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Mittwoch, den 13.03.1974

Introduction

Practically all branches of  geophysics presently employ

frequency analysis of time-varying phenomena to such an extent

that the development of frequency analysis techniques has it-

self become a research area in geophysics. The value of the

representation of geophysical data in the frequency domain,

stems from the cyclical or resonance properties possessed by

many geophysical phenomena, and from the simplification of

analytical development in this domain.

To allow the application of spectral analysis. to Empirical

data, certain basic assumptions must be made. Suppose that x(t)

is a real, discrete data set with samples equally spaced

throughout some range of the parameter t. In order to obtain

a spectral estimate for the process sampled by x(t), the as-

sumptions shown in Fig.l must be made. The first two assump-

tions are necessary in order that the data sample can be re-

lated to a stochastic process with a spectral representation,

and that this spectrum may be estimated through time averaging.

The validity of  these assumptions is usually qualitatively

judged by the credibility of the results of  the analysis. The

last two assumptions allow the autocorrelation function and

the spectral density function to be considered as a Fourier

Transform Pair, and they assure us that the process has finite

and non-zero power at all frequencies.

1. Conventional Spectral Analysis

Most of  the conventional computational methods for esti-

mating the power spectral density are based on one of two

general approaches:

Cl.) the AUTOCORRELATION METHOD

(2.) the PERIODOGRAM METHOD

With reference to the summary of equations shown in Fig.2,

assume that the finite sample x(t) is sampled at intervals At
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BASIC ASSUMPTIONS FOR SPECTRAL ANALYSIS

1.  ) The set x(t) is a finite subset of some infinite set

y(.t) which constitutes one realization of the weakly

stationary random process Y-f-.

2. ) Y-t is ergodic with respect to the mean and with re-

spect to the autocorrelation.

3.) Y-|- has an absolutely continuous spectral distribution

given by:
rf

S(f) = sCf) df
/ -oo

where s(f) = the spectral density of Y-t

4.) The PALEY-WIENER CRITERION is satisfied:

(■+“
|log s(f)|df < «•

Fig.1: A summary of basic assumptions used in the spectral
analysis of time series.



AUTOCORRELATION APPROACH PERIODOGRAM APPROACH

Autocor re l a t ion  Es t ima te :
Four ie r  Coe f f i c i en t s  :

N- r
I x n x n+r
n= l

R x ( rA t )  = — (1 .1 )r = 0 , 1  , 2  , . . .m
. 1 -2 i r i kn /TA- - 5 to»* • (2 .1 )n = 0 ,1 ,2 ,  . . .N- l

T = NAt .

Raw Power Spec t r a l  Dens i ty  Es t ima te  :
Raw Power Spec t r a l  Dens i ty  Es t ima te  :

+ 2 y R r cos (  y ) + Rm cos (  y )
r= l  c c

} (1 .2 )G x ( f )  = 2At  { R o
= l n l  2 ri - 2irnWn ’ ~

n = 0 ,1 ,2 ,  . . .N /2

where (2 .2 )

Example  o f  Tape r ing  Window: 276Example  o f  Smoo th ing  Window:
D r ( rA t )  =1 (1+  cos—— )r j m

= 0

r = 0 , 1  , 2  , . . .m
(1 .3 ) s in (w  n M/4)

w(Wn , M ) = 3J  { ----------2--------
41T (i)n M/4

u
}

(2 .3 )

Smoothed Power  Spec t r a l  Dens i ty  Es t ima te :
Smoothed  Power Spec t r a l  Dens i ty  Es t ima te :

m- l  f

G x ( f  ) - 2 A t  { R o 0o  + J Dr Rr cos (  ~ ) }
Y*= 1 C

m=+2T/M
Sx (fc>n ) = I W( Um ,M) . I  x ( Un _ m )

m=-2T/M

(1 .4 )
(2 .4 )

Fig. 2 ; Summary of  equations used in conventional spectral analysis.
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giving N sample points over a record length T. Without loss

of  generality, a mean of  zero can be assumed; hence, the

autocorrelation estimate at a displacement lag o f  rAt is

given by equation (1.1). Here, r represents the lag number,

and m is the maximum lag number. The raw estimate o f  the

power spectral density, Gx( f ), defined for a frequency band

( 0 , fc ) ,  is given by the cosine transform of  the autocorrela-

tions as shown by equation (1.2). Here, fc is the Nyquist or

cut-off frequency, and Gx( f )  is evaluated at the discrete

frequencies f=kfc /m.

I t  should be noted that in applying equations (1.1)  and

(1.2), the infinite realization y(t)  has been in effect re-

defined outside of the sample x(t); i.e.

y(t)  = x(t) for 0 <t< T

= 0 otherwise

It is often this unrealistic zero-extension which is a major

source of error in the spectral estimate (1.2).

Furthermore, to increase stability and reduce the variance

o f  the spectral estimate, the autocorrelation estimates are

often tapered by a lag window such a s ,  for example, the Hann

Lag Window defined by equation (1.3). The resulting smoothed

power spectral density estimate i s  given by equation (1.4).

I t  is obvious that the window Dr is  independent of the pro-

perties of  the data; therefore, Gx( f )  tends t o  give not an

estimate o f  the true spectrum, but an estimate o f  a spectrum

biased by the convolution o f  the transform o f  Dr .

In the periodogram approach, the Fourier coefficients’, An ,

for the discrete time series x(t)  can be calculated by use o f

equation (2.1). Here,  the data sample length T is considered

to be the fundamental data period. The periodogram or raw

power spectral density estimate i s  then calculated by relation

( 2 . 2 ). This raw estimate, Ix , is defined over  the frequency

band ( - fC j + fc > a n evaluated at the discrete frequencies

aJ n =27rn/N, where n =0 ,1 ,2 ,.. . N/2  . Again it should b e  noted that

through the use o f  equations ( 2 . 1 )  and (2.2), the infinite

realization y ( t )  has been redefined outside the given sample

x(t);  i.e. y ( t )  is defined to be perfectly periodic in terms
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of x(t). Needless to say, such a periodic extension of the data

can insert periodicities in the spectral estimate which do not

exist in the data.

As before, to ensure that the variance of the periodogram

estimates converge with increasing N, periodograms must be

averaged for different data samples, or equivalently, Ix must

be convolved with a smoothing window in the frequency domain.

As an example, equation (2.3) defines a Parzen Window, which,

when applied to Ix , results in the smoothed power spectral

density, Sx , given by equation (2.4). Again, such a smoothing

operation will bias the spectral estimate.

2. The Maximum Entropy Approach

It is well known that the conventional methods of spectral

estimation result in questionable accuracy whenever periods

analyzed are comparable to data sample lengths. Not only do

the necessary assumptions of either data-length periodicity

or zero-extension of data become suspect, but also the window

functions required to obtain a stable spectral estimate from

the finite data sets introduce spectral shifts and spectral

leakage, as well as smearing resolution. Consequently, when-

ever only limited data are available, or, whenever the station-

arity of  the data is limited to a time interval of the order

of the periods of interest, a different analysis method is

required.

A newer method appropriate to the analysis of short records,

especially those containing narrow spectral peaks, is the •

MAXIMUM ENTROPY METHOD (MEM), first proposed by BURG (1967).

In general terms, it may be described as a data-adaptive or

data-regression method in that it assumes neither a null nor

a periodic extension of the data, but adapts itself to the

sample of the process being analyzed in such a way that the

spectral estimate displays maximum entropy or maximum infor-

mation content for the sample , while still fully agreeing with

the available data.'

The rationale behind this approach can also be shown by

the following argument (McGEE ,1969 ): The finite sample x(t)
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can be considered to be a partial realization of an infinite

number of random processes, of which "zero-extension of x(t)"

and "periodic extension of x(t)" are naturally two possibilities.

Since there is no prior knowledge of the amount of information

contained in x(t), the most reasonable choice for the random

process is that process whose spectral estimate displays as

much information as is fully consistent with the data and no

more.

3. A Measure of Information

To allow an analytical formalation of this maximum-entropy

or maximum-information condition, a measure of information for

a stochastic process is required. An intuitive definition can

be illustrated by the following argument. Consider the occur-

rence of the event:

" Income tax will be increased next year."

This event is almost certain with a probability close to 1 ;

hence, the statement conveys very little information. However,

the following event:

" Income tax will be abolished next year."

is an almost impossible event with a probability of close to 0;

hence, this statement conveys a great deal of information.

Consequently, the following relationship between the probability

o f  an event and its information content is suggested:
INFORMATION «x -log(PROBABILITY)

The same relationship can be deduced from the communication

theory definition for information, which states that the infor-

mation contained in a message is proportional to the time re-

quired to transmit the message. For example, consider the binary

encoding of equiprobable messages as outlined in Table 1. For

two equiprobable messages, aj_ and a2 , only one binary digit is

required to convey a message. For n equiprobable messages,

log2n binary digits per message are required. Since the time

required to transmit such messages is directly proportional to

the number of digits defining the message, it follows that the

information transmitted is proportional to log2n; i.e.

I a log 2n
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BINARY DIGITS
PER MESSAGE

1

2

3

BINARY
ENCODING

0 , 1

00  ,01 ,10 ,11

000,001,.. .Ill

EQUIPROBABLE
MESSAGES

( a  ,a2 )

( a l ,a 2 ,a 3 > a tp

( a l ,a 2 ,• . • a g )

( a  ,a2  ,.. . an ) 0 0. .0 ,00. .1 ,etc. log  2n

Table 1 : Binary encoding o f  equiprobable messages.

But since the probability of  each message is given by P=l/n,

a proportionality similar to the previously intuitively derived

one results; that i s ,

I « -log2<P)

The outlined argument may be generalized for any arbitrary

logarithmic base and for messages with arbitrary probabilities.

When not all events are equally probable, a weighted average

is used to  express the average information per  message. Consider

a source £ emitting n messages {s>[ ,s 2 ,.. • sn > randomly, each

message with its respective probability P ,P 2 ,...Pn . The infor-

mation associated with the message s j  is given by

I j  = -k logPj C3.0)

where the proportionality constant k includes the factor for

the change in the logarithmic base. The average information

emitted by the source E i s  given by

n n
H U )  = Z P4I4 = -k Z Pj l o g p j (3.1)

j=l j=l

The quantity H given by ( 3 . 1 )  i s  defined as  the ENTROPY o f  the

source E. Obviously, the function H can also be associated

with, a stochastic process Yt having the n realizations yi»«-«yn

and the joint probability density p(yi  ,Y2 » • • *Yn •
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The resulting general expression for the entropy of Y-(- is

given by equation (3.2).

r+°°

— 00

/4-co

p(yi,...yn )•log{p(y1 ,...y n )}dyi- ..dyn (3.2)
J —co

H(Y t ) = -k

In the case that Y-t is a process of infinite duration,

the absolute entropy will diverge; hence, the ENTROPY DENSITY

or ENTROPY RATE, defined by equation (3.3), is generally used

as a measure of information.

h (Yt ) = lim «41 
( 3 ' 3 )

n+1

Furthermore, in spectral estimation, the analysis is usually

limited to second-order statistics. This implies that it is not

possible to distinguish a given time series from one character-

ized only by its first- and second-order statistics, namely a

GAUSSIAN PROCESS. It can be shown (SMYLIE et al.,1973) that the

entropy rate for a zero-mean, stationary Gaussian process can

be expressed in terms of the spectral density function or the

autocorrelation functions as follows:

1 1 f + e
h = y log(2fc) + -qr- log{S(f)}dfz c J rc

(3.4)

f+fn f 00 . \

or, h = log J If(k).e-
1 2’r f k 4 t dfH ro J-fc tk =.„ )

where fc = l/2At, the cut-off frequency

CO

S(f) = At £ <J>(k)•e spectral density
k=-°°

<j)(.k) = the autocorrelation function at lag k
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4. The Burg Maximum Entropy Method

With reference to  equation (3.4), the maximum entropy con-

dition is now formulated as  follows. For finite data samples,

only a small number CN) of autocorrelations can be estimated

reliably. However, for an accurate estimate o f  the spectral

density, a much larger number o f  autocorrelations are required.

As mentioned before, the standard methods o f  spectral analysis

assume a zero-extension or  a periodic extension for the auto-

correlation functions, resulting in limited resolution or in

spurious periodicities respectively. A more reasonable choice

of  the unknown autocorrelations is the one which adds no infor-

mation or entropy; i.e., the entropy rate evaluated from the

known data must not be increased by the added autocorrelations,

but remain a s  a maximum entropy estimate.

This condition is expressed analytically by

W )  • 0 > M i N + 1

and leads to the equation

f +fr -2iirfkAte sYf-j---- df = 0 , |k| > N+1 ( 4 . 1 )

“ c

Naturally, a secondary condition is that the spectral density

evaluated from this extended set of  autocorrelations must be

consistent with the known autocorrelations.

BURG C1967) has shown that the spectral density which gives

an entropy rate that is stationary with respect to the unknown

autocorrelations and which is also consistent with the N known

autocorrelations is given by

P N + 1 _________ _

I -iZKfjit
j=l

(4.2)SCf) = ----

2fc
2

the N+1 normal equations
r s
P N+1

0

where ?N+1 an< Yj satisfy

4>C—1 )  ••• (j>C-N)

cj>CO) 4)C1-N)

14>C0)

4» C l ) Y1
( 4 . 3 )

4>(N-1)-«’ <j>(0) 0<t>(N) N
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From Wiener filter theory, this system of N+l equations

can be recognized as the system of normal equations generating

the (N+l)-point optimum PREDICTION-ERROR FILTER, given here by

Correspondingly, PN+1 is the power of the error series produced

by the convolution of F with the data series:

N
P N+1 = 1 Yk <l>C-k)

k = 0

From equation (4.2), it can be seen that the determination of

the maximum entropy spectral density has been reduced to the

calculation of the prediction-error filter and the correspond-

ing error power; that is, the solution of system (4.3).

5. The Burg Maximum Entropy Algorithm

BURG (1968) has also demonstrated a recursive algorithm

for solving the prediction-error system, an outline of which

is given below.

( i )  For N=0, the trivial case of the one-point filter, the

normal system of equations reduces to equation (5.1), where

the estimate for the zero-lag autocorrelation is given by the

usual summation of squares.

4>(0) = Pl (5.1)

M
where <j>(0) = x ?

3=1

(ii)  For N=1 , the two-point filter, the normal system reduces

to equation (5.2).

<j>(0) <H-1) 1 P2

(j)(l) <f>(0) Ya i
= 0 ( 5 , 2 )

Note that the second subscript for y is used to show the number

of the recursion. The Levinson Algorithm (WIGGINS and ROBINSON,

1965), which generates the (K+l)-point prediction-error filter

from the K-point filter, is then applied to equation (5.2)
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which becomes

4(0) 4(-l) 1 0 P 1 A P 2

4(1) 4(0) 0 + Y 1 1 1
-

kj + Y 1 1 ■Pl = 0 (5.3)

p 2 = P 1 + Y11A 1where

A1 = -Y11P 1

o f  the Levinson Algorithm ensures that theThe application

( K+l  )-estimate is consistent with the K-estimate, and that

the correlation matrix remains non-negative definite. To solve

(5.3), the coefficient y i is estimated by minimizing the mean

output power o f  the two-point filter with respect to y . The

mean output power is determined by running the filter over the

data in both a forward and a

determined from the equation

i.e.  , y n isbackward direction;

'M-l

I <Xj+y 1:1xj+ 1 )3 y ll [j=l

M-l 2

I (xj+ i+YliXj)
j=l

3 (5.4)0

is then used in (5.3)

1 and the new error power P2  5 which

to evaluateThe resulting value o f

the autocorrelation at lag

yields the expressions

4(1) = -Y  1 1 <t>(0)

l l  2 ’p lP2 =

, the normal equations, the three-point filter

4 ( 0 ) 4(-l) 4 ( - 2 ) 1

4 ( 1 ) 4 ( 0 ) 4(-i) Y12

4 ( 2 ) 4 ( 1 ) 4 ( 0 ) Y 2 2

(iii)  For

are given

N = 2

by

p 3
0

0

(5.5)

previous estimates and

the

ensure consistency with theAgain, t o

to maintain a non-negative definite correlation matrix,

Levinson Algorithm i s applied and ( 5 . 5 ) becomes

•

1

Y 1 1 + Y 22

0

Y 1 1
=

P 2

0 + Y 22

C
M

<
 

O -

c
o

C
U
 
0

0 1 A 2 l p 2 0

4 ( 0 ) 4(-l) 4(-2).

4 ( 1 ) 4 ( 0 ) 4(-l)

4 ( 2 ) 4 ( 1 ) 4 ( 0 )

( 5 . 6 )
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where P3 = P 2 + Y 2 2
A 2

A 2 = ~Y 22P 2

Y12 " Y 11 + Y 22Y 11

As before , the new mean output power of  the error series for

the filter ( 1  , Y2 2 determined by forward and

backward convolution with the data, and a value for Y 2 2 mini-

mizing the error power is calculated. Using equation (5.6),

(f)(2) and P3 can then be evaluated as follows:

<j)(2) = -Y 1 2 <|)(1) - Y 2 2<l>(0)

P3 = ( 1  - Y 2 2
2 )P2

This procedure generalizes, and after N+l recursions yields

the (N+l)-point prediction-error filter, the error power, and

the corresponding autocorrelation matrix, ALL BASED ON ONLY

THE AVAILABLE DATA.

6. The Maximum Entropy Prediction Method (MEP)

From equation (4.2), it is obvious that a spectral density

estimate can be evaluated directly from the transform of the

prediction-error filter. However, such an estimate will reveal

no phase information. To provide both amplitude and phase in-

formation, a simple extension of the maximum entropy method

suggested by ULRYCH et al. (1973) can be utilized.

From the prediction-error filter T = {1  ,y1 ,y 2 ,...y } ,  a

unit-distance prediction filter A= ( a1 ,a2 ,...aN > can be easily

determined since otj - -y for j=l,2,...N. The N-point prediction

filter A can then be convolved with the last N points of the

original M-point data series x-|- in order to obtain xpj+ . Further-

more  , Ulrych has shown that the prediction filter for prediction

distance L may be derived from the prediction filter for pre-

diction distance L-l. This means that the point X]4+L can be

obtained by L successive applications of the unit-distance pre-

diction filter A ,  and a stepwise-extended series, , as shown

in the expression (6.1) can be generated.
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N N  N

{x1 ,x2 ,...xM , 2 
X M + 1-S

as ’  X M+2-sa s ’' ’' £ x M+L-sas (6.1)
S=1  S = 1 S=1

where M = original data length

N = prediction filter length

L = extension length

From (6.1) it can be seen that each successive prediction

incorporates the previously predicted points. Furthermore,

the original series x-j- is usually predicted in a forward and

a backward direction, resulting in an extended series length

of  M+2L. By applying conventional Fourier transform techniques

to this extended series , the excellent resolution of the maxi-

mum entropy method is almost fully retained, and relative

phase information can be recovered through the calculation of

standard cross-spectra or cross-correlations.

7 . Examples of Application

(i)  Comparison of Techniques using Synthetic Data

Fig. 3 shows a comparison of spectral estimates for a 48-

point sample of synthetic data having a 10% white noise level.

The input signal contains three distinct periods which are

given in terms of the sample length T ,  and which are such that

the sample T does not contain an integral number of cycles.

Furthermore, the relative phases are arbitrary , and hence the

sample does not conveniently start and end at zero.

The periodic extension analysis yields three significant

harmonics whose relative amplitudes and phases are inexact .

since the input frequencies are not equivalent to the fixed

sample harmonics of k/T. The zero-extension or transient

analysis yields a smoothed amplitude spectrum which does not

resolve the two higher frequencies. The Maximum Entropy Pre-

diction (MEP) spectral estimate resolves all three components

with minimal frequency shifts and reasonable relative phases

and amplitudes. (The MEP spectral estimate illustrated in Fig.3

was generated using a 24-point prediction-error filter, an

extension length of  four in a forward and backward direction,

and a subsequent periodogram of  the extended series by means

of a Fast Fourier Transform. )
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Fig. 3: A comparison of amplitude and phase recovery for a
synthetic data sample using conventional spectral estimates
and the maximum entropy prediction method.
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(ii) Application to SQ Data

Fig.4 shows averaged SQ data for the D and Z components

measured at Fürstenfeldbruck. The time series consist of 24

hourly means which have been averaged over a group of five

quiet days from four different months in 1965. Also illustrated

are the corresponding MEP spectral estimates obtained by the

generation of a 12-point prediction-error filter and by using

a four-day prediction length.

The quantitative results of this analysis are shown in

Table 2 , where the Z/D ratios and relative phases obtained

from the MEP analysis are compared to the harmonic analysis

of the same data carried out by Dr. Schmucker. Since the

periods of repetition assumed by harmonic analysis and the

frequency content for a 'sinle-day wavelet' differ, the

different periods for the power peaks for the two analyses

are to be expected. Nonetheless , the Z/D ratios and phases

are comparable.

HARMONIC ANALYSIS MEP ANALYSIS

Period
(hrs.)

Z/D Ampl» Z/D Phase
Cdeg.)

Period
(hrs.)

Z/D Ampl. Z/D Phase
(deg.)

24.0 0.41 51 19.64 0.52 55

12.0 0.39 54 9.39 0.41 59

8.0 0.39 48 6.17 0.48 69

6.0 0.46 52

Table 2 : Comparison of the Z/D relationships for SQ data at
Fürstenfeldbruck using harmonic analysis and MEP analysis.

It should be pointed out that this sample analysis pf

SQ data using the MEP method was simply carried out for interest's

sake, and perhaps to show that reasonable results are obtained.

Because of  the A PRIORI knowledge of  the periodicity of SQ data,

harmonic analysis is usually the better approach.
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measured on quiet days at Fürstenfeldbruck.
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(iii) Analysis of Pulsations

A more fruitful area of MEP analysis application is

probably in the study of pulsations. To illustrate that ample

information can be extracted from a single pulsation event, a

three-minute sample »recorded simultaneously at six stations

between Göttingen and Wingst (see Fig. 5)  by STEVELING (1973),

was analyzed using the MEP method. For each 96-point time

series, a 40-point prediction-error filter was generated, and

the corresponding prediction filter was used to extend the

time series by a factor of two in a forward and a backward

direction. Fig.6 shows an example of the resulting highly-

resolved periodograms of the optimum extended series for H,  D ,

and Z at the station LIE. The peak power is seen to lie in a

period band from 4-8. to 32. seconds, and Fig.7 illustrates the

relative spectral amplitudes in this band for all components

at the six stations. Each curve has been normalized with re-

spect to its own maximum, and the scale factors shown give the

relative magnitude with respect to GT for each component. The

bracketed factors for GT give the H/Z and D/Z amplitude ratios

at GT.

In brief, the following general observations can be made:

1. ) Two distinct periods are resolved in the H component at all

stations: 43.sec and 35.sec .

2. ) The H scale factors clearly show a decrease in the amplitudes

of H from north to south.

3. ) The amplitude ratio of the 43sec peak divided by the 35sec

peak is approximately three times larger at WN than at the other

stations.

4. ) At the four interior stations, the strong similarity of H

and Z suggests possible induction. For example, at LIE:

(Z/H)k „ : |Z/H| = 0.167 , argCZ/H) = 192°

(Z/HU : |Z/H| = 0.177 , arg(Z/H) = 183°
u J S cC

These values compare well with the average values of 0.153 and

178° obtained by Steveling for the period band 31 to 51 sec in

his transfer function analyses.

5.) Although the spectral distribution pattern for the D com-

ponents is unclear, its character is quite obviously different
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logarithm of the approximate relative power.
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Fie.7: Relative MEP spectral amplitudes for the period
band U8sec to 32sec for STEVELING's (1973) event No..
690717. Each curve has been normalized by its own maximum
and the scale factors shown give the amplitude ratios
with respect to .GT for each component. The bracketed
factors for GT give the H/Z and D/Z amplitude ratios at GT.
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from the H components. ( It should be added that after this

analysis had been carried out, it was learned that there had

been instrumental difficulties with the D component at LIE.

The altered appearance of the D spectral estimate at this site

may therefore have been caused by the recording system.)

Summarily, it can be seen that the MEP-analysis of a single

pulsation event reveals significant information, much of which

could not be clearly extracted by conventional spectral analysis

of  such limited data samples.

(iv)  Evaluation of Transfer Functions from Limited Data

It is often desired to establish the amplitude and phase

relationships between time series based on data samples which

are so limited as to contain not even a complete cycle of a

disturbance. A possible example is the case of variational data

in the polar-jet or equatorial-jet regions, where the station-

arity of source fields is open to question. Fig.8 illustrates

three synthetic series, where the series sj  and S3 have been

generated from sp by simple filter operations altering the phase

and the amplitude of the incomplete sinusoid of sp. A 5% noise

level was added to all series. The series are sampled with UO

points over the interval T which contains 0.55 cycles of a sine

function. The MEP spectral estimates for these series were gen-

erated using a 20-point filter and an extension factor of four.

Although it is possible to compare the absolute MEP phase

and amplitude estimates directly to the synthetic inputs , a

more realistic approach was taken in that the MEP results for

S2 and S3 were compared to the MEP results for Sp, as would be

done in the evaluation of transfer functions. Table 3 summarizes

the results of this test, and it can be seen that the filter

operations can indeed be recovered from such limited samples.

( Here it must be added that the absolute zero-level for the

data is of paramount importance, since a change in the reference

level for such short segments will cause significant frequency

shifts.)
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Fjg • 8 • Truncated sinusoidal
signals with 5% white noise.
S2 and S3 are generated from
Sj_, and all series are sampled
only over the interval T.

APPLIED FILTER RECOVERED FILTER
OPERATION OPERATION

Amplitude
Factor

Phase
Change

Amplitude
Factor

Phase
Change

s l: 1.00 0.0° 1.00 0.0°

s 2 :
1.00 -150.0° 0.96 •149.7°

s 3: 1.99 30.0° 1.91 32. 5 °

Table 3: Recovery of filter operations using MEP
spectral estimates of  extremely limited samples
of synthetic data.
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( v )  Time-Gate Spectral Analysis

The short sample lengths allowed by the maximum entropy

method make this technique well suited to the analysis of

piecewise-stationary processes. To demonstrate the resolution

of temporal changes in the spectral estimates of pulsations,

a 12-minute Pc event, recorded at ALLoluokta and ARJeplog in

northern Scandinavia, was subdivided into four consecutive

3-minute events. These shorter events of 60 points each were

then individually analyzed using 2U-point filters and extension

factors of two.

To illustrate again the resolution capabilities of the

MEP method, Fig.9 shows the third and fourth 3-minute sections

for all components as recorded at ALL,along with the corres-

ponding conventional autocorrelation-transform spectral density

estimates and the MEP estimates. The time dependence of the

spectral estimates at both stations is clearly indicated in

Fig.10. All three components show the arrival of a longer

period pulsation which dominates during the 13 interval. Fur-

thermore, the similarity of the ti spectra at ARJ to the t2

spectra at ALL reveals a later arrival of this longer period

disturbance at ALL. Needless to say, these detailed, time-

dependent spectral characteristics could not be resolved by

conventional spectral analysis.

Summary

The basic assumptions, formulations, and limitations for

conventional spectral analysis have been summarized, whereas

the formulations of the Burg Maximum Entropy Method and the

Ulrych Maximum Entropy Prediction Method for spectral estimation

have been outlined in greater detail. The examples of applica-

tion of these newer, data-adapt ive methods to geomagnetic

variational data show these methods to be extremely effective

in the analysis of short data samples and in the analysis of

piecewise-stationary magnetic disturbances.
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Fig.9 : Two consecutive 3-minute record sections for
a Pc3 disturbance at Alloluokta, Scandinavia. The
corresponding 'zero-extension' spectral estimates
(dashed lines) and the MEP spectral estimates are
also shown. ( The data is courtesy of M. Palandt ,
Göttingen.)
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EVENT 710619

Fj-g » 10: MEP spectral estimates of four consecutive 3-minute
record sections at Alloluokta and Arjeplog for a Pc3 event.
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