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Recently, Machine learning (ML) has been widely utilized for laboratory earthquake (labquake) prediction 
using various types of data. This study pioneers in time to failure (TTF) prediction based on ML using 
acoustic emission (AE) records from three laboratory stick-slip experiments performed on Westerly 
granite samples with naturally fractured rough faults, more similar to the heterogeneous fault structures 
in the nature. 47 catalog-driven seismo-mechanical and statistical features are extracted introducing 
some new features based on focal mechanism. A regression voting ensemble of Long-Short Term Memory 
(LSTM) networks predicts TTF with a coefficient of determination (R2) of 70% on the test dataset. Feature 
importance analysis revealed that AE rate, correlation integral, event proximity, and focal mechanism-
based features are the most important features for TTF prediction. Results reveal that the network uses 
all information among the features for prediction, including general trends in high correlated features 
as well as fine details about local variations and fault evolution involved in low correlated features. 
Therefore, some highly correlated and physically meaningful features may be considered less important 
for TTF prediction due to their correlation with other important features. Our study provides a ground 
for applying catalog-driven to constrain TTF of complex heterogeneous rough faults, which is capable to 
be developed for real application.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC 
license (http://creativecommons .org /licenses /by-nc /4 .0/).
1. Introduction

Earthquake forecasting and improvement of probabilistic seis-
mic hazard assessment are persistent and challenging problems in 
geoscience, primarily due to the complexity of deformation pro-
cesses, evolving fault structure and varying mechanical behavior of 
geomaterials. Recent advances in machine learning (ML) algorithms 
and hardware provided new perspectives and tools to the seismol-
ogy community (Johnson et al., 2021). Basic signal processing anal-
ysis is within the scope of ML applications, including earthquake 
event detection (Mousavi et al., 2020), phase picking (Zhu et al., 
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2019) and association (McBrearty et al., 2019), as well as hypocen-
ter determination (Mousavi and Beroza, 2020), among others (as 
reviewed by Ren et al. (2020)). At the same time, data-driven 
ML-based approaches were applied to predict the time-to-failure 
(TTF) in laboratory experiments (e.g. Rouet-Leduc et al., 2017) us-
ing Acoustic Emission (AE) data and associated measurements. In 
general, approaches to predict TTF in laboratory experiments may 
be categorized into three groups based on the input features fed 
into the ML network as: a) AE-driven features, extracted directly 
from continuous AE signals, b) Geodetic-driven features, extracted 
from geodetic measurements, and c) Catalog-driven features, ex-
tracted from earthquake or seismicity catalogs.

Recently, several studies applied ML-based techniques to fore-
cast TTF using stick-slip deformation experiments in a biaxial ap-
paratus on smooth faults, which is an analog of the earthquake 
le under the CC BY-NC license (http://creativecommons .org /licenses /by-nc /4 .0/).
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cycle (Byerlee and Brace, 1968). In addition to the mechanical data, 
continuous AE waveforms serve as input in an effort to predict 
TTF (Rouet-Leduc et al., 2017). The experimental setup enabled 
recordings of AEs from hundreds of stick-slip cycles during a single 
experiment, providing large datasets that are well-suited for anal-
ysis using ML algorithms. AE-driven features may comprise either 
raw AE signals (e.g., Pu et al., 2021; Wang et al., 2022) or statistical 
features such as mean, variance, skewness and kurtosis of signal 
distribution, time correlation features via the integral of power 
spectrum over a narrow frequency band and autocorrelation fea-
tures (Rouet-Leduc et al., 2017). These features have been studied 
extensively and were used in recent years to successfully predict 
TTF, shear stress, fault friction, displacement, and slip velocity (e.g., 
(Bolton et al., 2019; Jasperson et al., 2021; Johnson et al., 2021; 
Lubbers et al., 2018; Rouet-Leduc et al., 2018, 2017; Wang et al., 
2021). Rouet-Leduc et al. (2018) demonstrated that the AE variance 
calculated from the waveform amplitudes is the most sensitive fea-
ture. Shreedharan et al. (2021) showed that active source acoustic 
data can be used to predict labquakes and Laurenti et al. (2022)
utilized AE variance for both TTF prediction and forecasting fault 
zone shear stress. Recently, Wang et al. (2022) directly fed AE sig-
nals into a transformer model to forecast near-future fault friction 
and Borate et al. (2023) demonstrated how physics-informed mod-
els can improve ML/DL methods.

Geodetic-driven features have also been used for prediction 
of laboratory earthquakes. For instance, Corbi et al. (2020, 2019)
recorded synthetic GPS data in an experimental subduction model 
and predicted slip events (akin to lab earthquakes) in an analog 
material (TTF prediction and slip-event imminence classification) 
using features extracted from displacement data. These features 
include cumulative displacement of points, velocity of points, cor-
relation between subsequent frames, standard deviation, variance, 
skewness, and kurtosis of the velocity field, threshold of velocity 
for target points, and cumulative displacement and velocity vec-
tor length. Corbi et al. (2019) demonstrated that the most crucial 
feature was the trench-parallel component of cumulative displace-
ment of points.

Other researchers have utilized catalog-driven features, contain-
ing physically explainable patterns during the preparatory phase 
potentially preceding earthquakes, which is demonstrated from 
theoretical concepts and laboratory measurements to reservoir-
scale and megathrust observations (Picozzi et al., 2023). McBeck 
et al. (2020) conducted a study to characterize the evolving frac-
ture network in triaxial compression experiments performed with 
synchrotron X-ray computed tomography and predicted the prox-
imity of sample failure. The authors suggested that evolution of 
the strain energy density field improved reliable predictions of the 
proximity to failure compared to other metrics used to measure 
rock deformation. Also, in a biaxial shear experiment, (Bolton et al., 
2019) performed unsupervised clustering of the first two principal 
components of 43 AE-based features (similar to Rouet-Leduc et al., 
2017), where they identified temporal trends and precursors and 
showed different clusters that determined the preparatory phase 
of the fault.

Panakkat and Adeli (2007) extracted features from the Guten-
berg-Richter (GR) distribution and characteristic earthquake dis-
tribution to predict earthquake magnitude using various artificial 
neural networks (ANN). Reyes et al. (2013) used the GR-law’s b-
value, Bath’s law, and Omori-Utsu’s law as the input data for an 
ANN to determine the probability of an earthquake in the next 
five days in Chile. Following this work, Asencio-Cortés et al. (2017)
used the same features, as well as mean magnitude, coefficient of 
variation, maximum magnitude over a temporal window, and other 
features, to classify earthquake magnitude in Tokyo into larger or 
smaller than M∼5 using ANNs. Lubbers et al. (2018) used the 
same AE signals as Rouet-Leduc et al. (2017), but extracted catalog-
2

driven features such as cumulative statistics of event count and 
amplitude computed for a specific time window. Using a Random 
Forest (RF) model, the authors predicted shear stress and time 
since the last failure event with high accuracy and TTF with a 
lower performance. Picozzi and Iaccarino (2021) extracted a va-
riety of temporal features from an induced seismicity catalog of 
The Geysers geothermal field in California. The extracted features 
included duration of event groups, inter-event time, individual mo-
ment magnitudes and moment rate, b-value and completeness 
magnitude, fractal dimension, proximity and Shannon’s informa-
tion entropy. They used a recurrent neural network (RNN) to pre-
dict the preparatory phase of magnitude M∼4 earthquakes. Their 
results showed the potential of using catalog-driven features and 
RNN to predict large induced seismic events.

This study pioneers in employing physics-informed catalog-
driven features derived from AE data recorded during stick-slip 
experiments on rough faults for TTF prediction. The majority of re-
cent laboratory earthquake studies on similar topics focused so-far 
on the double-shear test. Although the experimental setup to gen-
erate laboratory quakes has been discussed extensively (Marone, 
1998; Niemeijer et al., 2010), it produces repetitive patterns of 
quasi-periodic slips, since it is a relatively homogeneous system 
with smooth fault surface (Johnson et al., 2021). This type of ex-
periment favors ML training and consequently the TTF prediction, 
as the experimental procedure itself produces a huge amount of 
repetitive data in a framework where roughness is evolving very 
slowly. However, natural faults display larger roughness and struc-
tural complexity (e.g. fault networks) where the individual fault 
patches interact when major fault slip occurs (Johnson et al., 2021). 
Thus, our study for the first time attempts to handle the case 
of a complex rough fault and fault network as typically observ-
able in nature. Employing a regression voting ensemble (An and 
Meng, 2010), consisting of 10 Long Short-Term Memory networks 
(LSTMs), we analyze the potential of the developed catalog-driven 
features for constraining the TTF. Following to applying an explain-
able ML method, we evaluate and rank the features based on their 
importance for predicting TTF, also allowing us to interpret the re-
lations between different features and explain the ML predictions.

2. Experimental set-up and data acquisition

2.1. Sample material and stick–slip experiments

We use data from triaxial stick–slip experiments performed on 
the three samples cored from the same block of Westerly granite 
(WgN04, WgN05 and WgN07) (Goebel et al., 2012). The mineralog-
ical composition of the samples is 28% quartz, 33% plagioclase, 33% 
K-feldspar and 5% mica. Initial porosity was 2% and average grain 
size is 750 microns. Cylindrical samples were precision-ground to 
102–107 mm in length and the same diameter of 40 mm. To pro-
duce rough faults, all specimens were prepared with 1.5-2.2 cm 
deep notches inclined at 30◦ to the specimen axis, subjected to 
an isostatic confining pressure of 75 MPa, and then loaded at con-
stant piston displacement rate until shear failure occurred, creating 
a rough fault surface (Fig. S1, in the supporting text). In the fol-
lowing, in all three samples, the confining pressure was raised to 
constant value of 150 MPa to lock the faults and progressive axial 
loading at constant displacement rate of 0.33 μm/s was resumed 
to induce stick-slip events (Fig. 1) (Goebel et al., 2012).

We measured the axial force using an internal load cell with 
accuracy of ± 0.05 MPa. To measure seismic activity, 14 piezoelec-
tric AE sensors with a resonant frequency of 1 MHz were placed 
in brass housings and glued directly to the sample surface using a 
low viscosity epoxy and appropriate holes in the rubber jacket (Fig. 
S1). Two additional AE sensors were placed in the top and bottom 
steel plugs. Full waveforms were recorded with 16-bit resolution 
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Fig. 1. TTF and axial stress values of three experiments (WgN04, WgN05, WgN07), separated by vertical dashed lines. All data are combined into a long time series and 
divided into 80% training data (green background) and 20% validation/test data (red background). Each small and large slip event (shown as a stress drop) is considered a 
failure event which we aim to forecast. As the features are calculated using a moving time window of different widths (see Table 1), data from 150 seconds after each axial 
stress drop are removed to avoid interference with the previous slip. The selected stress and TTF time series are shown with darker black and blue colors, respectively.
at 10 MHz sampling rate. The recording system was operated in 
triggered mode, which means the waveform recording is triggered 
when a specific amplitude threshold is exceeded on at least one 
AE sensor (see Fig. S2 in the supporting text for some examples of 
raw acoustic data with different magnitudes). To monitor P -wave 
velocities during damage evolution and to continuously update the 
velocity model, horizontal and vertical sensors were used periodi-
cally as sensor-receiver pairs of ultrasonic pulses (cf. Dresen et al., 
2020).

2.2. AE catalog

The central processing steps to extract the time-dependent AE 
characteristics analyzed here from AE data are summarized in the 
following. They are described in detail in Kwiatek et al. (2023). 
First P -wave arrivals of AE events were picked automatically us-
ing the Akaike Information criterion, followed by pick refinement 
employing a modified Convolutional Neural Network scheme (Ross 
et al., 2018). Based on the continuously updated, quasi-anisotropic 
velocity model, hypocenter locations were determined using a grid 
search algorithm paired with the Coyote optimization algorithm 
(Pierezan and Dos Santos Coelho, 2018). We estimate the hypocen-
ter location accuracy to be about ±2 mm (cf. Dresen et al., 2020). 
We correct first-arrival P -wave amplitudes for hypocentral dis-
tance, incidence angle and differences in coupling using an ultra-
sonic calibration technique (Kwiatek et al., 2014). The AE magni-
tude was calculated from first P -wave amplitudes using:

M A E = log10

√√√√ 1

N

n∑
i=1

(Ai Ri)
2 (1)

where Ai and Ri are corrected first P-wave amplitude and source-
receiver sensor distance respectively (cf. Dresen et al., 2020; 
Goebel et al., 2012). The seismicity catalogs for WgN04, WgN05 
and WgN07 contained 102540, 240328 and 199255 events, respec-
tively, and contained origin time, location in the local Cartesian 
coordinate system and AE magnitude. The AE magnitude of com-
pleteness have been estimated for all catalogs using a goodness of 
fit method (Wiemer and Wyss, 2000) leading to M A E = 1.5.
C

3

3. Feature extraction and processing

3.1. AE-catalog-driven features

All features used in this study are summarized in Table 1. We 
extracted different features over the time, space and magnitude di-
mensions (or a combination of them) to characterize the prepara-
tory processes preceding the occurrence of slip events known as 
laboratory earthquakes (or labquakes). The features are described 
in detail in the supporting text and some of them are illustrated 
for WgN07 in Fig. 2. For a more general discussion of the physical 
meaning of selected features, see Kwiatek et al. (2023) for details.

AE event rate (n): The AE event rate refers to the number of events 
per second using AEs above the magnitude of completeness (Fig. 2) 
and as such reflects the damage occurring in the sample during 
loading. Sano et al. (1981) discovered that the AE event rate in-
creased as the loading rate increased in an unconfined compressive 
strength test on a granite sample. Similar behavior has been shown 
by Bolton et al. (2021) in double-shear test. Dresen et al. (2020)
observed a less pronounced increase in AE rate leading to failure 
along a rough fault. They also concluded that the AE rate and slip 
rate are correlated, since intermittent bursts of AE activity prior to 
and during slip events are followed by an increase in AE rates.

GR law’s b-value (b): The Gutenberg-Richter (GR) law expresses a 
linear relationship between the magnitude and the logarithm of 
the total number of seismic events below that magnitude. The 
slope of this relationship is commonly called b-value and indi-
cates the proportion between large and small events. Studies have 
shown that the b-value depends on stress (Kwiatek et al., 2014; 
Lei, 2006; Rivière et al., 2018), damage (Main, 1991), as well as 
strain localization and geometric complexity (Goebel et al., 2017) 
(Fig. 2).

Correlation integral (c): The correlation integral is a measure of 
the probability of two points being separated by a spatial distance 
less than a certain value (Henderson et al., 1999). As such, it is de-
scribing the level of point-clustering with 0 and 1 corresponding to 
point-clustering and random distribution, respectively (Kagan and 
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Table 1
A summary of all features used in this study.

Parameter notation Time windows (s) Dimension sensitivity Commentary

AE event rate n 23, 45 90, 180 time

Calculated directly 
from AE catalog

GR law’s b-value b 10, 30, 90, 180 time

Correlation integral c 90, 180 (r = 5 mm)∗
space-time

45, 90 (r = 20 mm)

Interevent time 
distribution 
features

Ratio (deviation from uniform 
distribution at edges of the 
empirical distribution)

r

23, 45, 90, 180 time
Calculated directly from 
AE catalog

Deviation from uniform 
distribution (χ2 test)∗∗

rx2

Fractal dimension d2 45, 90, 180 space-time Calculated from AE catalog,
boxcounting method

Magnitude correlation dm 90 time Calculated from AE catalog

Clustering and 
localization 
features

Product of T and R∗∗∗ trp

25, 50, 100 space-time-magnitude Clustering analysis outcomes
Quotient of T and R trq

Proportion of foreshocks pfo

Proportion of aftershocks paf

Proportion of mainshocks pma

Focal mechanisms and 
deviatoric stress tensor 
based features

Median fault plane variability vm 100, 200

space-time

Full moment tensor inversion

Maximum principal stress 
plunge

s1d

90, 180 Stress tensor inversionMaximum principal stress 
variance

svar

Stress ratio sr

* ‘r’ is a scale limit for spatial distance between coordination of two events. ** ‘χ2 ’ is the Chi-squared distribution. *** ‘T’ and ‘R’ denote the time and space components of 
the proximity formulation (for more details see the text and supporting information).
Knopoff, 1980). However, it can also be used as an indicator of the 
localization of the event hypocenters (Fig. 2).

Interevent time ratio (r1, rx2): Interevent time ratio introduced 
by Van Der Elst and Brodsky (2010) is a measure of local-in-time 
temporal clustering or anti-clustering of seismicity. The probability 
density function of interevent time ratios is uniform for random 
(Poissonian) distribution of events in time (cf. Kwiatek et al., 2022). 
Clustering or anti-clustering is here measured with two features. 
The first measures the deviation of the observed distribution from 
the uniform (r1) distribution at the edges of the PDF. The second 
measures the deviation of the observed distribution from uniform 
distribution using chi-squared (rx2) formulation. Both features do 
not quantify the statistical significance of the deviation from the 
uniform distribution (cf. testing of significance in Kwiatek et al., 
2022).

Fractal dimension (d2): It has been suggested that the spatial dis-
tribution of AE locations exhibits fractal self-similarity behavior 
(Hirata et al., 1987). Fractal dimension can be calculated using 
either the pair correlation integral (Hirata et al., 1987) or the box-
counting method (Sadovskiy, 1984). The fractal dimension is highly 
dependent on the roughness of the fault plane, and its evolution 
close to failure can either gradually decrease due to fault nucle-
ation, or increase, signifying an overall increase in AE activity over 
the entire fault surface as a consequence of increased contact area 
between the two faces of the fault (Kwiatek et al., 2023; Lei and 
Ma, 2014).

Magnitude correlation (dm): For each time window we tested 
whether the vector of magnitudes ordered in time behaves as if it 
would be randomly drawn from a Gutenberg-Richter distribution 
(see e.g. Kwiatek et al. (2022) for details). Magnitude correlations 
4

suggest local-in-time accelerations or decelerations of seismic pro-
cesses that are not expected in a stationary Poissonian process.

Clustering and localization features (trp, trq, pma, pfo, paf ): Earth-
quake clustering analysis was developed by Baiesi and Paczuski 
(2005), who defined a pairwise distance between earthquakes in 
the space-time-magnitude domain. (Zaliapin et al., 2008) expanded 
on this by introducing magnitude-normalized time and space com-
ponents, denoted as T and R. The spatio-temporal proximity be-
tween events can be conveniently expressed as the product of their 
temporal (T) and spatial (R) components, scaled by the magnitude 
of the earlier event. In this study, we calculated the averaged prod-
ucts and quotients (or ratio) of these two components (trp and 
trq). The first parameter (trp) describes the general space-time lo-
calization process. The trq parameter picks up the inverse relation 
between T and R components (e.g. small T and large R and vice 
versa, Martínez-Garzón et al. (2019)).

The nearest-neighbor proximities form a bimodal distribution 
(Zaliapin et al., 2008; Zaliapin and Ben-Zion, 2013). This distri-
bution may be decomposed into background, approximately Pois-
sonian seismicity distributed as the larger event proximities, and 
clustered seismicity. The separation into background and clustered 
seismicity allows further decomposition into foreshocks, main-
shocks and aftershocks. In this study, we calculate fractions of each 
event type within a selected space-time window (Fig. 2).

Focal mechanisms and deviatoric stress tensor based features (vm, 
s1d, sr, svar): The inversions of full moment tensors and focal mech-
anisms allow deciphering the micro-kinematics at the grain-scale 
(Kwiatek et al., 2014). The stress tensor inversion from AE-derived 
focal mechanisms allows computing spatial resolution of local di-
rections of principal stress axes (Martínez-Garzón et al., 2014; 
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Fig. 2. Representation of several features as an example in WgN07 to show both training and test data. The first figure (axial stress) reveals the failure times. From top to 
bottom: axial stress, AE event rate (n), b-value (b), correlation integral (c), and proportion of mainshock, foreshock and aftershock. Each feature is computed taking the past 
data from a time window of selected length, which is indicated by ‘Win’ in seconds. Green and red background are the same as in Fig. 1.
Vavryčuk, 2014) and obtaining the ratio between magnitudes of 
principal stress axes (stress shape ratio).

Following Kwiatek et al. (2023), we use focal mechanism data 
to determine the median fault plane variability (vm). This feature 
characterizes the heterogeneity in AE-derived focal mechanisms 
(Goebel et al., 2017). Additionally, using the results of stress tensor 
inversion of AE focal mechanisms, we compute the plunge of the 
maximum principal stress (s1d), stress shape ratio (sr), and max-
imum principal stress variance (svar). The s1d parameter charac-
terizes the deviation of locally derived stress orientations from the 
globally imposed stress field by axial loading. It primarily reflects 
the stress concentration close to the fault surface and the amount 
5

of shear-enhanced compaction (see discussion in Kwiatek et al. 
(2023). The sr parameter defines the shape of the principal devia-
toric stress ellipsoid. Finally, the svar parameter describes the spa-
tial variability of local stress tensors derived. The larger the value 
of svar parameter, the more heterogeneous the local stress field is.

3.2. Feature pre-processing

For each experiment, we calculated 47 time series on the ba-
sis of 16 unique seismo-mechanical and statistical features using 
moving time windows of different lengths (see Table 1). We con-
structed the time series by concatenating all data from the three 
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samples, as shown in Fig. 1, to provide a dataset spanning a longer 
period. We assumed small and large axial stress drops to repre-
sent stick-slip events, separating different stress cycles including 
loading and unloading, which formed the basis for all subsequent 
analyses. For example, for TTF estimates, time was set to zero at 
each axial stress drop, increasing backward until the previous drop 
or the beginning of the test (Fig. 1). It should be noted that while 
calculating the time series, we omitted the first 150 s after each 
stick-slip event to avoid mixing of data from two different stick-
slip cycles and to not pollute the next cycle with the preparatory 
activity of the previous cycle.

We normalized each feature within each stick-slip cycle be-
tween 0 and 1 using min-max normalization. We used a time 
interval of 150 s in length to construct 19,786 multivariate se-
quences of time series at every one second. Since we computed 
all 47 features with a 0.5 s time step, it resulted in an input data 
size of 19,786 × 300 × 47 for each time interval. All data are di-
vided into 80% training and 20% validation/test data based on the 
stick-slip cycles. The test data are used for both validation and test 
phase, since they are not contributing in training and are assumed 
as unseen data for the network (Saenger et al., 2021). We decided 
to do this in order to increase the amount of the training data.

Here, we analyze TTF before small and large stick-slip events. 
Stick-slips are directly detectable in axial load data (Fig. 1) in the 
form of sudden drops in the axial stress within less than 0.1 s 
(Kwiatek et al., 2023). The onset of the stick-slip is always marked 
with an occurrence of a large AE event(s) whose location can 
be considered a nucleation point of the following stick-slip. Large 
stick-slips/axial stress drops (>100 MPa) activate the whole fault 
surface, as revealed in the distribution of AE aftershocks following 
the slip. Similarly, most small slip events (< 100 MPa) activate the 
entire fault surface but produce much less slip.

4. ML approach and results

4.1. TTF prediction with LSTM

Selected features characterize the temporal evolution of dam-
age and local stress over and in the vicinity of the fault surface 
(Dresen et al., 2020). The input data in each time sample can be 
considered as point data where classical ML methods such as ANNs 
(Panakkat and Adeli, 2007), Random Forests (Rouet-Leduc et al., 
2017), and Gradient Boosted Regression Trees (Ren et al., 2019) 
could be applied. However, these features are assumed as time 
series data and one could utilize deep learning methods such as 
Convolutional Neural Networks (Pu et al., 2021), Recurrent Neu-
ral Networks (Picozzi and Iaccarino, 2021), LSTM (Jasperson et al., 
2021), Gated Recurrent Units and Transformers (Wang et al., 2022).

We tested a series of classical and deep networks and found 
the LSTM method (for basics of LSTM see Supporting text) to pro-
duce more accurate results in terms of prediction error. Following 
a regression voting ensemble learning, we use an average of 10 
values predicted by 10 LSTMs to produce more robust predictions. 
We use a many-to-one LSTM training scheme, where we enforce 
a sequence length of 300 samples and 47 features. The batch size 
was 1000 and the hidden variables of the LSTM are reset after 
each batch of sequenced data. All models have two main layers: 
an LSTM layer with 256 units and a dense layer with 256 neu-
rons. Each of these layers is followed by a batch-normalization and 
a dropout layer with a rate of 50%. We used the ‘Adam’ optimizer 
with a learning rate of 0.001.

Overall, predictions of the training data are more accurate than 
the validation data during the training phase (Fig. S4, in the sup-
porting text). This means our ML models are highly susceptible 
to overfitting, which is mostly due to the limited available train-
ing data. Short training data and relatively few stick-slip events 
6

are due to limited maximum displacements (up to ∼4 mm ver-
tical) in the experiments. Larger displacements can damage or 
break the rubber jacket surrounding the sample. Even if we ap-
plied overfitting-mitigation procedures such as application of a 
high dropout rate (50%) in our models, overfitting is still inevitable.

The results of our TTF prediction are displayed in Fig. 3. We 
find a statistically significant coefficient of determination (R2) for 
the prediction which is more than 70%, with mean square error 
(MSE) for normalized values of 8.6 × 10−3 (Fig. 3a). Considering 
the complexity of the preparatory process and limited training 
data, the results provide a good constraint for TTF of stick-slip 
events (Fig. 1). To have a simple base model for comparison, we 
conducted a linear multivariate regression model via the stepwise 
algorithm (Montgomery and Peck, 1992) with all 47 features. After 
removing 7 features by the algorithm, the final model with 40 fea-
tures shows R2 = 45.6% and MSE = 15.9 × 10−3. This means that 
the ML network, which is able to capture complex and nonlinear 
relations, does produce predictions with about 55% improved ac-
curacy (R2) and 50% reduced error (MSE). In the following, we 
evaluate the relative importance of the features and analyze the 
TTF prediction results using the most important features to explain 
ML results.

4.2. AE features: importance versus correlation

Multivariate linear regression is mostly based on the linear 
correlation between dependent and independent variables, where 
the model coefficients are examined to evaluate the contribu-
tion of each variable. However, in a non-linear regression model, 
like in our case, the most correlated variables do not necessar-
ily play the most important roles for prediction. To assess the 
importance of individual features and feature combinations, we 
employed the integrated gradient (IG) method, which computes 
gradients (i.e., changes) of the output with respect to the input for 
a deep network (Sundararajan et al., 2017) (see supporting text). 
More specifically, the IG method computes gradients of the out-
put with respect to interpolated inputs and averaging/integrating 
the result for all the interpolated input features. To account for 
the TTF contributions of each feature, we computed the IG magni-
tudes for 100 test data points for all LSTM models, and calculated 
averages of the absolute values (Sundararajan et al., 2017). As il-
lustrated in Fig. 3b (right side), the features are ranked based 
on their role for TTF prediction employing the LSTM networks, 
for which the AE rate (n_90, n_180, n_45), correlation integrals 
(c_rc20_90, c_rc20_45), quotient of T and R (trq_100) and median 
fault plane variability (vm_200) came out as the seven most im-
portant features. We performed a TTF analysis using only these 
most important features (Fig. 3c) and the results suggest that the 
general TTF trends are captured even by seven features, although 
the statistical significance R2 dropped to 56%. It should also be 
noted that among the most important features affecting the TTF 
prediction there are similar features, but with different time win-
dows, such as: 45, 90 and 180 s for AE rate (n) and 45 and 90 
s for the correlation integral (c). The length of time windows for 
quotient of T and R (trq) and the median fault plane variability 
(vm) are 100 and 200 s. This indicates that features calculated over 
medium to longer time windows are more informative.

We calculated the correlation coefficient between the estimated 
TTF and all features (Fig. 3d). As expected, the AE rates (n) for 
different time windows are highly correlated with TTF. However, 
the next important features derived from the IG method (Fig. 3b), 
which included the correlation integrals (c_rc20_90, c_rc20_45), 
quotient of T and R (trq_100) and median fault plane variabil-
ity (vm_200) all show a lower correlation with TTF, but still rank 
higher compared to other highly correlated features, such as pro-
portion of mainshocks and aftershocks (pma, paf ), median proxim-
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Fig. 3. TTF prediction results using the ensemble LSTM model with (a) all 47 features and (c) only the 7 most important features selected from the ranking list in (b). (b) 
The importance of each feature was computed using the IG method and sorted (right blue bars), as well as the correlation coefficient (absolute values) of the corresponding 
feature with TTF (left red bars). (d) Absolute values of correlation coefficients among all features and TTF (details can be found in the accompanying text).
ity (trp), and b-value. This is due to n being highly correlated with 
pma, paf, trp, fractal dimension (d2), and even b-value, as shown 
by a rectangle in the correlation matrix (Fig. 3d). Thus, the latter 
7

features behave similar to n and do not seem to provide further 
independent information to improve accuracy of the model predic-
tion. Consequently, other features with lower correlation with both 
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TTF and n, more significantly affect the model’s performance. This 
is probably because their small details, which are not contained in 
n and its correlated features, fill the gaps of the model for a bet-
ter prediction. See section 6 in the supporting text for more details 
about the importance of fault plane variability.

5. Discussion

Recently, ML algorithms have been successfully used to en-
hance seismic catalogs, pioneer prediction of stick-slip events in 
double-shear friction tests, and to analyze varying seismic charac-
teristics (Mousavi and Beroza, 2023; Ren et al., 2020). In contrast 
to previous studies, the forecasting approach is applied to stick-slip 
experiments performed on rough faults, that bear more similarity 
with heterogeneous fault structures in nature, but make AI based 
forecasting notoriously difficult. Rough faults are more complicated 
yet closer to the (generally complex) faults observed in nature, 
whereas so far relatively simple planar faults were analyzed in 
TTF studies, based on a multitude of repetitive stick slip cycles. 
In this study, we predicted TTF using catalog-driven features with 
the main aims being to: 1) explain physically and statistically each 
feature individually and its relation with TTF, and 2) evaluate their 
role in a group of features for TTF prediction. Our results show 
that the employed ML algorithms allow predicting TTF of labo-
ratory stick-slip events on heterogeneous rough faults with a R2

of about 70%. The most important features for prediction include 
AE event rate, correlation integral, median spatio-temporal proxim-
ity from clustering analysis, and focal mechanism-based features. 
Among them, fault plane variability is introduced as an important 
feature which describe local stress evolution in the sample based 
on AE data, which to our knowledge have not been yet proposed. 
Consequently, the features cover a variety of physical processes in-
volving space, time and magnitude dimensions, which control fault 
damage evolution and the associated labquake processes.

Event rate n is a key parameter which commonly increases 
when approaching failure in lab tests performed on rough faults 
(Dresen et al., 2020; Lei and Ma, 2014) and granular gouge (John-
son et al., 2013). It indicates the damage intensity of the granular 
material forming the fault zone and is commonly associated with 
slip rate. Without significant b-value variations, event rate n can 
be considered proportional to the seismic energy release rate, or 
seismic moment rate. However, this implies that AE event rate 
is in general expected to vary spanning a broad range, reflecting 
varying seismic efficiency of the monitored processes as well as 
monitoring conditions. This may potentially lead to normalization 
problems when used in ML algorithms due to different seismicity 
backgrounds and n range in different areas. In such cases, n may 
be effectively replaced with a (or a combination of) correlated pa-
rameter(s) such as trp, pma, paf that do not exhibit comparable 
normalization problems.

Although the correlation integral is typically used to compute 
the fractal dimension, it also contains time-space information that 
may be related to the preparation process (Dresen et al., 2020). For 
rough faults, clustering of AEs is observed at high load, indicating 
breakdown of cm-scale asperities forming the fault surfaces ahead 
of a major slip event (Goebel et al., 2012).

Features obtained from clustering analysis are significant since 
they capture time-space-magnitude dimensions physically and are 
highly correlated with TTF. The features trp and trq indicate lo-
calization processes in time and space (Ben-Zion and Zaliapin, 
2020) when approaching the earthquake. The varying proportions 
of mainshocks, foreshocks and aftershocks (pma, pfo and paf ) be-
come visibly prominent during loading at high stress levels. Tem-
poral changes of these parameters are controlled by the breakdown 
of small-scale asperities (mm to cm wavelength) in the sample, but 
grain scale roughness remains unchanged (Kwiatek et al., 2023). 
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Each asperity breakdown leads to smoothing out the local stress 
field in the asperity and local (i.e. within the sample) stress re-
distribution to the surrounding areas. This is evidenced by clus-
tering of AE and presence of prominent AE foreshock-mainshock-
aftershock sequences. Intensive occurrence of clustered AEs in-
dicates therefore progressive expansion of failures of asperities, 
establishment of long-range stress correlations, which in the pres-
ence of high ambient stress are a prerequisite for rupture propaga-
tion of large events (Kwiatek et al., 2023).

Features based on focal mechanisms such as V m are also im-
portant. For example, for TTF prediction in rock fracture tests, 
McBeck et al. (2020) characterized damage evolution monitoring 
orientation of the smallest dimension of the fractures, distance 
between fractures, fracture apertures, and anisotropy of fractures. 
Using these features in their model, the authors arrived at TTF pre-
dictions with R2 = 50 − 60%. This is somewhat less than presented 
in this study, which is possibly due to the large complexity of dam-
age localization in performed friction tests. Nevertheless, Kwiatek 
et al. (2023) highlighted the importance of features based on AE 
micro-kinematics in identifying the approach to major slip. They 
identified signatures of alignment of AE-derived focal mechanisms 
expressed with lowered vm values. In addition, they found locally 
resolved stress fields become more homogeneous before slips, as 
indicated by reduction in local stress field variability (svar). There-
fore, the focal-mechanisms based proxies indicate preparation of 
the fault surface for large slip sensing processes such as roughness 
removal, smoothing of the stress field and creation of the long-
length scale stress correlation, as well as alignment of fractures 
(Ben-Zion et al., 2003; Dresen et al., 2020; see also discussion on 
Kwiatek et al., 2023).

5.1. Importance of different features

Employing features with varying time windows improves the 
TTF prediction (e.g., n or c in Fig. 3b). We also investigated the 
model performance using just one time window from each type 
of feature and tested respective model performance using 16 dif-
ferent features and two similar LSTM models; model-I consisting 
of the 16 most important features (following the order presented 
in Fig. 3b), and model-II with 16 different-unique features (i.e. we 
ignore the repetitive features with different windows and always 
choose the most important time window).

Fig. 4 shows the results from these tests. Although the good-
ness of fit criteria (R2 and MSE) reveal that model-I with 16 most 
important features may achieve better results compared to model-
II, the main trends are still captured by both models. In fact, the 
instability of the predictions with 16 features does not allow for 
a conclusive judgment, and increasing training data may provide a 
fairer comparison.

The IG method is also employed to investigate the feature im-
portance for a model with 16 features (Fig. 4c) indicating that n, 
pma, trp, and d2 are the most significant features. Compared to 
the model employing 47 features (Fig. 3c), these 5 features ex-
hibit a high correlation not only with TTF, but also with each other 
(Fig. 3d). This implies that highly correlated features with TTF are 
essential for a model to capture the run-up trend to failure. Similar 
to the models based on 47 features, the model with 16 different-
unique features also employ moderate to low correlation features, 
such as c, trq, sr, vm, and s1d to improve the prediction.

5.2. Potentials, limitations and future directions

ML methods are considered as data-dependent methods, which 
means their reliability is conditioned on whether the new test data 
is scattered within the distribution of the training data or not. 
For example, we trained the model using AE-derived data from 
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Fig. 4. Prediction results of TTF using ensemble LSTM model with (a) first 16 most important features and (b) 16 different-unique features. (c) Sorted 16 different-unique 
features based on their importance computed using the IG method.
stick-slip experiments on Westerly granite samples that deform by 
brittle deformation, i.e. cracking and frictional sliding. It is likely 
that because of using different sample material, deformation by 
different mechanisms (i.e. brittle creep, granular flow), with dif-
ferent fault structures and/or roughness, the trained network may 
not produce accurate predictions. To address this issue, the next 
step could be to enrich the training dataset with more experimen-
tal data that cover varying shear deformation scenarios (e.g. dif-
ferent confinement, axial loading rate), surface roughness (rough, 
sandpaper-polished, smooth), and/or a variety of rock materials. 
It is also beneficial to overcome the overfitting issue. However, 
collecting such a large dataset of stick-slips is a challenging task, 
regardless of the material involved. Limited training data can be 
offset by data augmentation methods, including Digital Twins (DT) 
and numerical simulations. By having access to a larger dataset, 
more complex networks could be trained, and transfer learning 
may be utilized to fine-tune models with limited experimental 
data, as suggested by recent studies (Jasperson et al., 2021; Wang 
et al., 2021).

Scaling-up of experimental tests to natural earthquakes poses a 
key challenge, not least due to differences in boundary conditions 
and fault heterogeneity. Nevertheless, recent studies of induced 
and natural seismicity showed that ML and template matching 
techniques can significantly shrink the scale gap between labora-
tory and nature (Martínez-Garzón et al., 2023; Park et al., 2020; 
Picozzi and Iaccarino, 2021; Ross et al., 2018).

Obviously, field seismological data cannot provide similar spatio-
temporal resolution down to laboratory scales with detection of 
events down to MW −10. Likewise, spatial, temporal and charac-
teristic structural scales differ enormously between deca-km-long 
faults in the field and cm-scale faults in laboratory samples. How-
ever, significant advances have been made in recent years imple-
menting near-fault dense monitoring networks (Martínez-Garzón 
et al., 2021) and high resolution wide-band monitoring techniques 
(Durand et al., 2022) in nature and in-situ underground experi-
ments. Recent field experiments show that one can monitor frac-
turing in-situ down to the cm-scale, but this requires dedicated 
complex networks composed of different sensors covering a lim-
ited volume of rocks. Nevertheless, targeted and densified instru-
mentation enable development of better seismicity catalogs with 
lower magnitudes of completeness. Lubbers et al. (2018) noted 
that ML models built on catalog-based features may reach a perfor-
mance similar to models built on waveform-based features only for 
a very complete catalog, something currently not possible on Earth 
observations (Ren et al., 2020). Although this statement is gener-
ally correct, it should be noted that recent ML methods showed 
that they can improve earthquake catalogs using field data up to 
tens of times as compared to the conventional methods (Mousavi 
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et al., 2019; Ross et al., 2018). Moreover, ML models based on 
physics-based features derived from seismic catalogs enable a bet-
ter understanding of the physical processes leading to earthquakes 
(Kwiatek et al., 2023). Finally, Mignan (2014) noted that foreshock 
activity tends to contain useful information on preparatory pro-
cesses, leading to large earthquakes if the magnitudes of small 
foreshocks earthquakes are lower by at least 3 units of magnitude 
with respect to the following mainshock. From that perspective, 
laboratory earthquakes with moment magnitudes ranging from 
MW −10 to MW −7 are expected to include precursory informa-
tion, as the moment magnitude of LSE and SSE observed here is 
comparable to an MW −4 event (Dresen et al., 2020). Likewise, 
high-resolution seismic networks, supported with ML/AI based 
techniques for waveform processing, already provide similar res-
olution in dedicated field monitoring experiments (Mousavi and 
Beroza, 2023 and references therein).

6. Conclusions

In this study, we used an ensemble of 47 physics-based fea-
tures, derived from AE catalogs that describe damage and stress 
evolution on the fault surface, during laboratory stick-slip exper-
iments, performed on naturally fractured rough faults in West-
erly granite samples. Data-driven features extracted from the AE 
catalogs were used as input for an ensemble of LSTM networks 
to predict TTF. This study provides the foundations to develop a 
flowchart for real case applications, which could be universally ap-
plied at different scales of the seismic process (from laboratory 
to the field). In this framework, it is important for us to use the 
known features and explain their importance for TTF prediction. 
Thus, we use: 1. physics-based catalog-driven features, which some 
of them like b-value are known for decades, and 2. explainable ML 
algorithms to rank the importance of each feature. Our investiga-
tions revealed that:

(1) The ML algorithms provide improved TTF predictions for 
labquakes on natural fractures. The improved predictions are due 
to the ability of neural networks to map non-linear relationships 
between disparate data features and the target variable, which is 
not easily done with, for example, standard multivariate regression.

(2) Feature importance analysis indicated that the most critical 
seismo-mechanical and statistical features for TTF prediction are 
AE event rate, correlation integral, median spatio-temporal prox-
imity from clustering analysis, and focal mechanism-based features 
such as median focal mechanism variability. Among them, there 
are new features characterizing local stress evolution over the sam-
ple surface using moment tensor inversion and stress tensor inver-
sion data from AEs.

(3) The important features for time to failure (TTF) prediction 
are a combination of high and low correlated features, rather than 
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solely relying on those highly correlated with TTF. In our case, the 
AE rate is identified as the most significant feature. Thus, other 
inter-correlated features with AE rate are deemed less important, 
even if they exhibit a strong correlation with TTF, since they con-
tain similar data as those included in the AE rate features. The 
network utilizes small, yet novel details in other features such as 
correlation integral, proximity, and focal mechanism-based features 
to fill the prediction gap.

(4) Features calculated with medium to large time windows 
are generally ranked as more important than those computed with 
small time windows.

(5) The results emphasize the importance of utilizing features 
from various physical perspectives for predicting TTF, even if they 
are not highly correlated with TTF. This allows for the possibility 
of discovering new important features in the future that may play 
a prominent role in earthquake prediction.
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