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This paper discusses the second assumtion in CAGNIARD’s

(1953) paper concerning the magneto-telluric (MT) determina-

tion of the earth's resistivity. It is that of a homogeneous ,

horizontally-layered conductivity structure. Although there

has been much discussion on the first assumption of a homo-

geneous source field, little has been said concerning the con-

ductivity structure. With the increasing number of profiles or

whole arrays of MT soundings , the need for another method of

Interpretation has been recgnised. The method must be capable

of allowing for a non-homogeneous conductivity structure. A

method of direct inversion of  the field data, as proposed by

SCHMUCKER (1967), is one such method. However, often the struc-

ture can be stipulated as two dimensional and another indirect

approach can be used.

Most of the studies for two dimensional problems have been

concerned with the fault (or  coastline) effect, in which two

quarter spaces of different resistivity form the half space

representing the earth. This is of  course, a very restricted

two dimensional model and a more general solution is sought.

For it polarised along the strike direction, the only field

components are

it = ( Hx ,0,0) and 5 = (0,E ,EZ ) .

Thus it may be treated as a scalar H and the two components

of  £ deduced from it. The boundary conditions to be applied

are the usual ones of continuity of tangential £ and it and

normal It and 5 at any boundary. For it polarised, this implies

that H at z = 0 is constant for all y .  This Dirichlet condi-

tion can be used as the source for this Polarisation.



156

Similarily for £ Polarisation, the only field components

are ,

£ = (E ,0,0) and £ = (0,H ,H ) .x y ’ z

Now £ may be treated as a scalar E and the components of £

deduced from it. The boundary conditions are the same as be-

töre, but the simple z = 0 condition is no longer true. This

complication in the source condition has impeded the proper

solution for £ polarised in two dimensional structures.

It is proposed that a numerical procedure, based on a

transmission line (TL) analogy, be used to calculate the MT

fields. The equation to be solved is

V 2V - k2V = 0 , (1)

where V is a scalar representing the polarised component. In

their general form the TL equations and Maxwell ’s equations

are shown in Fig. 1. Their similarity is more apparent when

they are written in the two dimensional form as in Fig. 2.

This figure also shows the associations that must be made for

the £ and £ polarised cases. The Z and Y are the impedance

and admittance in the TL analogy. These associations are va-

lid for any continuous System.

When the System is discretised, for solution at certain

points in a mesh, the parameters Z and Y must be replaced by

the lumped parameters. The form of these is shown in Fig. 3

along with the unit cell for the mesh. Now it is possible to

build up a network, simly by combining unit cells (all of

which may be different). Hence, any arbitrary cross section

can be produced , however, for convenience in programming, a
network limited to ten vertical and ten horizontal sections,

has been studied.

The network must be solved for the node voltages. This is

done by writing Kirchhoff ’s current law at each node, in terms

of the node voltages. That is , for points like (i,j) in Fig. 3,

the equation is

+(1/Zj+P( vij"vi,j+l)+ Yv ij ■ (2)



For a uniform network after making the associations , equation

(2)  reduces to the finite difference form of (1).

The TL analogy is useful in the study of the source and

boundary conditions that should be applied to the mesh. Along

the sides of the mesh, Dirichlet (using Cagniard values) or

homogeneous Neumann conditions have been used. Ideally, the

mesh should extend to very large distances before either of

these conditions is applied. (In fact the Neumann condition is

never mathematically correct). As the Computer has limited

storage space and the fields are sought only in the region of

the non-homogeneity 9 it is desirable to apply a boundary con-

dition close to the non-homogeneity. The condition must simu-

late the response of a homogeneous line extending to infinity,

where the voltage is that corresponding to a Cagniard field.

Such a condition is the impedance boundary condition of elec-

trical engineers. The characteristic impedance is

7, = / z/y' .c

This condition can be imposed much closer to the non-homoge-

neity than the previous, without seriously distorting the true

field values. More of this will be said in a later section.

Similarily along the bottom edge, a characteristic impe-

dance corresponding to a half-space is used for the boundary

condition.

The source conditions for the two cases are different, as

has already been discussed. For the ß polarised case, the source

condition is just that of a constant voltage (for constant H )

imposed along the edge z = 0. For 2 Polarisation, a source of

constant (and thus , Ex ) at some height in the ionosphere

is required. This must be far enough away from the non-homo-

geneity in the earth, that the field near the source is always

undisturbed. In the TL analogy an air layer with a constant

voltage at the top is placed above the ground to simulate the

source. It is known that, as the conductivity can safely be

assumed to be zero, the field obeys Laplace’s equation in air.

In the TL analogy, if the conductivity is zero. the values of Y
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for the air layer are also zero. Hence, no current flows to

ground in the air layer or there are no sources or sinks and

the voltage is conservative or obeys Laplace’s equation as

desired.

The above conditions fully specify the network problem

and it is now possible to procede to solve the set of equa-

tions of the form (2). Then, the associations can be made to

obtain the MT field components. For a mesh of m x n points,

there is a System of m.n x m.n linear equations to be solved.

In practice, the values of m and n are around 30 or 40, so

that a very large coefficient matrix results. However, the

matrix is sparce and can be inverted by using a matrix ana-

logue (developed by GREENFIELD (1965)) to the well-known alo-

garithm for the solution of tri— diagonal equations.

These methods were tested on the fault problem of d’ERCE-

VILLE and KUNETZ (1962). The numerical results agree exactly,

to Mithin the four figure accuracy of the calculation, with

the analytical results. Both are represented by the solid li-

nes in Fig. 4 . Using the law of similitude, one curve can be

used to represent the whole ränge of y and T values through

the scaled horizontal axis. The discontinuity at y = 0,  the

fault, is ( p 2/P ) or 10 as given by the theory.

This example provides a good study for the influence of

the boundary conditions. The dots on the low resistivity side

of the H polarised curve, represent the deviations in the field

component introduced by the impedance boundary condition. In

all cases, for the periods corresponding to the value of the
horizontal axis, the points are on the boundary only one grid

unit (2  km) from the fault. It is seen that the errors intro-

duced are always small, around 2%, even when the apparent re-

sistivity itself changes by more than one order of magnitude

from the Cagniard (true) value. Hence, the impedance condition

can be applied close to non-homogeneities , for a large ränge

of periods, and still not adversely affect the field values.



The values of the field components can be represented for

all periods by the single curve of figure 4 because the geo-

metry of the cross section is infinite. That is , the dimensions

of the profile can be scaled in terms of the skin depth of one

of the media. For a finite-sized structure, such as the Rhine

graben;, where the size and conductivity values must be the

same for all periods, this simple representation can no lon-

ger be used.

It is suggested, that for a finite-sized structure, the

method of plotting as shown in Fig. 5 be used. This is a con-

tour map of apparent resistivity plotted against the y dis-

tance along the cross section and the period (on a logarith-

mic scale). Now the normal apparent resistivity profile for

any point on the cross section can be obtained by taking the

section through the point parallel to the period axis. Simi-

lar plots for the H polarised phase, the E polarised apparent

resistivity and the E polarised phase can be constructed.

These can all be used together to obtain an Interpretation for

a given MT profile.
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