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1. Introduction
Water is necessary for planets' habitability and the high-pressure phases of H2O are key constituents of many plane-
tary bodies (Fortes & Choukroun, 2010; Journaux et al., 2020; Lammer et al., 2009; Nimmo & Pappalardo, 2016; 
Noack et al., 2016; Schubert et al., 2010; Vance et al., 2021). Mars Advanced Radar for Subsurface and Ionosphere 
Sounding radar data reveal that hypersaline perchlorate brines exist in the south pole of Mars (Lauro et al., 2021) 
and discrete amounts of Na +, Ca 2+, Mg 2+, K +, Cl −, and 𝐴𝐴 SO

2−

4
 ions dissolved in water exist in the subsurface ocean 

of Europa and Callisto (Khurana et al., 1998; Kivelson et al., 2000; Zimmer et al., 2000; Zolotov & Shock, 2001). 
The incorporation of such ions in high-pressure ice could have a substantial impact on the thermal structure 
and the internal dynamics of these ice planets (Journaux et al., 2013, 2017; Vance et al., 2014; Zolotov, 2012). 
The characteristics of a number of binary H2O-solute systems have been investigated to understand the internal 

Abstract Saline water is a common fluid on the Earth‘s surface and in ice planets. Potassium chloride 
(KCl) is a common salt and is expected to be a ubiquitous solute in salt water in the Universe; however, few 
studies investigated the behavior of KCl-H2O system at high pressures and temperatures. In this study, powder 
and single-crystal X-ray diffraction (SC-XRD), Raman and Brillouin scattering combined with diamond anvil 
cells were used to investigate the phase relation in the KCl-H2O system for different KCl concentrations at 
0–4 GPa and 298–405 K. The results of powder X-ray diffraction and Raman scattering demonstrate that a 
novel KCl hydrate is formed when KCl aqueous solutions transform to solid ice-VI and ice-VII at high pressure. 
Simultaneously, the single-crystal of KCl hydrate is synthesized from a supersaturated KCl solution at 298 K 
and 1.8 GPa. The structure is solved by SC-XRD, indicating a KCl monohydrate with the P21/n space group 
is formed. We have verified the phase stability of KCl monohydrate by using Raman spectroscopy and density 
functional theory. Our results indicate that KCl monohydrate is a stable phase under pressure and temperature 
conditions between 1.6 and 2.4 GPa and 298–359 K. By considering the thermal profile and composition of 
icy moons, we hypothesize that the formation and decomposition of KCl monohydrate might induce mantle 
convection in these moons.

Plain Language Summary More and more evidence indicates that salt ions (Na +, Ca 2+, Mg 2+, K +, 
Cl −, and 𝐴𝐴 SO

2−

4
 , etc.) could be dissolved in water and ices of the Earth-like planets and water-rich planets. The 

dissolution of alkali- and alkaline earth chlorides and sulfates in water and the incorporation of salt ions in the 
solid phases of H2O ices have a significant effect on their chemical and physical properties. Potassium chloride 
(KCl) is a ubiquitous salt in the Universe, and we investigated the phase relationship of the KCl-H2O system for 
different KCl concentrations at pressures of 0–4 GPa and temperatures of 298–405 K. We were able to produce 
a single crystal of KCl monohydrate by adding KCl into a KCl-saturated solution and pressurizing the solution 
at 1.8 GPa and 298 K. Our findings reveal the existence of a novel KCl monohydrate phase with monoclinic 
structure, which remains stable within the pressure and temperature range of 1.6–2.4 GPa and 298–359 K. 
Considering the thermal profile and composition of icy moons, our results suggest that the stability of the KCl 
monohydrate phase at pressures of 1.6–2.4 GPa and temperatures of 298–359 K may drive mantle convection 
through its formation and decomposition.
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structure of these planetary bodies (Frank et al., 2006, 2016; Journaux et al., 2017; Schmidt & Manning, 2016; 
Valenti et al., 2012). Sodium chloride (NaCl) is the most abundant salt dissolved in Earth's oceans and is present 
in ice planetary bodies. Dissolved NaCl considerably broadens the liquid phase stability field at the expense of 
those of both ice-VI and ice-VII (Journaux et al., 2013). Moreover, one study indicates that Na + and Cl − ions 
can be incorporated into the structure of ice-VII leading to a significant expansion of the lattice parameter (Ludl 
et al., 2017). High pressure experimental studies of lithium chloride (LiCl) aqueous solutions yield similar results 
as for NaCl (Bove et al., 2015; Klotz et al., 2009). Moreover, the incorporation of Li + and Cl − ions in H2O solids 
hinder the proton ordering and delay ice-VII to ice-X transformation to a higher pressure than the pure system; 
such effect could possibly be responsible for the observed anomalous magnetic moment of Uranus and Neptune 
(Bove et al., 2015).

Some studies uphold that the salt-water systems could form solid hydrates at the pressure and temperature 
conditions of the planetary hydrosphere (Nakamura & Ohtani, 2011; Tsironi et al., 2020; Uriarte et al., 2015). 
Magnesium heptahydrate, MgSO4 · 7H2O can be formed in the MgSO4-H2O system at 0–4 GPa and 298–500 K 
(Nakamura & Ohtani, 2011). Furthermore, high pressure studies on 15 and 25 mass% NaCl aqueous solutions 
have shown that hydrohalite (NaCl · 2H2O) and an unidentified columnar hydrate can be formed at 1.1–1.3 GPa 
(Valenti et al., 2012). Recently, there have been reports of three distinct NaCl hydrates forming under condi-
tions of high pressure and low temperature. These hydrates include one needle-like crystalline hydrate with 
an unknown composition and two with known compositions: 2NaCl·17H2O (SC8.5) and NaCl·13H2O (SC13) 
(Journaux et al., 2023). However, very little is known about the system KCl-H2O at high pressures, even though 
KCl is one of the most common salts in icy planetary environments (Yoshimura et al., 2004). The recent study 
by Frank et al. (2016) demonstrates that 1.6 mol% KCl could be incorporated into the structure of ice-VII up to 
32.89 GPa at 295 K, and that the incorporation of KCl lowers the melting temperature of ice-VII by 45–80 K 
between 4 and 11 GPa.

 40K is a potassium radioisotope with a long half-life, which plays an important role in the thermal evolution of the 
Earth and other planets. Therefore, the presence of radiogenic  40Ar (a decay product of  40K) in the Titan moon 
atmosphere implies that significant amounts of  40K may leak from Titan's core (Castillo-Rogez & Lunine, 2010). 
In addition, the decay of  40K was also believed to be an important heat source for the thermal evolution of Europa 
(Chyba & Hand, 2001). Based on geochemical modeling, Zolotov and Shock (2001) suggest that dissolved chlo-
rides might be enriched in the ocean of moons such as Europa. This enrichment of chloride and potassium 
ions in the subsurface oceans of icy planets, and the interactions in the KCl-H2O system might strongly affect 
the planetary properties of ice giants. In this study, phase relation in the system KCl-H2O is investigated up to 
4 GPa pressure and in the temperature at 298–405 K and a novel KCl monohydrate is discovered to coexist with 
high-pressure H2O ice phases. In addition, a method is proposed to grow a single-crystal KCl monohydrate 
(Kh) by using a supersaturated KCl solution at high pressure and room temperature. The phase stability of Kh 
is confirmed by Raman spectra and density functional theory (DFT), indicating that the Kh is a stable phase 
between 1.6 and 2.4 GPa and 298–359 K. Our findings have key implications for the dynamic structure of ice 
giants and low-mass exoplanets.

2. Methods
2.1. Sample Preparation and High-Pressure Experiments

All of the aqueous solutions containing KCl in various concentrations were prepared at room temperature 
by dissolving KCl (Sinopharm Chemical Reagent Co., Ltd., ≥99.8%) in deionized water. The concentra-
tions of KCl solutions were 0.9, 1.8, 2.6, 3.1, 3.5, and 5.1  mol%. The respective KCl aqueous solutions 
were directly injected into the diamond anvil cells (DACs) by using syringes, and DACs were quickly sealed 
to prevent evaporation loss of H2O. For the experiment dedicated to the synthesis of single-crystal Kh, a 
100 × 80 × 25 μm 3 single-crystal KCl in was loaded into a DAC, then a drop of KCl saturated solutions was 
immediately injected into the DAC by using a syringe, and the DAC was quickly sealed. For Raman and 
Brillouin spectroscopy, BX-90 type DACs with a 90° opening angle were used in all the experiments. The 
sample chambers were produced by laser drilling pre-indented T301 stainless steel or rhenium gaskets. High 
pressure heating was achieved by powering a cylindrical alumina ceramic heater positioned inside the body 
of the externally heated BX-90-type DACs. The alumina heater was wound using Pt wires with a 200 μm 
diameter. The temperature was measured by means of a K-type thermocouple, which was placed ∼500(10) μm 
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away from the piston diamond's culet. The size of the sample chambers was fixed to 130 in diameter and 
45 μm thickness to keep the uniformity between the experiments performed on solutions with different KCl 
concentrations. For powder X-ray diffraction (XRD) experiments, we used normal symmetric DACs equipped 
with 300  μm diamond culets. Rhenium gaskets were indented to 30  μm thickness and cylindrical sample 
chambers were produced by drilling 200 μm diameter holes using a laser drilling machine. Boehler-Almax 
design diamonds (400 μm culet size) were used at both sides in the DAC in the single-crystal X-ray diffraction 
(SC-XRD). In these experiments, the initial thickness of the gasket was 30 μm, and the sample chamber was 
200 μm in diameter.

2.2. Raman Spectroscopy

High pressure and high pressure-temperature (high P-T) Raman spectra were collected using a LabRAM HR 
spectrometer (Horiba Jobin Yvon, France) with a 600 gr/mm grating. A solid-state single longitudinal mode laser 
(MSL-FN-532, Changchun New Industries Optoelectronics Technology Co., Ltd, China) was used as the excita-
tion source to irradiate the samples inside the DACs. To avoid heating of the samples, the laser power was kept 
at 2 mW and the acquisition time was 60 s at each pressure point. The samples were compressed with the step 
of ∼0.1 GPa to approximately 4 GPa. The pressure was calibrated using a ruby sphere (Shen et al., 2020) and a 
small chip of Sm:SrB4O7 (Romanenko et al., 2018) for high pressure and high P-T experiments, respectively. The 
high P-T experiments were conducted along isothermal compression paths, the difference between the individual 
isotherms was 15 K. Temperature stability along the isotherms was maintained by a feedback power control unit; 
the uncertainty on temperature was below ±5 K.

2.3. Powder XRD

The 0.9, 1.8, 2.6, 3.1, 3.5, and 5.1 mol% aqueous KCl solutions were used to conduct the XRD experiment at 
0–4 GPa at 298 K. High pressure XRD patterns were collected at the Extreme Conditions Beamline (ECB, P02.2) 
of the PETRA III synchrotron light source, DESY (Liermann et al., 2015). The energy of the beam was tuned to 
42.7 keV, while the beam was focused to 3 × 8 μm 2 (horizontal × vertical, full width at half maximum). Samples 
to detector distance and tilt of the detector were determined from XRD of a CeO2 standard from NIST (674b) 
analyzed with the Dioptas software (Prescher & Prakapenka, 2015). The load was applied to the DACs by a 
gas-membrane system, and the stabilization time for each pressure point was about 5 min. Sample's pressure was 
determined from the unit-cell parameter of gold powder (purity > 99.95%) by using the Pressure-Volume EOS 
of Au (Fei et al., 2007).

2.4. SC-XRD

After the synthesis of single-crystal Kh, the SC-XRD was collected at the same beamline (ECB, P02.2, PETRA 
III, DESY). Data were collected in 0.5° steps across a ±30° rotation around a vertical axis. The single-crystal data 
were calibrated with a standard single-crystal of enstatite ((Mg1.93Fe0.06)(Si1.93Al0.06)O6, Pbca, a = 18.2391(3) Å, 
b = 8.8117(2) Å, and c = 5.1832(1) Å). The pressure was calibrated using ruby spheres (Shen et al., 2020). Crys-
tal structures were solved using OLEX2 with a SHELXT backend (Dolomanov et al., 2009; Sheldrick, 2015). 
The structural models displayed were drawn using the software VESTA and ORTEP (Farrugia, 2012; Momma 
& Izumi, 2011).

2.5. Brillouin Scattering Spectroscopy

Brillouin spectroscopy measurements were performed at State Key Laboratory of Superhard Materials, Jilin 
University, China. Brillouin spectroscopy measurements are conducted on a Brillouin scattering system with 
a 3 + 3 pass tandem Fabry–Pérot interferometer (Sandercock, 1980). The symmetric forward scattering geom-
etry is used in the experiments (Whitfield et al., 1976). The exciting source is the 532 nm green laser with an 
output power of 100 mW. The acoustic velocities of liquid are calculated from the measured Brillouin frequency 
shifts  as:

𝜐𝜐 = Δ𝜈𝜈𝐵𝐵𝜆𝜆0∕

[

2 sin
𝜃𝜃

2

]

, (1)
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where υ is the acoustic velocity, ΔνB is the measured Brillouin frequency 
shift, λ0 is the laser wavelength of 532  nm, and θ is the external scatter-
ing angle of 60°. The pressure was calibrated using a ruby sphere (Shen 
et al., 2020).

2.6. Ab Initio Computations

Density functional theory (DFT) calculations were performed using the 
Vienna ab initio simulation package with generalized gradient approx-
imation of the Perdewe-Burkee-Ernzerhof (PBE) exchange-correlation 
functional and projector augmented wave potentials (PAW) (Kresse & 
Furthmüller, 1996a, 1996b; Kresse & Joubert, 1999; Perdew & Wang, 1992; 
Perdew et al., 1996). The cutoff energy was set to 800 eV, criterion for energy 
convergence was 10 −7 eV, and a 0.025 Å −1 Monkhorst-Pack k-points grid was 
used for structural relaxations; the DFT-D3 method (Grimme et al., 2010) 
was used to account for the van der Waals interactions. The valence electrons 
of the pseudopotentials are 3s 23p 64s 1 for K, 3s 23p 5 for Cl, 2s 22p 4 for O and 
1s 1 for H, respectively. Positions of K, Cl and O atoms in the crystal struc-

ture of Kh were from SC-XRD data, and the positions of H atoms were from ab initio structural relaxations as 
discussed in Results. The simulated XRD data of K, Cl, and O atoms in theoretically obtained crystal structure 
with H agrees with that from experiments.

3. Results
3.1. Results of Raman Scattering and XRD of KCl Solutions at High Pressures and Room Temperature

Representative Raman spectra of ice polymorphs in experiments with 1.8 and 3.5  mol% KCl are shown in 
Figure 1. 1.8 mol% KCl aqueous solutions are compressed from 0.8 to 3.9 GPa at 298 K (Figure 1a). The liquid 
phase is observed from 0.8 to 1.2 GPa (Figure 1a). At 2.0 GPa, new peaks appear at ∼200, 3,411.2(1), and 
3,433.4(4) cm −1 in addition to the peaks of ice-VI at 176.2(3) and 3,125.5(5) cm −1 (Figure 1a). Ice-VI trans-
forms to ice-VII at 2.7 GPa with a 0.6 GPa drop of the transition pressure and the peaks observed at 2.0 GPa are 
preserved across the transition and coexist with ice-VII up to 3.9 GPa (Figure 1a). In the experiment performed 
on 3.5 mol% KCl solutions, the ice-VI phase is not detected at high pressures (Figure 1b). Several new Raman 
vibration modes at ∼200, 3,410.2(8), and 3,424.7(1) cm −1 are also observed at pressures above 2.6 GPa.

Figure 2 illustrates representative high pressure XRD patterns of 2.6 mol% KCl aqueous solutions at high pres-
sures and room temperature. The broad diffraction feature at 2θ ∼6° indicates that the sample is a liquid phase at 
1.8 GPa. Upon further compression, numerous sharp Bragg peaks emerge at 2.3 GPa in addition to the reflections 
of gold, which indicate the formation of solid phases from the initial solution. In addition to the reflections of 
ice-VI, several other new peaks are also observed in the XRD pattern (Figure 2a). With further compression, the 
pressure drops to 2.1 GPa at the transition from ice-VI to ice-VII, and the additional reflections first observed 
at 2.3 GPa are still present. After comparing with KCl-B1 and KCl-B2 phases, we find that these new peaks 
cannot be indexed by the known KCl phases. Previous studies indicated that KCl could be incorporated into the 
structure of ice-VII, which would not produce any new diffraction peaks other than the peaks of ice-VII (Frank 
et al., 2016). Based on our single-crystal analysis (details can be found in next section), the new peaks could be 
assigned to a newly discovered Kh with a space group of P21/n (Figure 2b). Based on XRD and Raman scatter-
ing results at 298 K, the concentration-pressure cross-section of the KCl-H2O phase relation is determined up to 
4 GPa (Figure 3). However, the precise phase boundary between liquid and ice (ice-VI/VII) was not defined in 
this experiment because the majority of the experimental samples were supercooled solutions and the liquid may 
have been present as a metastable phase. We thus only show the experimental results in Figure 3.

3.2. Synthesis, Structure, and Thermal Stability of Kh at High Pressure

Given the fact that all the peaks of Kh are mixed with ices (ice-VI and ice-VII), it is difficult to analyze the 
structure of Kh. To determine the structure of Kh, a method is proposed to synthesize the pure Kh at high 

Figure 1. Representative high-pressure Raman spectra of KCl solutions at 
298 K. (a) 1.8 mol% KCl solutions. (b) 3.5 mol% KCl solutions. The Raman 
modes of KCl monohydrate (Kh), ice-VI (VI), and ice-VII (VII) are indicated 
by yellow, green, and blue regions, respectively.
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Figure 2. X-ray diffraction patterns of 2.6 mol% KCl solutions at high pressures and 298 K. The sequence of patterns represents the temporal evolution along the 
compression experiment from 1.8 to 2.3–2.1 GPa after pressure dropped at the Ice-VI to ice-VII transition. (a) Colored tick marks show the diffraction peak positions 
of Gold (yellow lines), ice-VI (green lines), ice-VII (blue lines), and Kh (KCl monohydrate, red lines). (b) Lebail refinement of 2.6 mol% KCl in H2O at 2.3 GPa 
(wR = 0.52%) and 2.1 GPa (wR = 0.41%), respectively. Red line: refined results; black cross: collected data. The X-ray wavelength is 0.2885 Å.
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pressure (see Section 2.1). The pressure is increased to 1.8 GPa at 298 K 
by a gas-membrane system and a columnar hydrate with 20 × 117 μm 2 size 
grows from the liquid after 10 min stabilization (Figure 4). The Raman spec-
tra and XRD indicate that the Kh is pure without any contamination of ices 
(Figures  4 and  5). In addition, new peaks occur at ∼3,414(1), ∼3,432(6), 
∼200, and ∼600 cm −1 are consistent with Kh (Figure 4). The main peaks in 
SC-XRD are also consistent with powder XRD. The visible peaks of powder 
XRD is less than SC-XRD, which should be due to limited KCl content in 
unsaturated KCl solutions. On the basis of the pure SC-XRD data, the struc-
ture of Kh can be well determined.

SC-XRD indicates that the KCl hydrate is a monohydrate at 1.8 GPa and 298 K 
and unit cell parameters of the Kh are a = 5.7058(8) Å, b = 6.3889(12) Å, 
c  =  8.4556(15)  Å and β  =  107.34(2)°. The information for the structural 
refinements based on SC-XRD measurements is shown in Table  1 and a 
figure of the structure showing the 50% ellipsoids is shown in Figure S1 in 
Supporting Information S1. This phase is distinct from the crystal lattices of 
the B1 or B2 phases of KCl under these conditions. In contrast to MgCl2 · 
8H2O, MgCl2 · 12H2O, and MgBr2 · 6H2O (Hennings et al., 2013), the KCl 
hydrate has a lower water number. The K atom is bonded to 3 water mole-
cules and 5 Cl atoms in the structure. In addition, each Cl is bonded to 5 K 
atoms (Figure 6). Similar to the NaCl2 · H2O structure (Bode et al., 2015), 
each O atom in the Kh structure is shared by two K atoms. The position of 
hydrogen is difficult to be determined by SC-XRD due to its weak scattering 
signal. To overcome this challenge, we employed ab initio calculations in 
the K-Cl-O sublattice to determine the hydrogen positions, which were then 
validated by SC-XRD. Water molecules in Kh exhibit strong polarity in their 
H-O bonds, with H atoms typically oriented toward negative charges in Kh. 
Given the negative charge of Cl − ions and the fact that O 2− ions have two 

nearest neighbor Cl − ions in this sublattice of K, Cl, and O, we positioned the H atoms between the nearest Cl 
and O atoms. We then performed ab initio structural relaxation to obtain the final structures. The results from 
this investigation agreed with both the XRD patterns for the crystal structure from structural relaxation and the 
experimental SC-XRD data. The crystal structures from both SC-XRD and ab initio structural relaxation can be 
found in Supporting Information S1.

To test the stability of Kh, we conducted high P-T Raman experiments along six different P-T paths covering 
a range of pressures and temperatures (1.6–3.0 GPa and 298–405 K), as shown in Figures 7 and 8. We synthe-
sized Kh at room temperature and then compressed and heated it to high pressure and temperature. For instance, 
we synthesized three single-crystals of Kh at 2.1 GPa and 298 K in DAC (Figure 7a), gradually increased the 
temperature by 5–15 K interval, and collected Raman spectra to determine the phases in the sample chamber. 
Our findings reveal that Kh remains stable up to 2.1 GPa and 333 K. However, the pressure abruptly dropped to 
1.5 GPa when the temperature was increased to 346 K, and the Raman modes of Kh vanished; we suspect that 
the crystals were in the KCl-B1 phase at 1.5 GPa (Figure 7b). We then increased pressure up to 1.9 GPa at 346 K, 
at which Kh recrystallized. We subsequently raised the temperature to 405 K at this pressure and found that the 
system transformed into a liquid and solid phase, with the Raman spectra indicating the decomposition of Kh. As 
the solid and liquid were cooled from 405 to 359 K at 2.0 GPa, both the Raman spectra and sample image showed 
the formation of Kh (Figure 7). However, the observed Kh at temperatures higher than 360 K is believed to be a 
metastable phase, given that the temperature is about 20 K lower than that of the heating experiment. By using 
the above method, we tested the thermal stability of Kh over a range of pressures and temperatures (0–4 GPa 
and 298–405 K), and the results are presented in Figure 8. Since the melting temperature of Kh is approximately 
10 K higher than that of pure ice VI (Bezacier et al., 2014) and 30 K higher than 1.6 mol% KCl ice-VII (Frank 
et al., 2016) at ∼2 GPa, respectively, we conclude that Kh is a thermally stable phase, as proposed in a previous 
study (Journaux et al., 2023).

Isothermal compression experiments reveal that Kh decomposes to ice-VII at 2.7 at 318 and at 2.4 GPa at 336 K. 
Interestingly, the pressure of decomposition is consistent with the phase boundary between KCl-B1 and KCl-B2 

Figure 3. Phase relation of KCl-H2O system at 298 K. The purple diamonds 
(liquid), green solid circles (ice-VI + Kh) and blue regular solid triangles 
(ice-VII + Kh) correspond to the data of Raman scattering. The open green 
circles and open blue triangles represent ice-VI and ice-VII observed after 
the pressure drop due to phase transitions. The hexagons (liquid), green 
solid circles with a point (ice-VI + Kh) and blue inverted solid triangles 
(ice-VII + Kh) correspond to the data from X-ray diffraction. The open green 
circles with a point and the open blue inverted triangles represent ice-VI and 
ice-VII observed after the pressure drop caused the phase transitions.
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phases (Walker et al., 2002). To further investigate the stability of Kh, DFT 
calculations were performed at pressures ranging from 2 to 10 GPa for various 
phases, including Kh, ice-VI + KCl-B1, ice-VII + KCl-B1, ice-VI + KCl-B2, 
and ice-VII  +  KCl-B2. As depicted in Figure S2 in Supporting Informa-
tion S1, the P21/n phase of Kh has a lower enthalpy than ice-VI + KCl-B1 
or ice-VII + KCl-B1 when the pressure exceeds 3 GPa, indicating that Kh is 
thermodynamically stable against dissociation into KCl-B1 + salty aqueous 
solution. However, when dissociation into KCl-B2 + salty aqueous solution 
was considered, Kh was found to be thermodynamically metastable. This 
is because the KCl sublattice of Kh is nearly isomorphic to KCl-B1, and 
high pressures favor the transformation to KCl-B2. Consequently, the stable 
region of Kh is consistent with that of KCl-B1. It should be noted that the 
DFT calculations were conducted at 0 K, and therefore, the computed pres-
sure at which Kh is thermodynamically stable (∼3  GPa) is 1  GPa higher 
than observed (∼2 GPa) in the experiments performed at ambient and high 
temperatures.

3.3. Brillouin Scattering Spectroscopy at 298 K

The acoustic velocities (υ) of 1.8 and 5.1 mol% KCl solutions were measured 
up to 1.8 GPa at 298 K (Table 2, Figure S3 in Supporting Information S1). 
The acoustic velocities are related to the isentropic change of density (ρ) with 
pressure by Kell and Whalley (1975):

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

𝑆𝑆

=
1

𝜐𝜐2
, (2)

where S is the entropy. Hence, from the isentropic process to the isothermal 
process, there are related corrections:

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

𝑇𝑇

=
1

𝜐𝜐2
+

𝑇𝑇 ⋅ 𝛼𝛼
2

𝜕𝜕

𝐶𝐶𝜕𝜕

, (3a)

𝛼𝛼𝑃𝑃 = −
1

𝜌𝜌
⋅

(

𝜕𝜕𝜌𝜌

𝜕𝜕𝜕𝜕

)

𝑃𝑃

, (3b)

(

𝜕𝜕𝜕𝜕𝑃𝑃

𝜕𝜕𝑃𝑃

)

𝑇𝑇

= −𝑇𝑇 ⋅

(

𝜕𝜕
2
𝜈𝜈𝑠𝑠𝑠𝑠

𝜕𝜕𝑇𝑇 2

)

𝑃𝑃

= −
𝑇𝑇

𝜌𝜌
⋅

[

𝛼𝛼
2

𝑃𝑃
+

(

𝜕𝜕𝛼𝛼𝑃𝑃

𝜕𝜕𝑇𝑇

)

𝑃𝑃

]

. (3c)

Where P is the pressure, T is the temperature, αP is the coefficient of thermal expansion, CP is the specific 
heat capacity, and νsp is the specific volume. The density of KCl solutions was calculated from the measured 
υ by recursive integration of Equations 3a–3c (Abramson & Brown, 2004; Mantegazzi et al., 2013; Wiryana 
et al., 1998). The calculation starts with the integration of Equation 3a at 1 bar and the values of ρ and CP are 
from literature data (Pabalan & Pitzer, 1988; Romankiw & Chou, 1983). The reference values of 𝐴𝐴

𝜕𝜕𝜕𝜕𝑃𝑃

𝜕𝜕𝜕𝜕
 in different 

KCl concentrations were obtained from Jones et al. (1948) and Apelblat and Manzurola (1999), respectively. 
The first iteration step is performed assuming that the isothermal-adiabatic correction term (𝐴𝐴

𝑇𝑇 ⋅𝛼𝛼
2

𝑃𝑃

𝐶𝐶𝑃𝑃

 ) is negligi-
ble. The resulting density is used to calculate a first approximation of αP and CP (Equations 3b and 3c) that 
are further used in the second iteration of Equation 3a without neglecting the isothermal-adiabatic correction 
term. This process was repeated until convergence was reached. As a result, the relation between pressure and 
density can be derived from Equation 3 (Table 2). The result indicates that the dissolution of 1.8 mol% KCl into 
water could increase the density of pure water (Li et al., 2005) by 1.4%–4.8% from 0.3 to 0.9 GPa (Figure 9), 
respectively. The density of a 5.1 mol% KCl solution was found to be 9.2%–11% higher than pure water (Li 
et al., 2005).

Figure 4. The Raman spectra of single-crystal KCl monohydrate. The Raman 
spectra of the supersaturated KCl-water system at 0.4 and 1.8 GPa indicating 
the liquid phase and KCl monohydrate (Kh), which are represented by green 
(liquid) and purple (Kh) lines, respectively. The inset shows the sample 
chamber. Re, Ruby, and Kh represent Re gasket, ruby spheres, and KCl 
monohydrate, respectively. The transparent section of the sample chamber 
represents the liquid.
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4. Discussion
To date, there are still controversies on the solid phases assemblage in salt-water systems at high pressure. 
Two main mechanisms of salt incorporation exist in the high-pressure regimes. In the first one, salt ions are 
incorporated in the substitution of an H2O molecule into the structure of ice-VII (Bove et al., 2015; Hernandez 
et al., 2022; Journaux et al., 2017; Klotz et al., 2009). In the second, salt ions form a new structure with H2O, 
forming classical salt hydrates (Komatsu et al., 2015; Tsironi et al., 2020).

Some previous studies show that salts can be incorporated into the structure of ice-VII by incorporation of cation 
and anion species at interstitial sites at high pressures and different temperatures (Frank et  al.,  2006,  2016; 
Hernandez et al., 2022; Journaux et al., 2017; Klotz et al., 2009, 2016; Ludl et al., 2017). By the recrystalliza-
tion of amorphous LiCl · 6D2O under high pressure and low temperature, Klotz et al. (2009) indicate that Li + or 
Cl − ions can be incorporated into the structure of ice-VII and result in the formation of “salty ice-VII.” Using the 
same synthesis method as Klotz et al. (2009), another study indicates that 9.8 mol% NaCl can be incorporated into 
the structure of ice-VII between 2 and 4 GPa (Ludl et al., 2017). The H2O-RbI system was studied by Journaux 
et al. (2017) using XRD and X-ray fluorescence up to 450 K and 4 GPa, and the results revealed that the incorpo-
ration of RbI enlarge unit cell volume of ice-VI and ice-VII by 1% in comparison to pure water ice. First-principles 
simulations predict that up to 2.5 wt.% NaCl is incorporated in dense water ice (ice-VII/X) in a way that both 
Na and Cl replace H2O molecules (Hernandez et al., 2022). By compressing aqueous solutions of NaCl and KCl 
at room temperature, two studies claim that at least 2.4 NaCl and 1.6 mol% KCl can be incorporated into the 

Figure 5. Experimental X-ray diffraction image and the Le Bail refinement of the integrated pattern of single-crystal KCl monohydrate at 1.8 GPa and 298 K. The 
experimental data, fit, and residues are shown in black, red, and blue, respectively. Kh (KCl monohydrate) and Re are indicated by green and orange sticks, respectively. 
The inset shows that the reflections of Kh and hkls are labeled. The diamond reflections are masked by red shadows.
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structure of ice-VII (Frank et al., 2006, 2016). However, in our study, using 
aqueous solutions as staring material and directly compressing the system, 
both Raman and XRD results indicate the formation of a novel KCl hydrate 
phase during the crystallization of ice-VI and ice-VII.

Many salt hydrates including LiCl · H2O, NaCl · xH2O (x  =  2, 8.5, 13), 
MgCl2 · xH2O (x = 1, 2, 4, 6, 10) and CaCl2 · 6H2O have been identified 
at different temperature and pressure conditions (Hönnerscheid et al., 2003; 
Journaux et  al.,  2023; Klewe & Pedersen,  1974; Komatsu et  al.,  2015; 
Sugimoto et  al.,  2007). Interestingly, even though KCl is one of the most 
studied halides, KCl hydrates have never been reported at low temperatures 
or at high pressures (Frank et al., 2016; Yoshimura et al., 2004). Our XRD 
and Raman measurements indicate that a Kh indeed forms at high pressures, 
and its crystal structure contains one water molecule in the primitive unit 
cell. The two Raman modes we observe at 3,410–3,424 cm −1 correspond to 
the symmetric stretching ν1 and asymmetric stretching ν3 of the water mole-
cule in Kh structure (Figure 1). Moreover, other types of salt hydrates, such 
as antarcticite (CaCl2 · 6H2O) and hydrohalite, have Raman peaks between 
3,240 and 3,540  cm −1, which are related to the vibration of water mole-
cules (Baumgartner & Bakker, 2009; Valenti et al., 2012). Thus, we could 
confirm that the KCl in water-rich system prefers crystallizing KCl hydrate 
rather than forming a KCl-bearing ice-VII at high pressure. Nevertheless, 
the potential incorporation of KCl in the structure of ice-VII at relatively 
low salt concentration levels cannot be excluded, and whether the addition of 
KCl will alter the ice VI-VII boundary as measured by Pistorius et al. (1968) 
is still an open question. Besides, the behavior of the system when different 

starting materials are used and different high-pressure synthesis approaches are applied needs to be thoroughly 
investigated in the future.

5. Implications
5.1. Implication for Water-Bearing Diamond Inclusions From the Earth's Interior

Saline solutions are the most common liquid phases in the shallow Earth and in ocean worlds' interior (Chivers 
et al., 2021; Huang et al., 2019; Khurana et al., 1998; Zolensky, 2005). Inclusions in deep diamonds from the 
Earth's mantle transition zone indicate that 0.1–16.8 mol% (K, Na)Cl coexist with ice-VII, revealing the pres-
ence of saline fluids in the deep Earth's interior (Tschauner et al., 2018). KCl was found in sub-micrometer-size 
fluid inclusions of fibrous diamond (Smith et al., 2011) and it demonstrates that KCl-rich fluids are important 
phases in the Earth's interior. However, no KCl hydrates were reported in the ice-VII bearing diamond inclu-
sions (Tschauner et al., 2018) and other microinclusions containing KCl (Logvinova et al., 2019); one possible 

Chemical composition KCl · H2O

Pressure and temperature 1.8 GPa and 298 K

Cell setting, space group Monoclinic, P21/n

a, b, c (Å) 5.7058(8), 6.3889(12), 8.4556(15)

ß (°) 107.34 (2)

Volume (Å 3) 294.224

Specimen shape (μm) 20 × 117 μm 2

X-ray radiation Synchrotron, P02.2, ECB, DESY

Wavelength (Å) 0.2903

Exposure (s) 2 s

Range of h, k, l −8 ≤ h ≤ 8

−7 ≤ k ≤ 7

−11 ≤ l ≤ 11

R(F 2), % 8.32

wR(F 2), % 27.78

Number of reflections 618

Number of fitted parameters 29

Table 1 
Information for the Structural Refinements Based on Single-Crystal X-Ray 
Diffraction Measurements

Figure 6. Schematic representation of the crystal structure of KCl · H2O in views approximately along a, b, and c-axis at 
1.8 GPa and 298K. The box with solid lines represents the unit cell. Different color spheres in the sites represent H (pink), K 
(purple), Cl (green), and O (red) atoms, respectively. The dotted line represents hydrogen bonds.

 21699100, 2023, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JE

007622 by H
elm

holtz-Z
entrum

 Potsdam
 G

FZ
, W

iley O
nline L

ibrary on [09/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Planets

WEI ET AL.

10.1029/2022JE007622

10 of 15

explanation may be that in absence of any structural or spectroscopic infor-
mation, the KCl hydrate phases were simply overlooked. Thus, the novel KCl 
monohydrate found in our study provides the basic structural information to 
characterize this phase in the water-salts-bearing diamond inclusions.

5.2. Implications for the Composition of Icy Moons

Subsurface conductivity in Jupiter's moon Europa inferred from remote 
magnetometry measurements by Galileo spacecraft indicates the presence of 
magnesium sulfate brine in subsurface ocean (Hand & Chyba, 2007). Based 
on geochemical modeling, Zolotov and Shock  (2001) report that chloride 
salts might be abundant in Europa's ocean water. Furthermore, a study indi-
cates that ice grains in Saturn's E-ring contain ∼0.5–2 wt.% sodium salts, 
and could originate from an ocean below the surface of Enceladus (Postberg 
et al., 2009). Because of the fact that the radioactive decay of K produces  40Ar, 
it was hypothesized that K may be leached from the hydrated silicate core 
and dissolved into the deep ocean, which leads to the enrichment of  40Ar in 
Titan's atmosphere (Fortes, 2012; Niemann et al., 2005). Thus, K + and Cl − 
can be present in the subsurface ocean of these icy moons and could play a 
crucial role in controlling the thermal properties of the subsurface ocean in 
ice giants.

Based on our results on the phase relations in the system KCl-H2O, even 
if 0.9  mol% KCl is dissolved into the subsurface ocean and the Kh can 
be formed and coexist with ice (Figure  3). The measured densities of the 
H2O-KCl fluids could help to understand the internal ocean structure of 
icy moons in the Solar System (Table 2, Figure 9). The dissolution of 1.8 

Figure 7. Representative optical microscopy images of the sample and Raman spectra. (a) Gasket, ruby, KCl-B1, KCl-B2, SrB4O7, and Kh represent Re gasket, ruby 
sphere, KCl-B1 phase, KCl-B2 phase, SrB4O7, and KCl monohydrate, respectively. The transparent section of the sample chamber represents the liquid. (b) The Raman 
spectra of Kh at various pressures and temperatures are represented with different colored lines. (c) The Raman spectra of liquid at various pressures and temperatures 
are plotted in different colors.

Figure 8. Schematic phase diagram of the KCl monohydrate at high 
temperature and pressure. The pure water phase diagram is shown as black 
lines (Journaux et al., 2013). The gray-shaded area depicts the approximate 
range of conditions present in ocean worlds (Journaux et al., 2020). The 
purple-dotted line represents the P-T path followed in our heating and 
quenching experiments.
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and 5.1  mol% KCl into water could increase the density ∼7% and ∼11% 
with respect to pure water at 1 GPa, respectively (Figure 9). There is also 
an upward shift of ∼14% compared with pure water density at 1 GPa when 
adding 1.7 mol% NaCl (Mantegazzi et al., 2013). Besides, previous studies 
indicate that an aqueous (NH4)2SO4 ocean with 1.35 g/cm 3 density can be 
formed above an ice-VI shell in Titan's mantle (Fortes et al., 2007). Thus, 
the density for different KCl solutions provides essential data for planetary 
modeling.

Previous studies have proposed models of mantle convection induced by salty 
high-pressure ices in large icy moons and ocean exoplanets (Journaux, 2022; 
Journaux et al., 2017, 2023). Using the obtained densities and phase stability 
of KCl-H2O compounds, we have shown that Kh may play a crucial role in the 
mantle dynamics of large ocean worlds (as illustrated in Figure 10). Kh could 
crystallize below the sub-surface ocean at depths corresponding to ∼1.6 GPa. 
Due to its higher density compared to ice-VI/VII (as shown in Figure 9), the 
formed Kh would tend to move downward. Kh would decompose to the KCl-B2 
phase and ice-VII at pressures higher than 2.4 GPa. In this case, KCl-B2 phase 
would continue to move downward because of its high density (as depicted 
in Figure 10) and finally reach the core mantle boundary and remain there in 

gravitational equilibrium due to its lower density than antigorite (taken as a proxy of the hydrated silicate rocky 
core). Moreover, if the ice melt is present at the core mantle boundary (Hernandez et al., 2022; Journaux, 2022), 
both the KCl-B2 phase and K + ions leached from the hydrated silicate core can dissolve into the melt. Given that 

1.8 mol% 5.1 mol%

Pressure 
(GPa) υ (km/s) ρ (g/cm 3)

Pressure 
(GPa) υ (km/s)

ρ (g/
cm 3)

0.2(1) 2.02(4) 1.105(1) 0.3(1) 2.06(3) 1.203(1)

0.6(1) 2.23(4) 1.165(1) 0.6(1) 2.44(3) 1.222(1)

0.7(1) 2.66(3) 1.150(1) 0.8(1) 2.60(2) 1.236(1)

0.8(1) 2.88(3) 1.149(1) 0.9(1) 2.72(6) 1.240(1)

1.1(1) 2.97(4) 1.166(1) 1.0(1) 2.85(3) 1.241(1)

1.3(1) 3.16(4) 1.172(1) 1.2(1) 2.97(6) 1.259(1)

1.5(1) 3.09(9) 1.205(2) 1.5(1) 3.29(2) 1.259(1)

1.6(1) 3.29(6) 1.267(1)

1.8(1) 3.27(4) 1.294(1)

Table 2 
Measured υ and ρ of 1.8 and 5.1 mol% KCl Solutions at 298 K and High 
Pressures

Figure 9. Densities of possible components in ice giants at high pressure and 298 K. Colored solid circles represent 
results in this study. Brown, orange, and blue circles represent the density of ice-VI, ice-VII, and Kh (KCl monohydrate), 
respectively. Green and light green circles represent the density of 1.8 and 5.1 mol% KCl aqueous solutions at high pressures 
and 298 K, respectively. The black solid line corresponds to the density of pure water determined by Li et al. (2005). The 
black dashed lines represent the density of pure ice-VI and ice-VII from Bezacier et al. (2014). The densities of KCl-B1 and 
KCl-B2 (Dewaele et al., 2012) are shown as green and orange dotted dashed lines, respectively. The purple dashed line shows 
the density of antigorite from Bezacier et al. (2013).
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the density of KCl-bearing melts is lower than that of solid ices, the melts tend to upwell, and the Kh may crystal-
lize again during the upwelling process. Thus, the formation and decomposition of Kh may play a role in inducing 
mantle convection in large icy moons and ocean exoplanets. We should note that this model is simplistic, as it only 
considers the densities and phase stabilities of KCl-H2O compounds. Therefore, future studies should perform 
dynamic simulations that incorporate more information, such as viscosity, diffusion, and other solutes in the water 
system.

6. Conclusions
In this study, powder and SC-XRD, Raman and Brillouin scattering combined with DACs were used to inves-
tigate phase transformations, reactions and infer phase equilibria in the KCl-H2O system for different KCl 
concentrations between 0 and 4  GPa and 298–405  K. We find that a novel KCl hydrate phase with P21/n 
space group coexists with ice-VI and ice-VII at high pressures. During the revision of our manuscript, a study 
was also published reporting the synthesis of KCl monohydrate (Kh) with the same structure as our study 
(Yamashita et al., 2022). We propose a method to synthesize the single Kh crystal under high pressure straight 
from supersaturated KCl solutions. For the discovered Kh phase, we provide basic structural information that 
may help identify this phase in water-salts-bearing deep diamond inclusions. Based on our modeling, the 
formation and decomposition of Kh will contribute to the dynamic processes occurring inside icy moons and 
ocean exoplanets.

Data Availability Statement
All the experimental data and the data file for the crystal structure of KCl monohydrate phase can be found in 
the Wei (2022).
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