of model
performance against the original GRACE TWS, locally as well as for regional and global mean seasonal dynamics
(figure 5). The largest differences are notable for considering wRiver based on low eff_vel, while the largest
improvement of model performance relative to the original GRACE TWS is achieved when adding wRiver based
on medium eff_vel - globally and in most regions (figure 5(b)). While the choice of the routing scheme does not
significantly affect model performance regarding seasonal dynamics of TWS for large spatial regions

(figure 5(b)), it is relevant for simulating hydrological dynamics at smaller, e.g. catchment, scale. As such, Qp;s
from MOD-CaMa provides consistently good estimates of Qp;; at various GRDC stations, while different
MOD-R* from TRIPy perform better for different stations, highlighting the benefit of spatially distributed river
flow parameters as opposed to global average parameter values of eff_vel in TRIPy (figure S6). However, locally,
the differences in model performance with GRACE TWS are less pronounced when wRiver from CaMa-Flood is
added (MOD-CaMa). Overall, including wRiver improves TWS simulations at local scale especially in the
tropics and Northern low- and wetlands where rivers accumulate water over large catchments (figure 5(a)). The
importance of wRiver in the tropics has already been shown by previous studies (Getirana et al 2017). Similarly,
the inability to reproduce observed TWS variations by models in the Cold region is among others attributed to
missing representations of floodplain and river flow processes (Kim et al 2009). Indeed, in the Cold region,
accounting for wRiver improves MEF for the majority of grid cells (figure 5(a)), highlighting the importance of
additional inflow from upstream grid cells and the delay of water outflow in these regions. While MOD-R01
matches the timing of TWS variations slightly better, it underestimates the seasonal TWS amplitude

7



10P Publishing

Environ. Res. Commun. 5(2023) 081005

P Letters

Mean Seasonal Dynamics

, ET [mmd™"]
r 2
=]
o EF =
a2 t MEE =
MEF =
MEF =
0
3 MEF =
MEF =
) MEF =
5 2 MEF =
o
5 1
0
] 3 MEE =1
® 1 T MEF = 1
S MEF = 1
Q MEF = 1
5 MEE
= 1
=~ MEF = 1
& MEF = 1
© MEF = 1
E ’-.,." .
£
E '.-.
J Nt MEE <]
2 o | VEF <1
-200 0 =
o 200 4
£
S 100 3
=
o) 2
2 o MEF=] MEF = 1
: _ MEE =1/ 1 MEE = 1
< MEF = 1 MEF = 1
o 100 i MEF=1] |, MEF = 1
20 = 3
MEF = 0.99
W= Ve Soe
2 MEF =099 | 2 03
0
1] ‘. .
3 £ .. 1 1 0.2
@' A0F ||| e, M 1 0.1
-20 0 L 1 0
3 6 9 12 3 6 9 12 3 6 12
............. i —-—-MOD,__, MOD-R25, _,
MOD-RO5, __, MOD-RO1, _, MOD-CaMa, __,

Figure 4. Mean seasonal dynamics of TWS, ET, and Qg observations and calibrated simulations, summarized globally and for
different regions. Uncertainty bands denote the spread between 10 different calibration runs of each experiment, while dashed/solid
lines indicate the best performing calibration run of each experiment. Black dotted lines denote observational GRACE TWS,
FLUXCOM ET, and GRUN Qg. Listed MEF compares the best performing calibration run MOD* against the best performing
calibration run of MOD (dashed line).

(figure 5(b)). On the contrary, MOD-R05 and MOD-CaMa reproduce TWS amplitude, yet still precede TWS
variations, although not as much as MOD or MOD-R25. Hence, the phase-shift issue of simulated TWS in Cold
regions, which is prevalent in many GHM:s (Schellekens et al 2017), is unlikely to arise from unaccounted river
storage variations only. The underestimation of TWS amplitude (and peak spring discharge, figure S6)) can also
be affected by deficiencies in the precipitation forcing (Huffman et al 2000, Contractor et al 2020), but remaining
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Figure 5. Comparison of the original GRACE TWS, TWS simulated by MOD (without river water storage) and TWS+wRiver
simulated by MOD* (accounting for river water storage based on different routing schemes). (a) gridwise Nash Sutcliff efficiency
(MEF) between GRACE TWS and MOD (upper left map), and differences of MEF obtained by MOD and MEF obtained by MOD-
CaMa, MOD-R01, MOD-R05, MOD-R25, respectively; including their global and regional distributions (outlier are not plotted). (b)
mean seasonal dynamics averaged globally and for different regions. Listed MEF compares MOD resp. MOD* with the original
GRACE TWS. Note: In MODbest, individual storage components contribute with 0.22% (snow), 0.17% (soil), 0.4% (deep soil) resp.
0.20% (slow storage) to the global average seasonal TWS variations (Trautmann et al 2022).

difficulties in reproducing the timing of TWS dynamics indicate the potential importance of other missing
processes such as freeze/thaw dynamics and permafrost (Yu et al 2020), and ice jam in river channels (Kim et al
2009).

The preceding of simulated TWS compared to GRACE TWS can also slightly be reduced at global scale,
when wRiver is considered (figure 5(b)). However, a preceding of simulated TWS variations is still apparent for
large areas, especially the Temperateregion (figure 5(b)), indicating again the relevance of other processes than
water delay in wRiver, such as irrigation, land cover changes and interactions between groundwater and surface
water dynamics.

While including wRiver improves agreement with GRACE TWS over large areas, MEF decreases notably in
the Semi-arid region when the TRIPy routing scheme is used (figure 5). The slightly better performance of
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MOD-CaMa in semi-arid regions locally (figure 5(a)) as well as for the average seasonal dynamics in the Serni-
arid region (figure 5(b)) indicates the benefits of the variable flow velocity and the accounting of flooding in
CaMa-Flood, which is relevant in such regions that are characterized by rain- and dry-seasons. However,
especially the regional average dynamics are not notably different from the other simulations by TRIPy and the
local improvement remains low. Already MOD does not agree well with GRACE TWS in the Semi-arid regions
(figure 5(a)), where TWS variability is sensitive to parameters that control ET under water limited conditions,
which are poorly constrained (Trautmann et al 2022). In addition to the parameter equifinality issues, poor
(initial) performance points to model structure uncertainties and deficiencies, such as missing processes of
evaporation and percolation to groundwater from open water surfaces. Besides, the GRUN Qg constraint is
known for larger uncertainties in arid regions (Ghiggi et al 2019) and tends to inconsistencies with the other
observation-based data in the Semi-arid region (Trautmann et al 2022). Therefore, comparatively good MEF of
modeled and observed Qg (figure 4) does not necessarily reflect good representation of Qg, which is also
underlined by poor representation of observed discharge at semi-arid GRDC stations (figure S6). As modeled Qg
is used to derive modeled wRiver, this further leads to poorer model performance in semi-arid regions when
wRiver is added to TWS.

Besides, the general improvement of TWS when wRiver is added to modeled TWS, in all regions except for
the semi-arid regions, highlights potential room for improvements in our approach of modeling the hydrology
in semi-arid regions. Among others, the improved model performance by using CaMa-Flood in such regions
indicates especially the importance of seasonal flooding and associated processes for TWS variability in semi-
arid regions.

3.3. Transferability of results to other global hydrological modeling studies

While we cannot exclude that the findings shown in the previous sections are conditional on the specific model
structure, calibration approach and data used in this study, we argue that our findings are of general relevance for
global hydrological modeling studies across a spectrum of GHMs and data-driven approaches. The model used
in this study is based on classic hydrologic process representation and despite its simple structure achieves good
performance that is comparable to more complex state-of-the-art GHMs (figure S5). The identified key issues of
model-data mismatches in cold and semi-arid regions are also shared among GHMs in general (Schellekens et al
2017)and appear unrelated to river storage variations. The identified problem of parameter and thus process
identifiability is due to insufficient observational constraints, and this problem is expected to be even larger for
more complex models with more parameters and for data-driven approaches that include machine learning
methods and thus even more rely on the available data.

4. Implications

In this study, we showed that river storage has a relevant impact on seasonal TWS dynamics, in particular in cold
and humid regions, and accounting for it when simulating TWS improves performance against GRACE TWS
observations (section 3.2). However, we did not find a systematic impact of either including or excluding river
storage in TWS for global-scale model calibration (section 3.1). Compared to river storage, restrictions from
other observational constraints seem to be more relevant to define model parameters in such a model-data
integration approach as presented here. For example, the main discrepancies between observed and modeled
TWS may be related to missing processes other than the river water storage (especially in cold and semi-arid
regions, see section 3.2), and issues of parameter identifiability due to insufficient and partly conflicting data
constraints. Our findings hold across sensitivity experiments with different routing schemes and effective flow
velocity parameters that produce a wide range of river storage dynamics. While we do not argue that river
routing is of relevance atlocal and smaller regional scales, our findings show that the impact at larger regional up
to global scales vanishes. Especially when using GRACE TWS for model calibration, the effect of small rivers and
less dense river networks is likely smoothed out by its 250 km native resolution (Wiese et al 2018). As discussed,
our findings are of general relevance for other global hydrological modeling approaches as well (section 3.3).
Especially in the Era of Earth observations, they are of particular relevance for future global hydrological
modeling approaches that follow a more data-driven perspective and such approaches in which model
parameters are calibrated not only against a single river discharge constraint, but against multiple large-scale
observational data streams of complementary water fluxes and storages. Based on the presented findings, it
seems advisable to save the comparatively large computational resources needed by routing schemes when
model parameters are calibrated against GRACE TWS and other Earth observation based data. Omitting the
routing itself, but more significantly the resulting ability to subsample grid cells for calibration instead of
demanding a full global simulation in each calibration iteration, as well as the easier implementation of parallel
programming strategies can reduce the computational costs of global model calibration. The saved
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computational resources can then be better used to address other issues, such as parameter and process
identifiability, more efficiently.

Opverall, we highly recommend considering river water storage when evaluating and analyzing modeled
TWS, especially on regional scale. However, we suggest there is no need to apply river routing in global model
calibration against GRACE TWS, especially if complementary observational data streams are considered or
when a data-driven approach, with high computational demand is used.
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