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Abstract

The advancement of the Global Geodetic Observing System (GGOS) has enabled mon-
itoring of mass transport and solid-Earth deformation processes with unprecedented
accuracy. Coseismic deformation is modelled as an elastic response of the solid Earth
to an internal dislocation. Self-gravitating spherical Earth models can be employed in
modelling regional to global scale deformations. Recent seismic tomography and high-
pressure/high-temperature experiments have revealed finer-scale lateral heterogeneities in
the elasticity and density structures within the Earth, which motivates us to quantify the
effects of such finer structures on coseismic deformation. To achieve this, fully numerical
approaches including the Finite Element Method (FEM) have often been used. In our
previous study, we presented a spectral FEM, combined with an iterative perturbation
method, to consider lateral heterogeneities in the bulk and shear moduli for surface loading.
The distinct feature of this approach is that the deformation of the entire sphere is modelled
in the spectral domain with finite elements dependent only on the radial coordinate. By
this, self-gravitation can be treated without special treatments employed when using an
ordinary FEM. In this study, we extend the formulation so that it can deal with lateral
heterogeneities in density in the case of coseismic deformation. We apply this approach
to a longer-wavelength vertical deformation due to a large earthquake. The result shows
that the deformation for a laterally heterogeneous density distribution is suppressed mainly
where the density is larger, which is consistent with the fact that self-gravitation reduces
longer-wavelength deformations for 1-D models. The effect on the vertical displacement
is relatively small, but the effect on the gravity change could amount to the same order
of magnitude of a given heterogeneity if the horizontal scale of the heterogeneity is large
enough.
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1 Introduction

Recent advancements in terrestrial and satellite gravity
observations have enabled us to monitor mass transports
associated with physical processes in the atmosphere, ocean,
hydrosphere, and cryosphere with an unprecedent accuracy
(Crossley et al. 2013; Wouters et al. 2014). These surface
mass transports cause elastic and anelastic deformations of
the solid Earth. The resultant deformation of the density
interfaces (atmosphere-crust and crust-mantle boundaries,
etc.) and compression/dilatation of the solid-Earth material
lead to an additional change in the gravity field. By
physically modelling this process and comparing the model
results, we can learn about deformation mechanisms and
rheological properties of the material (e.g., crustal rigidity,
mantle viscosity) (Whitehouse 2018).

In addition to surface loading, co- and post-seismic grav-
ity changes induced by large earthquakes have been observed
by satellite observations with spatial scales of �300 km
and amplitudes of several �Gals (1 �Gal D 10�8 m s�2)
(e.g., Matsuo and Heki 2011). It is widely accepted that
coseismic deformation is physically represented by the elas-
tic response to an internal dislocation. To interpret gravity
changes due to large earthquakes, dislocation models have
been proposed, which assume a self-gravitating sphere with
a 1-D (i.e., spherically symmetric) internal structure (Sun
2014; Zhou et al. 2019). However, seismic tomography
and high-temperature/high-pressure experiments nowadays
reveal increasingly finer internal structures, particularly in
plate subduction zones (Hasegawa and Nakajima 2017). This
motivates us to estimate the effects of laterally heterogeneous
structures on gravity changes.

So far, several methods have been proposed to calculate
coseismic deformation of a laterally heterogeneous Earth
model. They can be categorized into two types. (Semi-
)analytical perturbation approaches (e.g., Pollitz 2003;
Fu and Sun 2008) give a physically clear image on the
causes of the deformation. However, the perturbation
methods employed make it difficult to deal with strong
lateral heterogeneities. On the other hand, fully numerical
approaches such as the finite element method (FEM) and the
spectral element method can treat such heterogeneities (e.g.,
Cheng et al. 2019; Pollitz 2020). However, the inclusion
of self-gravitation can cause modelling errors when using
a commercial package of the FEM. To prevent this, special
treatments of self-gravitation are necessary (e.g., Wu 2004;
Nield et al. 2022; Vachon et al. 2022).

To address the above difficulties associated with strong
heterogeneity and self-gravitation, Tanaka et al. (2019)
employed a spectral finite-element approach (Martinec
2000) which combines the advantages of the analytical
and numerical approaches. Tanaka et al. (2019) considered

lateral heterogeneities in the bulk and shear moduli in
modelling of the elastic response to surface loading. This
model was applied to ocean tide loading (Huang et al. 2021).
However, lateral heterogeneities in density have not yet been
considered.

The purpose of this study is to extend the method by
Tanaka et al. (2019) for the case of laterally heterogeneous
density distributions when modelling coseismic deforma-
tion. In Sect. 2, we first explain the way that the spectral
finite-element approach facilitates computation of global
deformation. Next, we estimate the effect of a 3-D density
distribution. In Sect. 3, after some checks of the method,
we demonstrate the effects of 3-D density distribution on the
coseismic vertical displacement and gravity change due to a
megathrust earthquake. Finally, in Sect. 4, results and future
work are summarized.

2 Method

2.1 An Overview of the Spectral
Finite-Element Approach

We apply the approach to the governing equations for the
elastic deformation of a self-gravitating sphere (Farrell 1972)
under free-surface and internal source conditions represented
by double-couple forces that are equivalent to a disloca-
tion. No terms are ignored/approximated in the governing
equations and no additional forces/boundary conditions are
added. The governing equations are converted into a cor-
responding variational problem associated with the elastic
strain and gravitational energies (E � Ebulk C Eshear C Egrav)
and the work derived from the surface and source conditions
(ıF) (Tanaka et al. 2014):

ıE .u; ıu; �1; ı�1/ D ıF .ıu; ı�1/ ; (1)

where u, �1 and ı denote the displacement, the incremental
gravity potential and the variation, respectively. The variation
in the shear strain energy is given as

ıEshear .u; ıu/ �

Z

V

2� .�� ı�/ dV ; (2)

where� and � denote the shear modulus and the strain tensor,
respectively, and V indicates a volume integral over the entire
sphere. The source time function included in ıF is assumed
to be a step function. The solution of Eq. (1) gives the static
deformation which balances the double-couple forces.

Commercial FEM packages usually employ 3-D finite
elements to compute Eqs. (1) and (2). In our approach,
however, Eq. (2) is decomposed into the 1-D and residual
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3-D parts:

ıEshear D

Z

V

2�0.r/ .�� ı�/ dV

C

Z

V

2�� .r; �; '/ .�� ı�/ dV ;
(3)

where (r, � ,®) denote the radial distance, colatitude and
longitude, respectively, and �0 and 4� represent the shear
modulus of the reference 1-D model and the difference from
�0, respectively. We apply 1-D finite elements in the radial
direction and represent angular dependencies of the strain
field by tensor spherical harmonics. Then, thanks to their
orthogonal properties, the first term on the LHS of Eq.
(3) becomes straightforward for numerical evaluation. The
second term is numerically evaluated (Martinec 2000). We
assume that lateral heterogeneities exist only within a small
volume 4V near the source (i.e., 4� D 0 outside 4V and
4V � V). Then, we can take the integration domain of
the second term to be much smaller than the entire sphere.
These treatments reduce costs for computing the global
deformation to a large extent.

2.2 Inclusion of Laterally Heterogeneous
Density Distributions

The variation in the gravitational energy for the 1-D case is
given by Eq. (42) of Martinec (2000) as

ıEgrav
�
u; �1; ıu; ı�1

�

�

Z

V

�0

�
grad

�
u� grad �0

��

� div u grad �0 C grad �1

�
� ıudV

C

Z

V

� 1

4�G

�
grad �1� grad ı�1

�
C �0

�
u� grad ı�1

��
dV ;

(4)

where G is the gravitational constant and �0(r) and
g0(r) � grad �0 denote the density and gravity for the initial
state before deformation takes place. In the following, we
extend this energy variation to the laterally heterogeneous
case and will come back to the remaining 3-D part of the
energy variation which is not included in Eq. (4).

When there is a small lateral heterogeneity, the initial
stress field, before an earthquake occurs, deviates only
slightly from the hydrostatic state. In the following, u
and �1 represent the coseismic deformation with respect
to this laterally heterogeneous initial state. We substitute
�0 C 4�(r, � ,®) and g0 C 4g(r, � ,®) into �0 and g0 in Eq.
(4), respectively. Here, 4� denotes the difference from the
1-D density distribution at the initial state due to a given
lateral heterogeneity. Since gravity is linearly dependent

on density, Poisson’s equation is valid for the incremental
density. Therefore, div grad 4� D 4�G4� holds and
4g (� grad 4�) denotes the static gravity increment due
to 4�. Subtracting the energy variation for the 1-D case
from the result, neglecting the terms including the product of
4�4g, and considering the orthogonality of vector spherical
harmonics, we obtain

ıE�
grav;jm D ıEI

grav;jm .��/ C ıEII
grav;jm .�g/ ; (5)

where

ıEI
grav;jm D

X
j 0m0

Z
�V

�� .r; �; '/

2
4

�
�

4g0Ujm

r
C

Jg0Vjm

r
C

dFjm

dr
C8�G�0Ujm

�
ıU �

j0m0

C
�

g0Ujm

r
C

Fjm

r

�
ıV �

j0m0C
�
Ujm

dıF �

j0m0

dr
C

Vjm

r
ıF �

j0m0

�
3
5 dV

(6)

and

ıEII
grav;jm

D
X
j 0m0

Z

V

�g .r; �; '/ �0.r/

�	
�

4Ujm

r
C

J Vjm

r



ıU �

j0m0 C

	
Ujm

r



ıV �

j0m0

�
dV

(7)

(c.f., Eq. (65) of Martinec (2000)). Here, (U(r),V(r),F(r))jm
denote spherical harmonic coefficients for the vertical and
horizontal displacements and the incremental gravity poten-
tial at degree j, order m. The asterisks represent complex
conjugates and J D j(j C 1) is a factor originating from
div u, and 4g represents the magnitude of 4g in the radial
direction. The products of the vector spherical harmonics in
the integrands (e.g., S.�1/

jm �S.�1/

j0m0 /(see, Eq. (B1) of Martinec
(2000)) are omitted for simplicity. Note that, in the 3-D
case, summations over j 0 and m 0 appear, indicating a modal
coupling with other degrees and orders.

The integrands in Eqs. (6) and (7) have a common term

	
�

4Ujm

r
C

J Vjm

r



ıU �

j0m0 C

	
Ujm

r



ıV �

j0m0

� KU .r/ıU �
j0m0 C KV .r/ıV �

j0m0:

(8)

By this notation, the corresponding energy variations for j0,
m0 can be written as

ıEI 0
grav;jm �

Z
�V

�� .r; �; '/ g0

h
KU ıU �

j0m0CKV ıV �
j0m0

i
dV

(9)
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and

ıEII 0
grav;jm �

Z

V

�0.r/�g .r; �; '/
h
KU ıU �

j0m0CKV ıV �
j0m0

i
dV :

(10)

It is expected that
ˇ̌
ˇıEI 0

grav;jm

ˇ̌
ˇ �

ˇ̌
ˇıEII 0

grav;jm

ˇ̌
ˇ for two

reasons. First, 4�/�0 is �10�2 and 4g/g0 is �10�5

(10 mGal/980 Gal) in the real Earth, which means
4�g0 � �04g. Second, 4g and KU, V are smaller outside
4V in Eq. (10) (note that the source is located within4V and
the deformation (i.e., Ujm and Vjm included in KU, V ) decays
with the square of the epicentral distance (Okada 1992).
Assuming that 4V has a shape of a spherical cap, we will
roughly estimate a ratio between the magnitudes of Eqs. (9)
and (10). We assume that KU�K V�D/r, where D D1 within
4V and D D ds/(a � r)2 outside 4V. Here, ds (D40 km)
and a (D6,371 km) are the depth of the point source and the
Earth’s radius. The density of the 1-D case, �0, is homoge-
neous within the Earth and 4� is set to 1

100
�0 within 4V.

The integration is performed by an elementary numerical
difference method. The result is shown in Sect. 3.1.

Now, we come back to the part which is excluded in the
energy variation in Eq. (4). In the 3-D case, the last three
terms in Eq. (A7) of Martinec (2000) add to Eq. (4). The last
term of Eq. (A7) associated with discontinuities within the
Earth vanishes in the present case because we do not consider
lateral heterogeneities near the core-mantle boundary (CMB)
and the normal vector of the fault is orthogonal to the
displacement (shear slip is assumed). The third term in Eq.
(A7) associated with the surface integral vanishes when 4V
and the deformation field caused by the source are line
symmetric, as employed in Sect. 2.4. The second term in Eq.
(A7) is given as

1
2

R
V

�
.grad �0� ıu/ .u� grad �0/ � .grad �0�u/

.ıu� grad �0/
�
dV :

(11)

Substituting �0 C 4�(r, � ,®) and g0 C 4g(r, � ,®) into Eq.
(11), and based on the same argument as for Eq. (10), we can
approximate Eq. (11) as

g0

2

Z

�V

Œ.grad��� ıu/ U � .grad���u/ ıU 	 dV : (12)

We consider the case where 4� is constant within 4V.
Then, grad4� takes non-zero values only on the boundary
of 4V. Furthermore, we note that the terms including the
vertical gradient of the density in Eq. (12) cancel out on a
horizontal surface. Therefore, we consider only the vertical
surface which consists of the boundary of 4V. We derive a
weak formulation and evaluate the magnitude of Eq. (12).
The result is shown in Sect. 3.1.

2.3 Iteration

The effect of the lateral heterogeneity is finally determined
by solving the following equation iteratively, as described in
Tanaka et al. (2019).

ıE1D
�
ui ; ıu; �i

1; ı�1

�
D ıF .ıu; ı�1/ � ıE�

grav

�
ui�1; ıu; �i�1

1 ; ı�1

�
;

(13)

where ıE 1D denotes the energy variation excluding the
effects of lateral heterogeneities. At the first step (i D 1),
ıE�

grav is set to zero. For i � 2, ıE�
grav is computed with

the solution obtained at the previous step. This iteration
is repeated until (u,�1)i Š (u,�1)i � 1. The convergence
behavior is shown in Sect. 3.1.

2.4 Model Setting

We use a synthetic rectangular fault model to simulate coseis-
mic deformation due to a megathrust earthquake. The length
and width of the fault are 550 km and 100 km, respectively,
and a slip of 10 m is uniform on the fault (MW D 8.7).
The strike, dip and rake angles are (0

ı

, 25
ı

, 90
ı

) and the
fault is dipping to the west (Fig. 1). The fault is distributed
within �2.5

ı

	 ˇ 	 2.5
ı

and 104.1
ı

	 ® 	 105
ı

, where
ˇ and ® denote latitude and longitude, respectively, and the
fault is located at depths ranging from 15 km to 57 km.

PREM (Dziewonski and Anderson 1981) is considered as
the reference Earth model. In Model A, we assume that the
density is larger by 5% than in the reference model within a
region of �20

ı

	 ˇ 	 20
ı

, 80
ı

	 ® 	 110
ı

and depths from
0 to 670 km, including the above fault (Fig. 1). In Model B,
the heterogeneity of Model A is given in a region excluding
the fault (80

ı

	 ® 	 104
ı

). The elastic parameters in Models
A and B are the same as in PREM. The results shown below
are proportional to the magnitude of the heterogeneity. If the

a b

West
ϕ=80°

ϕ=80° 104° 110°

β=20°

−20°

West

104°
110°

East East

AB

North

0 km

670 km

AB

Fig. 1 The fault and Earth structure models used in the computation.
(a) A cross section of the Earth model at latitude ˇ D 0. The rectangular
reverse fault (green line) consists of 92 point sources having the same
dip-slip mechanism. The density in the upper mantle is increased by
5% with respect to the PREM for the longitudinal ranges (®) shown by
the black (Model A) and red (Model B) arrows. (b) A top view. The
green box shows a vertical projection of the fault. The horizontal ranges
where the density is increased are shown by the black (Model A) and
red (Model B) boxes
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lateral heterogeneity is 1% instead of 5%, then, the effect
on the deformation becomes 1/5 the magnitude of the case
shown here

Assuming a future satellite gravity mission, we set the cut-
off spherical harmonic degree as 100 and applied no spatial
filter such as a Gaussian filter to the computational results.
The radial intervals of the finite elements, 4r, depend on
depth and are set as follows: 4r D 1 km for depths 0–
100 km, 5 km for 100–150 km, 10 km for 150–300 km,
15 km from 300 km to the CMB and 20 km below the
CMB. The horizontal grid needed for numerical compu-
tations of the 3-D part is set according to the method
described in Martinec (2000). The numbers of the grid
points are 152 and 512 in latitude and longitude, respec-
tively.

The effects of lateral heterogeneities of Models A and B
are evaluated as the differences with respect to the reference
model. The results are shown in Sects. 3.2–3.3.

3 Results and Discussions

3.1 Check of the Approximations Used

Table 1 shows the ratio
ˇ̌
ˇıEII 0

grav;jm

ˇ̌
ˇ =

ˇ̌
ˇıEI 0

grav;jm

ˇ̌
ˇ for density

distributions with different radii and thicknesses. The ratios
are less than 0.5% for all the cases. The reason why the
result for depths 0–670 km is equal to that for depths
0–100 km is that the deformation is concentrated in the
proximity of the source, which is located at the depth of
40 km, and the integrand in ıEII 0

grav;jm below the depth of
100 km is much smaller than in 4V. These results allow us
to neglect ıEII

grav;jm (Eq. 7) for practical applications because
the effects of lateral heterogeneities in the density are at most
a few percent of the peak coseismic deformation as shown
later, and hence neglecting ıEII

grav;jm causes an error of the
order of only 0.01%, which is below detectable levels of
geodetic observations.

Next, we compare the surface deformation for Model
B obtained by including and excluding the energy varia-
tion represented by Eq. (12). The results show that, when
the energy variation of Eq. (12) is included, the vertical
displacement and the gravity change decrease by 0.4 mm
and 0.04 �Gal at the most, where the density distribution
laterally changes near the west side of the fault (®�104

ı

).
The magnitudes of these decreases are less than 0.1%, if
compared with the deformation at the corresponding location
in the 1-D case (peak p2 in Figs. 2a and 3a). However,
for the vertical displacement, a difference of 0.4 mm is not
negligible because the effect of the lateral heterogeneity is
of the same order of magnitude. Figure 2b, c show that the
differences between the cases including and excluding the

Table 1 The ratio of the gravitational energies
ˇ̌
ˇıEII 0

grav;jm

ˇ̌
ˇ =ˇ̌

ˇıEI 0

grav;jm

ˇ̌
ˇ estimated for different density distributions. The density

is increased by 1% within a cap-like volume occupying 0 � � � ˛,
0 � ® � 2� and the depths shown below (� and ® denote colatitude
and longitude, respectively). A point source is located 40 km below the
north pole (i.e., � D 0)

˛ Depth II/I
(deg) (km) (%)

10 0–30 0.28

20 0–100 0.43

20 0–670 0.43

30 0–100 0.45

45 0–100 0.48

energy variation are visible. For the gravity change, the effect
of lateral heterogeneity is of the order of �Gal. Therefore, a
difference of 0.04 �Gal amounts to only �1% of the effect of
lateral heterogeneity. In the subsequent sections, we discuss
results obtained by including the energy variation of Eq.
(12).

Table 2 shows the result of iterations for Model B. We see
that the difference is largest between i D 1 and 2, amounting
to 0.03–0.3%. After i D 2, the differences are smaller than
0.02%, indicating that the spherical harmonic coefficients for
the vertical displacement converged at 10�4 level. A similar
tendency is seen for Model A.

These results are summarized as follows. As far as a
relatively large-scale heterogeneity like Models A and B is
concerned, the energy variation arising from 4g (Eq. 7) is
negligible and the energy variation represented by Eq. (12) is
not, in estimating the effect due to the lateral heterogeneity
on the coseismic deformation. A few steps of iteration are
sufficient.

3.2 Vertical Displacement

Figure 2a shows the vertical displacement along the latitude
line passing through the center of the fault (ˇ D 0

ı

and
80

ı

	 ® 	 130
ı

) computed for the reference model. We see
an uplift of �1 m at ®�105

ı

above the shallower edge of
the fault (p1) and a subsidence of 0.5 m at ®�102

ı

above
the deeper edge of the fault (p2), which is a well-known
pattern observed for thrust-type fault motion. The blue curve
in Fig. 2c shows the difference between model A relative
to the reference model. We see that the pattern is roughly
opposite to that in Fig. 2a (compare p1 with p3 and p2 with
p4), but the effect is very small. The largest lower peak (p3)
has amplitude of 1 mm, indicating that a 5% increase in
density reduces the coseismic maximum uplift seen at p1 by
�0.1%.
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a b

c d
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Fig. 2 Coseismic vertical displacements at latitude ˇ D 0 for different
Earth models. The horizontal axes denote longitude (Fig. 1). The green
line denotes the fault, and the cut-off spherical harmonic degree is
100. (a) The vertical displacement, U, for the reference 1-D model
(PREM). (b) The difference in the vertical displacements computed for

the reference model and Model A (blue)/B (red). The energy variation
of Eq. (12) is excluded. The blue and red boxes denote the ranges where
the density in the upper mantle is increased. (c) The same as in (b) but
Eq. (12) is included. (d) The same as in (c) but the shear modulus in the
upper mantle is increased instead of the density (Model C)

a b A-Ref.Ref. (PREM) B-Ref.
p1

p2
p6 p4

p5

p3

A
B

80 90 100

ϕ (degree)

110 120 13080 90 100
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3150
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G
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)

g 
(m
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G
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)

Fig. 3 The same as in Fig. 2, but the coseismic gravity change is shown. (a) The gravity change, g0, for the reference 1-D model. (b) The difference
in the gravity changes computed for the reference model and Model A (blue)/B (red). Note that the patterns are opposite to those in the vertical
displacements in Fig. 2 (b) and that the relative magnitude amounts to a few percent (compare peaks p1 and p3 or p2 and p6)

The reduction of the vertical displacement is consistent
with the fact that the inclusion of self-gravitation suppresses
longer-wavelength deformations for a flat-Earth model
(Barbot and Fialko 2010). This can be understood if
we consider that an increase in density enhances the
gravitational effect (i.e., �0g0 is replaced by (�0 C 4�)g0
where 4� > 0).

For comparison, Fig. 2d shows a result when the shear
modulus is increased by �10% for the same region as the
region where the heterogeneity is considered in Model A.
We see that the pattern of the difference is the same as in
the coseismic change and that amplitude increases by �10%.
This indicates that the difference in the vertical displacement
is proportional to the difference in the shear modulus. This
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Table 2 A convergence of the solution for Model B. The first column
(i) shows numbers of iterations (Sect. 2.3). Ujm denote the real part of
the spherical harmonic coefficient of the vertical displacement at the
surface (r D a) for degree j and order m

i U10, 0 U20, 10 U60, 40 U100,100

1 �8.589E-4 �7.490E-4 �2.584E-4 3.055E-3

2 �8.617E-4 �7.496E-4 �2.585E-4 3.054E-3

3 �8.617E-4 �7.496E-4 �2.585E-4 3.054E-3

4 �8.617E-4 �7.496E-4 �2.585E-4 3.054E-3

is because the energy of the seismic source is proportional
to the shear modulus. In contrast, the effect of the density is
only �1/20 of the given heterogeneity in magnitude (namely,
the 5% increase in the density caused the 0.1% increases in
the vertical displacement).

Next, we compare Models A and B. The red curve in
Fig. 2c shows the result for Model B. We see that, when
the heterogeneity is excluded from the source region, the
largest negative peak at ®�105

ı

for Model A (p3) is reduced
(p5) and that Model B shows a close pattern to Model A on
® < 104

ı

. This indicates that the reduction of the vertical
displacement occurs mainly in the region where the density
is increased.

3.3 Gravity Change

We have seen that the effect of the laterally heterogeneous
density distribution on the vertical displacement is as small
as 0.1% of the coseismic change. However, the effect on the
gravity change is an order of magnitude larger, as will be
shown below.

Figure 3a shows the coseismic gravity change computed
for the reference model. The pattern resembles the vertical
displacement in Fig. 2a. The blue curve in Fig. 3b shows the
difference between Model A and the reference model. We
see that the pattern is similar to the coseismic change in Fig.
3a and that the increase in amplitude amounts to �2% of the
coseismic gravity change (compare p1 with p3).

The reason why the effect on the gravity change is larger
than on the vertical displacement can be explained by a
Bouguer (slab) approximation:

�
g0 C �g0

�ˇ̌
rDa

� 2�G .�0 C ��/jr�a .U C �U /

Š 2�G .�0U C �0�U C U ��/jr�a:
(14)

In this equation, a denotes the Earth’s radius, and g 0 and U
are the surface gravity change and the vertical displacement
caused by the deformation for the reference model. 4 means
the difference from the reference model due to the inclusion
of the lateral heterogeneity. The first term in the rightmost
side of Eq. (14) represents the gravity change due to the

deformation in the 1-D case. In the second term, 4U is
opposite to U and is significantly smaller than U (Sect. 3.2).
So, the last term is dominant as the effect of the lateral
heterogeneity, indicating that the deformation for the 1-D
model and the local density distribution take effects and that
the ratio of the third term to the first term is 4�/�0.

The red curve in Fig. 3b shows the result for model B. We
see that the difference between Models A and B is small on
® 	 104

ı

where the heterogeneity in Model B is present and
that amplitudes of Model B become smaller for ® > 104

ı

.
This result suggests that the effect of the lateral heterogeneity
on the gravity change is larger where the heterogeneity is
present, as seen for the vertical displacement.

Fu and Sun (2008) estimated coseismic gravity changes
for a 3-D heterogeneous spherical Earth model. The magni-
tude of the lateral heterogeneity in the density used in their
computation was �˙0.5% with respect to the PREM. In
the shallow upper mantle, the main sources of heterogeneity
are subducting slabs. Their result shows that the effect of
lateral heterogeneity on the gravity change caused by a point
dislocation placed at 100 km or below was 0.01–0.03%. In
our result, the effect on the gravity change is of the same
order of magnitude as for the heterogeneity. That means that,
if a heterogeneity was 0.5%, the effect on the gravity change
would be �0.5% in our model. A few reasons are considered
to explain why our result is an order of magnitude larger
than their result; In our study, (1) the horizontal scale of the
heterogeneity given is much larger than the thickness of slab,
(2) the source depth is shallower than 100 km, (3) the cut-off
degree is lower and thus longer-wavelength deformations are
dominant, which are more strongly affected by the gravity
field (generated by the initial static density distribution).
To examine the effect due to a fine 3-D density structure
for a shallow seismic source, higher-degree terms must be
computed, which will be done in a next study.

4 Conclusions

We developed a spectral finite-element approach for estimat-
ing the effects of laterally heterogeneous density distribu-
tions on coseismic deformations. Considering that deforma-
tions due to a great earthquake will be observed by a future
satellite gravity mission, we computed a coseismic vertical
displacement and gravity change up to jmax D 100 for Earth
models with a large-scale lateral heterogeneity being present
near the seismic fault. The results show that the increase in
the density within the upper mantle by 5% over a horizontal
scale of �3,000 km could suppress the vertical displacement
by an order of 0.1% and amplify the gravity change by an
order of 1% with respect to the case for the reference 1-
D model. The differences from the 1-D model were larger
where the heterogeneity was present, and a larger increase in
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the gravity change than in the vertical displacement occurs,
because the local density structure maps directly into the
gravity change.

In this study, we imposed a few limitations on the hetero-
geneity: a large horizontal scale, being present in the vicinity
of the source, and simple (symmetric) geometry. Under these
conditions, we showed that the estimation of the energy
variation of Eq. (A7) of Martinec (2000) could be simplified.
For more complex density distributions by subducting slabs,
plumes, surface topography and bathymetry, it might be more
effective to directly compute the energy variation of Eq.
(A2), which is an alternative representation of Eq. (A7).
Furthermore, for surface loading, gravity increments due to
lateral heterogeneities in the density enter into the boundary
conditions. In this case, it should be examined whether
neglecting the second term of the gravitational energy (Sect.
2.2) is valid. To extend the applicability of the spectral FEM
to more general cases is a future challenge.
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