I. SCHEELKE, Braunschweig

"Bestimmung des Impedanztensors mit Methoden

der statistischen Frequenzanalyse"

Dienstag, den 14.9.1971

Im folgenden soll kurz gezeigt werden, wie man über die statistische Frequenzanalyse die Elemente des zweidimensionalen Impedanztensors erhalten kann. Der Tensor ist bekanntlich definiert durch

> $E_x = Z_{11} H_x + Z_{12} H_y$, $E_{v} = Z_{21} H_{x} + Z_{22} H_{v}$

Dabei sind E_x , E_y , H_x und H_y die Frequenztransformierten, also $E_x(\omega)$, ... der entsprechenden Zeitfunktionen. Alle Größen sind frequenzabhängig und komplex. Die vier unbekannten Tensorelemente lassen sich normalerweise nur bestimmen, wenn man mindestens zwei s ntrievenceitritets unabhängige Messungen vorliegen hat.

Da jede Messung mit irgendwelchen Fehlern behaftet ist, empfiehlt es sich, auf mehrere unabhängige Messungen eine Ausgleichsrechnung anzuwenden. a lam oa . (J)x nabi Verfügt man also über

4 (J)X wobei e, die Meßfehler bedeuten soll, so kann man die Methode der kleinsten Quadrate benutzen. Man bildet die Summe der Fehler-

Benfeysen

quadrate inclt[K)

$$\sum_{i} e_{i} e_{i}^{*} = \sum_{i} (E_{x_{i}}^{-} Z_{11}^{H} + E_{i}^{-} Z_{12}^{H} + E_{i}^{-} Z_{11}^{H} + E_{i}^{-} Z_{12}^{H} + E_{i}^{-$$

(Mit einem Stern sind die konjugiert-komplexen Größen bezeichnet.) Leitet man diese Gleichung nach den beiden konjugiert-komplexen

Tensorkomponenten ab,

$$\frac{\partial}{\partial Z_{11}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}{\partial Z_{12}^{\mathsf{H}}} \left(\begin{array}{c} \Sigma \\ \mathbf{i} \end{array} \right) = 0; \quad \frac{\partial}$$

und setzt die Ableitungen gleich Null, so bekommt man zwei Bestimmungsgleichungen für Z₁₁ und Z₁₂:

$$\sum_{i} E_{x_{i}} H_{x_{i}}^{\mathbf{H}} = Z_{11} \sum_{i} H_{x_{i}} H_{x_{i}}^{\mathbf{H}} + Z_{12} \sum_{j} H_{y_{i}} H_{x_{i}}^{\mathbf{H}}$$

und

$$\Sigma E_{x_{i}}H_{y_{i}}^{\mathbf{H}} = Z_{11} \Sigma H_{x_{i}}H_{y_{i}}^{\mathbf{H}} + Z_{12} \Sigma H_{y_{i}}H_{y_{i}}^{\mathbf{H}}$$

Dies gilt für jede feste Frequenz w (SIMS 1969).

Die hier auftetenden Produktsummen sollen jetzt durch quadratische Spektren und Kreuzspektren ersetzt werden. Geht man davon aus, daß es sich bei den geomagnetischen und geoelektrischen Variationen um statistischeeZeitfunktionen handelt, so lassen sich ihre Frequenztransformierten nur durch quadratische Spektren und Kreuzas i construction at the state of a second state spektren richtig darstellen. ADD COMPLETE

Hat man also eine stochastische Funktion x(t), so muß man zur nächst die Kovarianzfunktion $\phi_{xx}(\tau)$ berechnen, um hieraus durch eine Fouriertransformation das quadratische Spektrum $\Phi_{xx}(\omega)$ bestimmen zu können:

$$x(t) \Rightarrow \phi_{XX}(\tau) \Rightarrow \Phi_{XX}(\omega)$$

wishing and call it is not the solution with Das wahre Spektrum ist nur für unendlich lange Zeitfunktionen erhältlich

Beschränkt man sich auf endliche Registrierlängen

- ∞ < t < ∞ .

 $-T \leq t \leq T$, so treten einige Schwierigkeiten auf.

Zunächst bekommt man für die Kovarianzfunktion nur einen Näherungswert $\phi_{vv}(\tau)$ im obigen Zeitintervall. Auch die Retardierung τ läßt sich nicht mehr beliebig wählen; es muß gelten $\frac{\cos(2\pi i \cdot t)}{\sin(2\pi i \cdot t)} = \frac{\cos(2\pi i \cdot t)}{\sin(2\pi i \cdot t)} = \frac{\cos($

wobei A << T sein sollte, um für die Berechnung der Kovarianzfunktion ein genügend großes Integrationsintervall zu erhalten. Außerdem wird durch das Verhältnis T/A die statistische Sicherheit der spektralen Näherungswerte $\tilde{\Phi}_{xx}$ bestimmt. Denn je größer T/A, desto größer ist die Sicherheit, desto kleiner ist aber auch die Frequenzauflösung. Hier muß man immer einen Kompromiß schließen. and reals ash copr

Um die im angenäherten Spektrum $\tilde{\Phi}_{xx}$ auftretenden Streuungen zu reduzieren, kann man ein Spektralfenster anwenden, so daß man geglättete Spektralwerte $\hat{\Phi}_{xx}$ erhält: -ing ileds) anglogical an calcia giria antian togeta agh

wenn dies die Faltung mit einem Spektralfensten bedeutet (BLACK-MAN und TUKEY 1958).

 $\tilde{\Phi}_{XX} \rightarrow \hat{\Phi}_{XX} \operatorname{mit} \hat{\Phi}_{XX} = g \times \tilde{\Phi}_{XX},$

a good it aid

Die Qualität dieses Näherungswertes in Bezug auf das wahre Spektrum wird durch zwei Gößen charakterisiert, nämlich

den statistischen Fehler $b(\omega) \equiv E[\hat{\phi}(\omega)] - \phi(\omega)$ und die Varianz $\operatorname{var}(\omega) \equiv E[\widehat{\Phi}(\omega) - E[\widehat{\Phi}(\omega)]]^2$.

Beide "Gütezahlen" sollten möglichst klein sein. Ihre Größe hängt ab von der Registrierlänge T bzw. von T/A und von der Art des verwendeten Spektralfensters. Es läßt sich zeigen, daß sich beide Größen vernünftig verhalten, wenn man die Spektralwerte in der angedeuteten Weise ermittelt.

Diese Methode hat jedoch einen Großen Nachteil ökonomischer Art: die Auswertung langer Zeitfunktionen wird sehr aufwendig (z.B. KERTZ 1970). Nun hat in den letzten Jahren die Schnelle Fouriertransformation oder Fast Fourier Transform (FFT) Schlagzeilen gemacht. Nach diesem Verfahren wird in sehr effektiver Weise das Fourierintegral einer Zeitfunktion berechnet:

addit

 $X(\omega) = \int_{-T}^{T} x(t) e^{-i\omega t} dt$ T 18 Multin - Dona fai - La Mala - La Maria Antoine Dial Maria (Trij Für statistische Funktionen ist diese Integraldarstellung jedoch ungeeignet. Man muß deshalb eine Beziehung zwischen $X(\omega)$ und $\Phi_{xx}(\omega)$ herstellen.

In der Literatur findet man dafür häufig folgende Gleichung (z.B. ROBSON 1964):

$$\Phi_{\mathbf{X}\mathbf{X}}(\boldsymbol{\omega}) \stackrel{!}{=} C_{\mathbf{X}\mathbf{X}}(\boldsymbol{\omega}) = \lim_{T \to \infty} \frac{1}{2T} [\mathbf{X}(\boldsymbol{\omega})]^2$$

Für ein weißes Rauschen läßt sich zeigen, daß diese Beziehung nicht richtig ist, denn mit wachsendem T geht die Varianz nicht gegen Null (JENKINS und WATTS 1969). Dies ist in Fig1 veranschaulicht: Die Streuungen um den wahren Wert werden bei der Verdopplung der Integrationslänge nicht kleiner. Die beigefügte Tabelle enthält noch ein paar numerische Beispiele.

Die richtige Beziehung bekommt man mit dem Wiener-Khintchine-Theorem (MIDDLETON 1960): X. A. A.

$$\Phi_{\mathbf{X}\mathbf{X}}(\omega) = C_{\mathbf{X}\mathbf{X}}(\omega) = \lim_{T \to \infty} \frac{1}{2T} E\left[[X(\omega)]^2 \right],$$

wobei die Reihenfolge der Mittelwertbildungen nicht vertauschbar ist. Die Gleichung für den praktischen Näherungswert lautet damit:

$$\tilde{C}_{xx}(\omega) = \frac{1}{2T} \cdot \frac{1}{R} \sum_{p=1}^{R} [X_{p}(\omega)]^{2}$$

130 1100 Deltes Man unterteilt also eine Registrierung der Länge T in R gleichlange Stücke, berechnet für jedes Stück die Fouriertransformierte, bildet die Amplitudenquadrate und dann den Mittelwert. Das Ergebnis ist ein Näherungswert, der demjenigen entspricht, den man durch eine Fouriertransformation der Kovarianzfunktion bekommt, also

$$\tilde{C}_{xx} = \tilde{\Phi}_{xx}$$

de l'été d'alle de la de la · about set nov is

we det elegitetetetetete

Spektrum eines weißen Rauschens

N		50	100	200	400
mean		0.85	1.07	1.00	0.95
variance		0.630	0.777	0.886	0.326
mean square er	ror	0.652	0.782	0.886	0.828
· · · · · · · · ·					L

red . Where Independently lat cloth a

Fig. 1

in additionation and a solid sta

Glättet man C_{xx} noch mit einem Spektralfenster, so bekommt man

 $\hat{c}_{xx} \stackrel{\circ}{=} \hat{\phi}_{xx}$,

d.h. diese beiden Näherungswerte sind hinsichtlich Fehler und Varianz äquivalent. Wendet man das Spektralfenster jedoch bereits auf die Fouriertransformierten an, berechnet man also

$$\vec{\hat{C}}_{xx} = \frac{1}{2T} \cdot \frac{1}{R} \sum_{p=1}^{R} (g \neq X)_{p} (g \neq X^{H})_{p}$$

so ist die Varianz der $\tilde{\tilde{C}}_{xx}$ genau so groß wie die der $\hat{\Phi}_{xx}$. Der Fehler ist aber noch kleiner, da sich durch die Doppelanwendung des Spektralfensters die äquivalente Bandbreite verringert. Ein nach diesem Verfahren berechnetes quadratisches Spektrum zeigt Fig.2. Das mittlere Spektrum weist einen recht glatten Verlauf bei relativ kleinen Fehlern auf.

Durch diese Spektren lassen sich jetzt die Produktsummen, die bei der Berechnung der Tensorkomponenten auftraten, ersetzen. Denn abgesehen von einem konstanten Faktor, besteht der Unterschied lediglich in Filteroperation. Ist aber das Spektrum einigermaßen glatt, so ist die Korrelation zwischen benachbarten Frequenzbändern nur gering. Damit kann man die Tensorkomponenten statt für diskrete Frequenzen ebensogut für schmale Frequenzbänder bestimmen.

Obige Tensorgleichungen lassen sich dann wie folgt schreiben:

 $C_{E_{x}H_{y}} = Z_{11}C_{H_{x}H_{y}} + Z_{12}C_{H_{y}H_{y}}$

 $C_{E_{x}H_{x}} = Z_{11}C_{H_{x}H_{x}} + Z_{12}C_{H_{y}H_{x}}$

Man bekommt zwei weitere Gleichungen für Z₂₁ und Z₂₂, indem man die 2. Tensor-Gleichung in der beschriebenen Weise behandelt. Man hat dann 4 Gleichungen für 4 Unbekannte, so daß man nach den einzelnen Tensorkomponenten auflösen kann.

In Fig.3 ist ein Beispiel gezeigt. Dargestellt sind Mittelwerte für alle 4 Tensorkomponenten mit ihren Fehlern. Der Verlauf der

Fig. 2

Kurven ist ziemlich glatt; auch die Fehler sind teilweise recht klein.

Es ist aber zu beachten, daß sich bei der Berechnung von ρ_s -Kurven die Streuung durch das Quadrieren der Werte erheblich vergrößert. An diesem Beispiel ist eine Anisotropie klar erkennbar: Z_{yx} liegt deutlich über Z_{xy} . Außerdem weisen die Diagonalelemente Z_{xx} und Z_{yy} relativ hohe Werte auf. (Die Indizes x und y entsprechen den bisher verwandten Indizes 1 und 2.)

Man kann jetzt versuchen, den Tensor auf Hauptachsen zu transformieren, indem man eine Koordinatendrehung durchführt. Den zugehörigen optimalen Drehwinkel ϕ_m findet man, indem man

entweder das Minimum von $(|Z'_{11}|^2 + |Z'_{22}|^2)$

oder das Maximum von $(|Z'_{12}|^2 + |Z'_{21}|^2)$

bestimmt (SWIFT 1967).

Tensordrehung: E' = D·E ; H' = D·H ; D = $\begin{array}{c} \cos\phi & \sin\phi \\ -\sin\phi & \cos\phi \end{array}$

E' = Z'H' mit $Z' = DZD^T$.

In Fig. 4 sind die gedrehten Tensorkomponenten(ungedreht: o, gedreht:•) dargestellt. Es ist erkennbar, daß die Hauptdiagonalelemente zum größten Teil erheblich kleiner, aber nicht Null geworden sind.

Das größere der beiden Nebendiagonalelemente hat sich nur geringfügig vergrößert, wogegen sich das andere verkleinert hat, so daß die Anisotropie ausgeprägter geworden ist. Man kann jetzt aus den Nebendiagonalelementen die zugehörigen Werte und Phasen berechnen.

Literatur

BLACKMAN, R.B. und J.W. TUKEY: The measurement of power spectra. Dover, 1959.

- JENKINS, G.M. und D.G. WATTS: Spectral analysis and its applications. Holden-Day, 1969.
- KERTZ, W.: Statistik geophysikalischer Beobachtungsreihen. Vorlesungsscriptum, Inst. f. Geophysik u. Meteorologie, Braunschweig, 1970.
- MIDDLETON, D.: An introduction to statistica communication theory. McGraw-Hill, S. 137 - 159, 1960.
- ROBSON, J.D.: An introduction to random vibration, Elsevier, S. 35, 1964.

SIMS, W.E.: Methods of magnetotelluric analysis. Ph. D. thesis, Univ. of Texas, Austin, 1969.

Miner et al. Construction and the second of the second of the first second state. The second state is the second of the secon

 North C. Sub at 20. Associated and the Market and Market an Associated and Market and