U. SCHMUCKER, Göttingen

"Direkte und iterative Verfahren zur Behandlung 2-dimensionaler Leitfähigkeitsmodelle"

Mittwoch, den 13.03.1974

1. Aufgabenstellung

Modellrechnungen zur erdmagnetischen Tiefensondierung sind selbst bei der Vorgabe sehr einfacher Leitfähigkeitsstrukturen aufwendig in Rechenzeit und Speicherbedarf. Zu ihrer rationellen Gestaltung sollen in dem folgenden Beitrag verschiedene Methoden dargestellt und miteinander verglichen werden, die eine numerische Lösung der elektromagnetischen Diffusionsgleichung eines harmonisch oszillierenden Feldes in einem lateral-inhomogenen Substratum ermöglichen.

Den Modellrechnungen liegen folgende Annahmen zugrunde; Gegeben sei ein kartesisches Koordinatensystem (x,y,z), z positiv nach unten. Das leitfähige Substratum erfülle den unteren Halbraum z > 0; es sei in homogene Bereiche unterschiedlicher Leitfähigkeit unterteilt. Die räumliche Struktur des induzierenden Feldes, dessen Quellen im oberen Halbraum z < 0 liegen, sei in der z = 0 Ebene vorgegeben, und es gilt, die Feldverteilung des Gesamtfeldes im unteren Halbraum zu bestimmen. An Bereichgrenzen und an der Oberfläche des Substratums sind dabei Stetigkeits- und Randbedingungen zu erfüllen.

2. Ausgangsgleichungen

Das Leitfähigkeitsmodell sei 2-dimensional,

 $\sigma(x,z) = \sigma_n(z) + \sigma_a(x,z),$

laterale Leitfähigkeitsunterschiede seien auf einen Streifen 0 < z < d, |x| < L in der Vertikalebene beschränkt. Außerhalb der genannten Grenzen verschwindet σ_{a} oder wird zumindest wie σ_n eine reine Funktion der Tiefe. Die gesuchte Feldkomponente ist E_x bei E-Polarisation und H_x bei H-Polarisation. Sie sei im folgenden allgemein mit

$F(x,z) = F_n(x,z) + F_a(x,z)$

bezeichnet. Der zu σ_n gehörige Normalanteil F_n von F wird im unteren Halbraum als bekannt vorausgesetzt. Ist das äußere induzierende Feld auf der Oberfläche des Substratums homogen – bei H-Polarisation eine notwendige Voraussetzung – so ist F_n eine reine Funktion der Tiefe. Bei E-Polarisation sind auch in x-Richtung inhomogene induzierende Felder zugelassen.

Die Diffusionsgleichung des anomalen Anteils,

$$\nabla^2 F_a = i \omega \mu_o (\sigma_a F_n + \sigma F_a), \qquad (1)$$

wird durch eine Differenzengleichung für F_a an den Gitterpunkten eines rechtwinkligen Netzes ersetzt. Zeilenindex ist m = 1, 2, ... M, Spaltenindex n = 1, 2, ... N. Die Randzeilen m = 1 und m = M sollen mit der oberen (z = 0) und unteren (z = d) Begrenzung der Leitfähigkeitsanomalie zusammenfallen, die Randspalten n = 1 und n = N seien jedoch in einiger Entfernung außerhalb der seitlichen Begrenzungen $x = \pm L$ gelegen.

Ist f_{mn} der gesuchte Wert von F_a am Gitterpunkt P_{mn} , so hat die Differenzengleichung für m = 2,3, ... M-1 die allgemeine Form

$$a_{mn} f_{m} n-1 + b_{mn} f_{mn} + c_{mn} f_{m} n+1$$

 $+ b_{mn}^{+} f_{m+1 n} + b_{mn}^{-} f_{m-1 n} = d_{mn}$, (2)

Für die Randzeilen ergeben sich zusätzliche Bedingungen für das anomale Feld, die sein Verschwinden für $z \rightarrow \pm \infty$ bewirken (SCHMUCKER, 1971). Sie schaffen eine lineare Abhängigkeit zwischen <u>allen</u> Funktionswerten F_a auf der betreffenden Randzeile, so daß für m = 1 die Produktsummen

 $\sum_{k=2}^{n-1} p_{nk} f_{1n-k} + \sum_{k=2}^{N-1} q_{nk} f_{1n+k}$

(3)

auf der rechten Seite von (2) zu ergänzen sind. Die Koeffizienten der entsprechenden Erweiterung auf der unteren Randzeile seien mit p_{nk}^+ und q_{nk}^+ bezeichnet. Sie stellen auf beiden Randzeilen eine mit wachsendem k schnell abklingende Gewichtsfunktion der entfernteren Zeilennachbarn dar.

Es sei F der gesuchte Lösungsvektor, der die Funktionswerte f_{mn} nach Zeilen geordnet enthält, D ein in entsprechender Weise gebildeter Vektor der rechten Seiten d_{mn}, B die zugehörige Matrix der Koeffizienten amn, bmn usw.. Das zu lösende Gleichungssystem lautet dann in Matrixschreibweise

Seine Lösung $F = B^{-1} D$ drückt das anomale Feld durch das bekannte Normalfeld in einer vorgegebenen Leitfähigkeitsverteilung aus. Dabei ist in D die Leitfähigkeitsanomalie og und in der Hauptdiagonale von B die Gesamtleitfähigkeit ($\sigma_n + \sigma_a$) enthalten.

B ist eine mit vielen Nullen besetzte guadratische Matrix von M . N Zeilen und Spalten. Die Anordnung der von Null verschiedenen Elemente ist dem folgenden Schema zu entnehmen:

m 1

3 M

2

Die Kehrmatrix B⁻¹, deren Berechnung (MN)² Speicherplätze erfordern würde, ist gleichmäßig besetzt, ihre Elemente dürften aber in der Umgebung der Hauptdiagonale am größten sein, d.h. das anomale Feld an einem Gitterpunkt wird von dem Produkt $F_n \sigma_a$ in einer gewissen Umgebung dieses Punktes abhängen, deren Abmessungen durch die örtliche Skintiefe bestimmt wird.

3. Direkte Berechnung von Zeilenvektoren

Aus den Funktionswerten f_{mn} einer Zeile wird der Zeilenvektor

$$\mathbf{F}_{m} = \begin{pmatrix} \mathbf{f}_{m1} \\ \mathbf{f}_{mN} \end{pmatrix}$$

gebildet, aus den rechten Seiten ein entsprechender Vektor D_m, aus den Koeffizienten der Nachbarpunkte die (N·N) Matrizen

$$B_{m} = \begin{pmatrix} b_{m1} & c_{m1} \\ a_{m2} & b_{m2} & c_{m2} \\ \ddots & \ddots & \ddots \\ a_{mN} & b_{mN} \end{pmatrix}, \qquad B_{m}^{\pm} = \begin{pmatrix} b_{m1}^{\pm} \\ \ddots \\ b_{m1}^{\pm} \\ \ddots \\ b_{mN}^{\pm} \end{pmatrix}.$$

Wegen der zusätzlichen Koeffizienten p_{nk}^{\pm} , q_{nk}^{\pm} auf den Randzeilen sind B₁ und B_M <u>voll</u> besetzte Matrizen.

Für die gesuchten Zeilenvektoren F_m ergibt sich das Gleichungs-system

$$B_1F_1 + B_1F_2 = D_1$$

 $B_{m}^{-}F_{m-1} + B_{m}F_{m} + B_{m}^{+}F_{m+1} = D_{m}$

 $B_M^{-}F_{M-1} + B_M^{-}F_M = D_{M}$.

C51

Seine Koeffizienten, die selbst wieder Matrizen sind, bilden eine tridiagonale Matrix, deren Dreieckzerlegung im Anhang gezeigt wird. Bei der Lösung ist die Berechnung und fortlaufende Speicherung der Kehrmatrizen B_m^{-1} erforderlich, der Speicherbedarf beträgt MN^2 .

4. Iterative Berechnung von Zeilenvektoren

Man kann (5) auch nach dem Gauß-Seidel-Verfahren iterativ in der folgenden Weise approximativ lösen: Ist F'_m eine bekannte Näherung des Zeilenvektors F_m , so ist

$$F_{m}^{"} = B_{m}^{-1}(D_{m} - B_{m}^{+}F_{m+1}^{"} - B_{m}^{-}F_{m-1}^{"}), \qquad (6)$$

eine verbesserte Näherung, wenn man die Berechnung der Verbesserungen in der oberen Randspalte beginnt. Gl.(6) wird zeilenweise gelöst, wobei sich beim mehrfachen Durchlaufen der Zeilen 1 bis M immer neue rechte Seiten mit den verbesserten Vektoren der Nachbarzeilen ergeben. Im Unterschied zur Lösung in Abschnitt 3 ist eine Speicherung der gleichbleibenden Kehrmatrizen B_m^{-1} nicht notwendig, so daß sich der Speicherbedarf auf (M·N + N²), d.h. auf die Zahl der Gitterplätze zuzüglich der Zahl der Elemente von B_m reduziert.

5. Iteratiye Lösung über Spaltenvektoren

Aus den Funktionswerten einer Spalte werde der Spaltenyektor

$$r_n = \begin{pmatrix} f_{1n} \\ i \\ f_{Mn} \end{pmatrix}$$

gebildet, aus den rechten Seiten d_{mn} ein entsprechender Vektor D, aus den Koeffizienten der Nachbarpunkte die (M·M) Matrizen

- 433 -

- 434 -

Aus den Koeffizienten der entfernteren Nachbarn auf den Randzeilen ergeben sich die nur in den Eckpunkten besetzten Diagonalmatrizen

$$P_{nk} = \begin{pmatrix} \bar{P}_{nk} \\ \circ \\ p_{nk}^{\dagger} \end{pmatrix} \qquad \qquad Q_{nk} = \begin{pmatrix} \bar{q}_{nk} \\ \circ \\ q_{nk} \end{pmatrix}$$

Die Bestimmung der Spaltenvektoren aus den resultierenden Gleichungen

 $\sum_{2}^{n-1} F_{nk} + A_{n} F_{n-1} + B_{n} F_{n} + C_{n} F_{n+1} + \sum_{2}^{N-1} Q_{nk} F_{n+k} = D_{n}$ (7)

für n = 1,2, ... N erfolgt am besten iterativ, da die Elemente der Matrizen P und Q mit wachsendem k gegen Null streben. Beschränkt man die direkte Lösung zunächst auf die unmittelbaren Nachbarspalten, so erhält man in

 $A_{n} F_{n-1}'' + B_{n} F_{n}'' + C_{n} F_{n+1}'' = D_{n} - \sum_{2}^{n-1} P_{nk} F_{n-k}' - \sum_{2}^{N-1} Q_{nk} F_{n+k}'$ (8)

ein Gleichungssystem für die verbesserten Lösungen F_n , dessen Koeffizienten wiederum eine einfach zu zerlegende tridiagonale Matrix bilden. Wichtig ist, daß die zur Lösung benötigten Kehrmatrizen B_n^{-1} nur <u>einmal</u> berechnet zu werden brauchen (s. Anhang). Hierzu werden NM² Speicherplätze benötigt.

Die Zahl der notwendigen Iterationen läßt sich verringern, wenn man die übernächsten Nachbarspalten in die direkte Lösung mit einbezieht, d.h. wenn man die verbesserten Näherungen aus

$$P_{n2} F_{n-2}'' + A_n F_{n-1}'' + B_n F_n'' + C_n F_{n+1}'' + Q_{n2} F_{n+2}'' = D_n - \sum_{3}^{n-1} P_{nk} F_{n-k}' - \sum_{3}^{N-1} Q_{nk} F_{n-k}'$$

(9)

bestimmt. Da die Koeffizienten P_{n2} und Q_{n2} der zusätzlichen Spalten nur in den Ecken besetzte Diagonalmatrizen darstellen, erhöht sich der Rechenaufwand und Speicherbedarf gegenüber der Lösung nach Gl.(8) nur unwesentlich (s. Anhang).

6. Iterative Berechnung der Elemente

Das Gauß-Seidel-Verfahren kann auch direkt auf die Ausgangsgleichung (4) angewandt werden. Es sei f'_{mn} eine bekannte Näherung der Elemente f_{mn} des Lösungsvektors F. Erfolgt die Berechnung verbesserter Näherungen f''_{mn} innerhalb einer Zeile von links nach rechts fortschreitend von der oberen zur unteren Randzeile, so ist

> $f_{mn}'' = (d_{mn} - a_{mn} f_{mn-1}'' - c_{mn} f_{mn+1}''$ (10) - b⁻ f_{m-1n}'' - b⁺ f_{m+1n}'/b_{mn}.

Auf den Randzeilen kommen auf der rechten Seite die Produktsummen der Gl.(3) hinzu. Der Speicherbedarf liegt in der Größenordnung der Zahl der Gitterplätze M.N.

7. Schlußbetrachtung

Rein iterative Verfahren nach Abschnitt 6, wie sie insbesondere von JONES (JONES and PRICE, 1970) entwickelt worden sind, zeichnen sich durch einen geringen Speicherbedarf aus. Dieser Vorteil wird aufgewogen durch die schlechte Konvergenz der Näherungen, insbesondere bei großen Leitfähigkeitsunterschieden innerhalb des gewählten Modells. Addiert man nämlich in der Matrix B, Gl.(4), die Elemente einer Zeile außerhalb der Hauptdiagonale und zieht man diese Summe von dem Element in der Hauptdiagonale ab, so ergibt sich bei einem Gitterpunktabstand λ als Differenz iwµ $\sigma\lambda^2$. Diese Differenz, deren Betrag für die Konvergenz des Verfahrens ausschlaggebend ist, verschwindet also in schlecht-leitenden Bereichen, wenn der Gitterabstand klein gegenüber der örtlichen Skintiefe wird. Zur Erhaltung der Konvergenz müßte also der Gitterabstand der jeweiligen Leitfähigkeit angepaßt werden.

Direkte Lösungsverfahren (Abschnitt 3), wie sie insbesondere von SWIFT (1967) und WRIGHT (1969) verwandt worden sind, kennen keine Konvergenzschwierigkeiten, ihr großer Speicherbedarf (N²M) ist jedoch entschieden ein Nachteil. Gleiches gilt für die direkte Lösung über Spaltvektoren, deren Speicherbedarf bei NM² liegt, wenn keine Randbedingungen für die obere und untere Begrenzung benutzt werden, wenn also ein etwa quadratisches Gitternetz verwandt werden muß.

Werden jedoch Randbedingungen gemäß Gl.(3) eingeführt, so kann man mit relativ wenigen Zeilen M << N auskommen. Die Lösung über Spaltenvektoren erfordert dann einen vergleichsweise geringen Speicherbedarf, muß aber nunmehr iterativ erfolgen. Die Näherungen konvergieren erfahrungsgemäß besonders schnell, wenn nach Gl.(9) die übernächsten Nachbarspalten mit in die direkte Lösung einbezogen werden. Eine verläßliche, wenn auch unter ungünstigen Bedingungen langsame Konvergenz erhält man bei der iterativen Berechnung von Zeilenvektoren (Abschnitt 4) und bei der iterativen Berechnung von Spaltenvektoren unter Ausschluß der übernächsten Nachbarspalten (Abschnitt 5, Gl.8).

Nach den bisherigen Erfahrungen sind die beiden zuletzt genannten Verfahren gleichwertig. Ihre Anwendung empfiehlt sich dann, wenn ein Modell ohne große Leitfähigkeitskontraste vorliegt. Am Beispiel eines einfachen Modells, das in Fig.4 meines Beitrages zum Rothenberge-Protokoll gezeigt wird, sollen Speicherbedarf und Rechenzeit auf der UNIVAC-Anlage in Göttingen für die drei zuletzt genannten Rechenverfahren verglichen werden. Das Modell umfaßt 3 Zeilen und 20 Spalten, der Leitfähigkeitskontrast beträgt 1:100, die Maschenweite im Verhältnis zur Skintiefe im gut-leitenden Bereich 1:2, im schlecht-leitenden Bereich 1:20. Zur Kennzeichnung der Güte der Näherung ist die größte Differenz δ_{max} angegeben, die sich zwischen Berechnungen von H_{av}/H_n aus $\partial E_{ax}/\partial z$ und K $\approx (\partial E_{ax}/\partial y)$ auf den Rand-zeilen nach 15 Iterationen ergibt. Die Maximalamplitude von H_{av} beträgt 0.5 • H_{n} .

	Speicherbedarf (N=20, M=3)	Rechenzeit (ms) _* .) pro Iteration	δ _{max}
Zeilenvektor (Gl.6)	60+440 ^{жн.)}	210(660)	0.03
Spaltenvektor mit Nachbar- spalten (G1.8)	60+180	150(260)	0.02
Spaltenvektor einschließl. übernächster Nachbarspalten	re Kosfiliteon as Kalisten as Salas as asiris Matrisen	ch GrafedStaterlesung d chen Algerezmilt du 16 na von Blastic selbat	(12 y - x 1280AD mei 1976-124
(G1.9)	60+180+120	260(560)	<0.001

x.) In Klammern Rechenzeit der 1. Iteration

wx.) Die Hauptdiagonale und 10 Nebendiagonalen der Matrizen B₁ und B_M sind nach ihrer Dreieckszerlegung zusätzlich gespeichert worden.

Literatur

- JONES, F.W. and PRICE, A.T.: The perturbation of alternating geomagnetic fields by conductivity anomalies. Geophys. J. 20, 317-334, 1970.
- SCHMUCKER, U.: Neue Rechenmethoden zur Tiefensondierung. In; P. Weidelt (Herausgeb.), Protokoll über das Kolloquium Erdmagnetische Tiefensondierung in Rothenberge/Westf., Institut für Geophysik, Göttingen 1971.
- SWIFT, C.M.: A magnetotelluric investigation of an electrical conductivity anomaly in the Southwestern United States. Ph.D. Thesis Massachusetts Institute of Technology, Cambridge/Mass. 1967.

- 437 -

WRIGHT, J.A.: The magnetotelluric and geomagnetic response of two-dimensional structures. GAMMA <u>7</u>, Institut für Geophysik Braunschweig 1969.

ZURMÜHL, R.: Matrizen. Springer - Verlag 1964.

Anhang

Es ist die Aufgabe gestellt, ein lineares Gleichungssystem Bx = y durch Dreieckszerlegung der Koeffizientenmatrix B nach dem GAUSSschen Algorithmus zu lösen (s. z.B. Zurmühl, 1964). Die Elemente von B seien selbst wieder Matrizen, die Elemente der Vektoren x und y seien selbst wieder Vektoren. Die Matrix B sei nur auf der Hauptdiagonalen und einer beschränkten Zahl von Nebendiagonalen besetzt.

Zunächst sei angenommen, daß wie in den Gleichungssystemen (5) und (8) jeweils eine Nebendiagonale oberhalb und unterhalb der Hauptdiagonale besetzt ist:

Diese Matrix werde nunmehr als Produkt zweier Dreiecksmatrizen dargestellt: B = EG mit

I ist die Einheitsmatrix. Aus dieser Definition ergeben sich folgende Rekursionsformeln zur Bestimmung der Elemente von E und G, die gleichfalls wieder Matrizen sind:

$$G_{1} = B_{1}$$

$$G_{n} = B_{n} - E_{n} C_{n-1}$$

$$E_{n} = A_{n} G_{n-1}^{-1}$$

für n = 2,3, ... N. Ihre Berechnung vereinfacht sich in den hier betrachteten Fällen dadurch, daß An und Bn nur auf der Hauptdiagonale besetzt sind. En und Gn sind vollbesetzt, zur Berechnung des Lösungsvektors $x = (x_n)$ genügt es aber, sich auf die Speicherung der N Kehrmatrizen G_n⁻¹ zu beschränken.

Aus dem Vektor $y = (y_n)$ der rechten Seiten und der Dreiecksmatrix E wird zunächst ein Hilfsvektor

 $z = Gx = E^{-1} y$

mit den Elementen

z₁ = y₁ $z_n = y_n - E_n z_{n-1}$

für n = 2,3,... N berechnet. Damit ergibt sich für die Elemente des Lösungsvektors $x = G^{-1} z$ die Rekursionsformel

$$x_{N} = G_{N}^{-1} z_{N}$$

 $x_{n} = G_{n}^{-1} (z_{n} - C_{n} x_{n+1})$

für $n = N-1, N-2, \dots 1$.

Enthält die Koeffizientenmatrix B wie in Gl. (9) jeweils zwei besetzte Nebendiagonalen oberhalb und unterhalb der Hauptdiagonale,

$$B = \begin{pmatrix} B_{1} & C_{1} & Q_{1} \\ A_{2} & B_{2} & C_{2} & Q_{2} \\ P_{3} & A_{3} & B_{3} & C_{3} & Q_{3} \\ & & & & & & & & \\ \end{pmatrix}$$

so enthalten auch die zur Dreieckszerlegung eingeführten Matrizen E und G jeweils zwei besetzte Nebendiagonalen:

pession, die Matrix R. auf der Haupidraginalen und in dan Rand-

die Elemente des

Für ihre Elemente ergeben sich die Rekursionsformeln

$$G_1 = B_1$$

 $R_1 = C_1$
 $G_2 = B_2 - E_2 R_1$
 $R_2 = C_2 - E_2 Q_1$

$$G_{n} = B_{n} - E_{n} R_{n-1} - H_{n} Q_{n-2}$$

$$R_{n} = C_{n} - E_{n} Q_{n-1}$$

$$E_{n} = (A_{n} - H_{n} R_{n-2}) G_{n-1}^{-1}$$

$$H_{n} = P_{n} G_{n-2}^{-1}$$

mit n = 3,4 ... N. Die Elemente des Hilfsvektors $z = (z_n)$ erhält man aus

 $z_1 = y_1$ $z_2 = y_2 - E_2 z_1$ $z_n = y_n - E_n z_{n-1} - H_n z_{n-2}$,

die Elemente des Lösungsvektors aus

$$x_{N} = G_{N}^{-1} z_{N}$$

$$x_{N-1} = G_{N-1}^{-1} (z_{N-1} - R_{N-1} x_{N})$$

$$x_{n} = G_{n}^{-1} (z_{n} - R_{n} x_{n+1} - Q_{n} x_{n+2})$$

mit $n = N-2, N-3, \dots 1$.

Da die Matrizen P_n und Q_n nur an den Endpunkten der Hauptdiagonale besetzt sind, ist die Matrix H_n nur in den Randzeilen besetzt, die Matrix R_n auf der Hauptdiagonalen und in den Randspalten. Die Matrizenprodukte H_n Q_{n-2} sind dann an den Eckpunkten, die Matrizenprodukte H_n R_{n-2} nur in den Randzeilen besetzt. Neben den Kehrmatrizen G_n^{-1} sind zur Berechnung des Lösungsvektors nun mehr auch die Randspalten von R_n fortlaufend zu speichern. Zum Speicherbedarf NM² für die N Kehrmatrizen G_n^{-1} kommen also noch 2 NM Speicherplätze für die Randspalten der N Matrizen R_n hinzu.

Funt bmeldorgenothtubal melanationalblert, gendusch enbartsauf Ca. B. JONES & PARCOR (1872), LIMPS & JONES (1973). Der Grand define sind weniger mathematische Sonwienigesiten els violgant Mit Silfe, von Greensonen funerioose gelf as, den Grundbereion as verkleinerts and so dan appleiners segrappes, Bes. Methode A (sport) Hasteld out Grundbereich aus dem -Xan all pressed the second the second the second distributers die second