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S U M M A R Y 

Centroid moment tensor (CMT) parameters of earthquakes are routinely estimated to gain 

information on structures and regional tectonics. Ho wever , for small earthquakes ( M < 4), it is 
still challenging to determine CMTs due to the lack of high-quality waveform data. In this study, 
we propose to improve solutions for small earthquakes by incorporating multiple seismic data 
types in Bayesian joint inversion: polarities picked on broad-band signals, amplitude spectra 
for intermediate frequency bands (0.2–2.0 Hz), and waveforms at low frequencies (0.05–
0.2 Hz). Both measurement and theory errors are accounted for by iterative estimation of 
non-Toeplitz covariance matrices, providing objective weightings for the different data types 
in the joint parameter estimation. Validity and applicability of the method are demonstrated 

using simulated and field data. Results demonstrate that combinations of data, such as a 
single high-quality w aveform, a fe w amplitude spectra and many waveform polarities, are 
able to resolve CMT parameters to comparable quality as if many high-quality waveforms 
w ere a v ailable. Results of 10 induced seismic e vents that occurred in nor theaster n British 

Columbia, Canada, between January 2020 and February 2022 indicate predominantly strike- 
slip focal mechanisms with low non-double-couple components. These events appear to be 
located at shallow depths with short time duration, as expected for induced seismicity. These 
results are consistent with previous studies, indicating that this method reduces the dependence 
of source inversion on high-quality waveforms, and can provide resolution of CMT parameters 
for earthquakes as small as M L 1.6. 

Ke y words: Computational seismology; Earthquak e source observation; Induced seismicity; 
Statistical seismology; Bayesian joint inference. 
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1  I N T RO D U C T I O N  

Centroid moment tensors (CMTs) are point-source approximations 
for ear thquake r uptures and provide impor tant source characteris- 
tics (Dziewonski et al. 1981 ). Point-source approximations can be 
considered when the earthquake source dimension and duration are 
small relative to the wavelength and period of the observed seismic 
wav efield. CMT inv ersions hav e been primarily useful for interpret- 
ing the style of faulting and deformation in active tectonic settings, 
as well as providing source characteristics for other studies, for 
example tomography (Valentine & Woodhouse 2010 ). In addition, 
understanding fault orientations and mechanisms can constrain the 
stress field in a region (Vavry ̌cuk 2014 ). Even though the point 
2948 
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source approximation simplifies rupture significantly, inferring all 
CMT parameters remains a challenging inverse problem. 

The challenges in the inverse problem are closely related to the 
parametrization of the full CMT (St ähler & Sigloch 2014 ), which 
includes the moment tensor, the centroid, and the source–time func- 
tion (STF). The moment tensor comprises six force couples such 
that linear and angular momentum are conserved. The centroid of 
the rupture is parametrized by latitude, longitude, depth and time. 
Finally, the time dependence of moment release, the STF, can be 
considered as unknown and parametrized in various ways. From the 
force couples, source characteristics such as magnitude and fault 
plane orientation can be computed, albeit with uncertainty. Esti- 
mating centroid and STF causes numerical challenges due to non- 
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inearities (e.g. St ähler & Sigloch 2014 ; Cesca et al. 2016 ; Vasyura-
athke et al. 2021 ). Therefore, many studies assume the source type

o be pure shear slip, described by be a four-parameter moment ten-
or (a double-couple mechanism) and centroid and source–time
unction are assumed to be known. 

Various data types have been employed indi viduall y and jointl y
o estimate CMTs. Most commonl y, seismic w aveforms (e.g. Zhao
 Helmberger 1994 ; W éber 2006 ; Herrmann et al. 2011 ; Ekstr öm

t al. 2012 ; St ähler & Sigloch 2014 ; Musta ́c & Tkal ̌ci ́c 2016 ; Ficht-
er & Simut ė 2018 ) and first-motion polarity data (e.g. Brillinger
t al. 1980 ; Hardebeck & Shearer 2002 ; Snoke et al. 2003 ; Walsh
t al. 2009 ) have been used. In addition, amplitude spectra (e.g.
esca et al. 2006 ; Fox et al. 2012 ), amplitude ratios (e.g. Harde-
eck & Shearer 2003 ; Pugh et al. 2016 ; Shang & Tkal ̌ci ́c 2020 )
nd geodetic data (e.g. Heimann et al. 2018 ; Vasyura-Bathke et al.
020 ) have been considered for MTs. Each data type has limitations
nd jointly inverting multiple types with complementary informa-
ion is desirable (e.g. De Matteis et al. 2016 ; Pugh et al. 2016 ;
eimann et al. 2018 ; K ühn et al. 2020 ; Petersen et al. 2021 ). For
 xample, wav eforms can be reliably modelled between 0.01 and
.5 Hz for typical 1-D layered earth models at large distances,
epending on the magnitudes of events, assuming that the point
ource assumption is valid and that structural effects other than
ayering are small. More detailed earth models can be employed
t small epicentral distances of a few kilometres to permit Green’s
unction computations at higher frequencies. Therefore, the avail-
bility of high-quality waveforms at stations near the epicentre is
mportant, but often only a few such waveforms exist. First-motion
olarity data are picked on broad-band seismograms and include
nformation from higher frequencies. The main disadvantage of
olarity data is that their binary nature discards much informa-
ion, resulting in these data only constraining the focal mechanism.
mplitude spectra can be reliably modelled at higher frequencies

han possible for waveforms (Cesca et al. 2010 ) since phase infor-
ation is discarded. Finally, spectra retain more information than

olarities. Therefore, the three data types contain complementary
nformation. 

Since the CMT inverse problem is non-unique and non-linear
e.g. St ähler & Sigloch 2014 ; Cesca et al. 2016 ; Vasyura-Bathke
t al. 2021 ), parameter estimation should include uncertainty quan-
ification to permit meaningful interpretation of results. The un-
ertainties are caused by data errors that include measurement
nd theory errors (Tarantola et al. 1982 ) and require particularly
areful consideration in joint inversion since the errors for vari-
us data types govern how these data contribute to the CMT solu-
ion. Bayesian inference is an ef fecti ve tool to rigorously treat data
rrors in the inversion (e.g. Malinverno & Briggs 2004 ; Monelli
 Mai 2008 ; Razafindrakoto & Mai 2014 ; Vasyura-Bathke et al.

021 ), thereb y appropriatel y w eighting the data types. Ba yesian
nversion has been extensi vel y applied to moment tensor inversion
e.g. W éber 2006 ; Musta ́c & Tkal ̌ci ́c 2016 ; Gu et al. 2018 ), although
ewer works consider the full CMT (e.g. St ähler & Sigloch 2014 ;
asyura-Bathke et al. 2020 ). The most common inversion methods

hat characterize uncertainty of source parameters utilize a single
r a combination of two data sets among first-motion polarities,
mplitude ratios, and time- or frequency-domain traces (e.g. Walsh
t al. 2009 ; De Matteis et al. 2016 ; Pugh et al. 2016 ; Alvizuri &
ape 2016 ; Vack á ̌r et al. 2017 ; Gu et al. 2018 ; Heimann et al. 2018 ;
 éber 2018 ; Shang & Tkal ̌ci ́c 2020 ; K ühn et al. 2020 ; Petersen

t al. 2021 ). 
In this work, we present a Bayesian joint inversion method for

mall earthquakes with local magnitude ( M L ) less than 4 based
n first-motion polarities, amplitude spectra and waveforms. The
ethod is implemented as a new feature of the Bayesian Earthquake
nalysis Tool (Vasyura-Bathke et al. 2020 ). To improve the ability

o resolve CMT parameters for small events, we utilize waveforms
t low frequencies (0.05–0.2 Hz), spectra at intermediate frequen-
ies (0.3–1.2 Hz) and polarities picked on broad-band seismograms
Fig. 1 ). The novelty in the approach presented here is the fully
on-linear treatment by considering source time function and cen-
roid parameters such as time and location for small earthquakes,
nd the combined empirical and hierarchical covariance estimation
hile using the pre viousl y mentioned data types jointly in a rigor-
us Bayesian framework. In addition, the weighting issues in joint
nv ersion hav e been taken care of objectiv ely in previous works
hile the data sets are weighted by their covariance matrix in our
resented method. These are shown to permit resolving source pa-
ameters with limited data availability to comparable quality as if
 xtensiv e high-quality data were available. This method permits es-
imating smaller earthquake centroid parameters in regions where
ther methods require high-quality data. We apply our method to
imulated and field data to e v aluate its applicability and reliabil-
ty. The events considered range from M 1.6 to 4.2 and are in-
uced by hydraulic fracturing operations in NE British Columbia,
anada. We present the results of 10 induced earthquakes, includ-

ng the 30 November 2018, M w 4.2 earthquake near Fort St John,
anada. 

 M E T H O D  

.1 Bay esian infer ence 

o study rupture characteristics, we assume earthquakes as point
ources parametrized by the CMT. The parameters of the CMT in-
lude the moment tensor (MT) parameters in the lune parametriza-
ion (Tape & Tape 2015 ), centroid location (latitude, longitude,
epth and centroid time) and source duration. The lune representa-
ion (MTQT) is a uniform parametrization of moment tensors (Tape
 Tape 2015 ) particularly useful to specify prior distributions for

arameters in Bayesian inference. Instead of representing the MT
s force couples in units of Newton metres, MTQT represents a
nit source by a focal mechanism with strike, dip and rake angles,
nd two parameters that describe the source type on the lune. We
cale the unit source by the scalar moment. Specifying priors for
ocal mechanism angles and the source type is straightforward when
ompared to specifying priors for force couples. For example, the
arametrization can be constrained to source types of interest, such
s double-couple or deviatoric, without requiring proposed sets of
orce couples to meet the MT requirements for a particular source
ype. In addition, geological prior knowledge about strike or dip of
nown faults can be incorporated in the analysis with full CMTs. 

In Bayesian inference, model parameters are random variables,
nd the sampling produces an ensemble of parameter vectors that
pproximates the posterior probability density (PPD) given data
nd prior information. The PPD can provide uncertainty estimates
nd other metrics of interest for individual parameters by marginal-
zation. Bayes’ theorem relates the PPD p ( m | d ) to the likelihood
unction L ( m ) which represents data information, and the prior p ( m )
hich represents information about the model that is independent
f the data as 
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(a)

(b)

(c)

(d)

Figure 1. An example of data sets: (a) The vertical component recording at station BCH2A for the M L 2.5 10 September 2020, event at 6-km epicentral 
distance and 15 ◦ azimuth. The origin time in local time (red) is also shown. (b) Waveform of (a) filtered between 0.05 and 0.2 Hz. (c) Amplitude spectrum of 
(a) filtered between 0.4 and 1.0 Hz. (d) Waveform of (a) filtered between 0.1 and 5.0 Hz for polarity picking. P -wave first motion polarity pick is shown (red). 
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2.2 Joint inversion of multiple seismic data types 

In this work, we consider multiple seismic data sets extracted from 

the raw waveforms at various frequency bands. These include long- 
period waveforms, spectra and polarities. Therefore, the data vector 
is a concatenation of three data types d = [ d 

w , d 

s , d 

p ], where w , s
and p represent waveforms, spectra and polarities, respecti vel y. The 
likelihood function for all data is based on the assumption that the 
noise on each type of data is independent of that on other data types. 
Therefore, the total likelihood is the product of the individual data 
types 

L ( m ) = L w ( m ) L s ( m ) L p ( m ) . (2) 

The assumption of independent noise requires care in selecting 
spectra and waveforms when applying this method. To ensure that 
noise between data types is reasonably independent, we only apply 
non-ov erlapping frequenc y bands. 

The polarity likelihood function attributes higher probability to 
ra ys that ha ve a greater theoretical amplitude (Brillinger et al. 1980 ). 
The polarity likelihood function is given by 

L p ( m ) = 

N ∏ 

i= 1 
π

(1 + d p i ) 
2 

i (1 − πi ) 
(1 −d 

p 
i ) 

2 , (3) 
where N is the number of the observed polarity data, and d 

p 
i denote 

the observed polarity at station i . The function π i is given by 

πi = γ + (1 − 2 γ ) � 

(
A i ( m ) 

σ

)
, (4) 

where the cumulative distribution function (CDF) of the normal 
distribution, � , estimates the probability of first motions based on 
its theoretical amplitude A i ( m ) calculated by a seismic source ( m ) 
(Aki & Richards 2002 ). To quantify the uncertainty, we follow 

Brillinger et al. ( 1980 ) and consider σ as the standard deviation of 
modelling errors ( σ > 0). The parameter γ (0 ≤ γ ≤ 0.5) defines the 
probability that the polarity has been picked incorrectl y. Howe ver, 
for high signal-to-noise ratio (SNR) data, γ may be considered 
small. Positive and negative polarities at stations are considered to 
be ±1 for first motions. 

To formulate a likelihood function for waveform and spectrum 

data, we assume Gaussian-distributed noise on waveform data. 
Ho wever , it is important to note that amplitude spectra are intrinsi- 
call y positi ve and are deri ved from filtered w aveforms. Therefore, 
if waveforms are contaminated by Gaussian-distributed noise, the 
noise on amplitude spectra is Rice-distributed (Rice 1944 ). In the 
case of SNR values that we expect for this application, the Rice dis- 
tribution is well approximated by a Gaussian distribution (Yakovle v a 
2019 ). Therefore, a multi v ariate Gaussian distribution with an un- 
known standard deviation is assumed for waveform and amplitude 
spectrum data. In this case, the likelihood function for K l channels, 

art/ggad397_f1.eps
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Figure 2. Map of the study region with centroid moment tensor results. Event locations (yellow stars) are shown for each solution, sizes of focal mechanisms 
are scaled by magnitudes, the fuzziness of the focal mechanism represents uncertainty and mechanisms are labelled with inferred origin times. The red focal 
mechanism refers to the solution obtained by Pe ̃ na Castro et al. ( 2020 ). Stations that recorded real data for source inference are shown as black triangles. 
Two-coloured triangles and stars show stations and events that are considered for simulations. Black squares are settlements in the area. 

Table 1. Case descriptions. Rows explains the data type of each station and 
frequency bands used in the inversion. 

Case Data 

Waveform Spectrum Polarity 

1 KSM04 [0.05–0.2] Hz 

2 KSM04 [0.05–0.2] Hz 39 

3 KSM04 [0.3–3.3] Hz 39 

4 KSM04 [0.05–0.2] Hz KSM { 02,04,05,06,11 } ,MG07 

[0.3–1.0] Hz 

39 

5 KSM04 [0.05–0.2] Hz KSM { 02,04,05,06,11 } ,MG07 

[2.3–3.0] Hz 

39 
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here l ∈ [ w , s ] represents the type of data (waveforms or spectra),
s given by 

L l ( m ) = 

K ∏ 

k= 1 
(2 π ) −N l k / 2 | C k | −1 / 2 

exp [ −1 

2 
( d 

l 
k − d 

l 
k ( m )) T C 

−1 
k ( d 

l 
k − d 

l 
k ( m )) ] . (5) 

ere, d 

l 
k ( m ) are predicted data for model m , d 

l 
k are observed data,

 

l 
k are covariance matrices and N 

l 
k are the number of data. Note that

he K l data vectors are concatenated in d 

l . 
.3 Covariance estimation for joint inversion 

ncertainty quantification (UQ) is required for meaningful inter-
retation of results (Jaynes 2003 ). For geophysical inference, UQ
hould be based on measurement errors and theory errors (Tarantola
 Valette 1982 ). Measurement errors are attributed to noise dur-

ng measurement, and theory errors arise from assumptions in the
athematical formulation and parametrization. In the formulation

f the likelihood function, both types of errors can be considered by
terative estimation of covariance matrices based on residual errors
Dettmer et al. 2007 ). In this approach, non-Toeplitz covariance
atrices, C k , are estimated from the autocovariance function of the

esiduals. An initial estimate of m is needed to calculate the residual
etween observed and predicted data, and we use the solution as
btained by Bayesian inference assuming uncorrelated noise. 

This covariance parametrization accounts for theory errors such
s, for example centroid location and velocity model mismatch
Vasyura-Bathke et al. 2021 ). Therefore, the likelihood function is
ot biased by assuming uncor related er rors when long-period noise
s present in waveforms that are sampled at high rates. In joint
ayesian inference, the noise treatment and the number of data

amples can affect the weight of a data set such that waveforms
r spectra can dominate the joint inversion without proper weight-
ng factors. Consequently, it is crucial for joint inversion to avoid

art/ggad397_f2.eps


2952 M. Hamidbeygi et al. 

Figure 3. Noise-free (red) and noisy (grey) simulated data. Examples for one channel with waveform and spectrum (top left), and five channels with only 
spectra, are shown. Station code, channel, epicentral distance and azimuth are shown in the top left of each panel. Maximum amplitude and frequency bands 
for spectra are shown in the top-right corner and on the horizontal axis, respecti vel y. The w aveform and spectra are filtered between 0.05–0.2 and 0.3–3.3 Hz, 
respecti vel y. 
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assigning unreasonably high likelihood values to waveforms with 
high sampling rates. In addition, choosing a time window that does 
not contain constraining information may increase only variance 
reductions with inef fecti ve number of samples. Hence, sampling 
rate and window length should be chosen with care. Fur ther more, 
in hierarchical Bayesian inference, noise scaling factors are con- 
sidered as unknown parameters. These scaling parameters can er- 
roneously reduce data set weights. Empirically, the non-Toeplitz 
covariance matrix lowers the chance of estimating incorrect noise 
scalings (Vasyura-Bathke et al. 2021 ). 

2.4 Data predictions 

To produce multi-component waveforms for an MT source, we 
assume a 1-D Earth structure with homogeneous layers described by 
thickness, density, seismic-wav e v elocity and attenuation. Green’s 
functions, composed of a linear combination of ten (eight for the 
far field) elementary seismograms, are computed for an appropriate 
source–receiver volume to predict 10-Hz waveforms for a general 
moment tensor source (Wang 1999 ; Heimann 2011 ; Heimann et al. 
2019 ). Amplitude spectra are produced by taking the square root of 
the sum of squared real and imaginary parts of the Fourier transform 

of waveforms. In addition, we calculate the radiation pattern for P 

waves using 

R 

P = � 

T M �, (6) 

where M is the moment tensor in northeast-down coordinates, and 
� are coefficients for a station with specific epicentral distance and 
azimuth 

� = 

⎛ 

⎝ 

sin θ cos φ
sin θ sin φ

cos θ

⎞ 

⎠ , (7) 

where θ are take-off angles that can be computed from the Earth 
structure, epicentral distances and depth of the events and φ are 
azimuths of the recei vers. These coef ficients describe the ampli- 
tude of the different components at the source. The displacement 
components are given by (Aki & Richards 2002 ; Pugh et al. 2016 ) 

u 

P = 

1 

4 πρα3 r 
( � 

T M � ) � = F P ( � 

T M � ) �, (8) 

where F P is the propagation effect, including geometrical spreading 
and the effects of the Earth structure that we defined before. 

We estimate the PPD numerically with a sequential Monte Carlo 
sampler (e.g. Del Moral et al. 2006 ; Vasyura-Bathke et al. 2020 ). 
Samples are independent and based on a sequence of intermediate, 
annealed bridging distributions from the prior to the posterior. An 
annealing parameter enables the transitioning between distributions 
by scaling from the prior to the posterior. In this algorithm, sam- 
ples can initially move freely in the parameter space but gradually 
become more constrained by the data as the sample approaches the 
posterior. 

3  S T U DY  A R E A  A N D  DATA  

Since the main focus of this work is inversion for small earthquakes 
( M < 4), often only few impulsive, high SNR waveforms are avail- 
able. The typically most reliable long-period signals (0.01–0.2 Hz) 
of such events can be weak and of poor SNR. The intermediate 
periods (0.2–2.0 Hz) are often complicated by coda with several in- 
terfering phases. Ho wever , complexity can be reduced significantly 
by removing phase information in the spectral domain. By only 
considering the amplitude information of the spectrum, predictions 
are more straightforward and can be successfully carried out at in- 
ter mediate frequencies. This per mits exploiting higher frequencies 
up to 2 Hz in the source inversion. 

Similarly, first motion polarities are picked on broad-band wave- 
forms, which contain information that is removed by filters in the 
case of waveforms or spectra. Since only the sign of the arrival is re- 
tained and since station coverage is usually sparse, polarities allow 

resolving mostly the double-couple (DC) MT component. Ho wever , 
constraining these via polarities reduces parameter uncertainties for 
other parameters of the CMT, which in turn can be constrained by 

art/ggad397_f3.eps
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Figure 4. Marginal posterior distributions of the solutions obtained for simulation cases 1–5. Each panel shows cases from 1 to 5 from top to bottom rows, 
respecti vel y. When onl y four rows are shown, the particular parameter is not part of the parametrization for that case. Dashed lines represent true values. Each 
panel is labelled with parameter name and the prior bounds. 
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he other data types. Polarities are the simplest seismic data and
traightforward to predict. Here, we extract long-period waveforms
rom 0.05 to 0.2 Hz, amplitude spectra from 0.3 to 1.2 Hz, and
olarities from the broad-band waveforms. 

We consider data from various networks in the Kiskatinaw Seis-
ic Monitoring and Mitigation Area (KSMMA) in nor theaster n
ritish Columbia, Canada. Data are accessed via IRIS and include
ermanent and temporary stations. Most stations are obtained from
he McGill University and University of Calgary networks. The sta-
ion coverage in the 50 × 50 km area is high with an average station
pacing of 20 km (Fig. 2 ). We consider data recorded between Jan-
ary 2020 and February 2022 (Salvage et al. 2021 ). Seismic events

art/ggad397_f4.eps
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Figure 5. Data fits for case 5: Simulated waveforms and amplitude spectra (grey); maximum a posteriori (MAP) predictions (red) and spectra residuals (shaded 
polygons) are sho wn. The bro wn shading is for 200 randomly selected samples from the posterior predictive distribution. Panels are annotated with station 
code, component, epicentral distance and azimuth obtained for the MAP solution. The arri v al time with respect to the centroid time, and the length of each 
window are shown in the lower-left and lower-right corners, respecti vel y. The weighted v ariance reductions for the posterior predicti ve distribution are shown 
in the top-right corners. The waveform and spectra are filtered between 0.05–0.2 and 2.3–3.0 Hz, respecti vel y. 

Table 2. Descriptions of the illustrative cases applied to the M w 4.2 30 
November 2018, event. For further details, see Table 1 . 

Case Data 

Waveform Spectrum Polarity 

1 MONT3 [0.03–0.12] Hz 

2 MONT3 [0.03–0.12] Hz 36 

3 MONT3 [0.12–0.5] Hz 36 

4 MONT3 [0.03–0.12] Hz MONT { 1,2,3,6 } ,MG0 { 3,5 } 
[0.12–0.5] Hz 

36 

5 40 waveforms [0.03–0.07] Hz 
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used in this study are associated with hydraulic fracturing opera- 
tions, and are expected to be small and shallow. The largest event of 
30 November 2018, of M w 4.2 produced 40 high-quality waveform 

recordings. The smallest one of 11 March 2021, of M L 1.6, pro- 
duced only one usable waveform. This region is known for having 
induced earthquakes due to multistage hydraulic fracturing injec- 
tions, and has received significant attention (e.g. Mahani et al. 2017 , 
2020 ; Fox & Watson 2019 ; Pe ̃ na Castro et al. 2020 ; Salvage et al. 
2021 ; Salvage & Eaton 2022 ). Many previous events were found to 
be dominantly strike slip. Ho wever , complex flo wer structures can 
cause earthquakes with a variety of mechanisms in a small region 
(e.g. Barclay et al. 1990 ; Mei 2009 ; Wozniakowska et al. 2021 ). 

4  R E S U LT S  

4.1 Simulation examples 

In this section, we present the results of five different simulation 
examples, that is ‘cases’ in the following, to e v aluate the v alidity 
of the method. In these cases, we use varying combinations of 
simulated data to test the influence of each data type on the ability to 
constrain CMT parameters. These cases are summarized in Table 1 . 
An oblique CMT with moment magnitude 2.0 is considered to 
produce waveform data in units of velocity with a sampling rate of 
10 Hz and 39 polarities. Synthetic data are contaminated by filtered 
Gaussian noise to mimic the SNR of waveforms recorded for an M L 

1.6 event in the region. A 20-s signal window around the P -wave 
arri v al and a 20-s noise window before the P wave are considered to 
measure the SNR on filtered field data. All data are chosen based on 
their long-period SNR (Fig. 3 ). In addition, theoretical amplitudes 
are contaminated by 10 per cent Gaussian noise to produce noisy 
polarity data. The noise scaling factor for polarity is considered 
to be a hierarchical parameter with a prior between 0.0 and 0.2. 
Fur ther more, the noise on waveforms and spectra is estimated as a 
non-Toeplitz covariance matrix (Dettmer et al. 2007 ). 

For case 1, we consider only the waveform of KSM04 shown 
in Fig. 3 to constrain the parameters of the CMT. The data are 
bandpass filtered between 0.05 and 0.2 Hz and cosine-tapered with 
a 32-s time window around the P -wave arrival. For case 2, we add 
P wave first motion polarities to the data of case 1. For case 3, 
the waveform of KSM04 is transformed to the spectral domain. 
We consider a 26-s time window around the P -wave arrival prior 
to the Fourier transform and we filter the spectrum to 0.3–3.3 Hz. 
Cases 4 and 5 include one waveform, 6 spectra and polarities. The 
difference between these two cases is the frequency band for the 
amplitude spectra. We filter amplitude spectra between 0.3–1.0 Hz 
and 2.3–3.0 Hz for cases 4 and 5, respecti vel y. 

PPDs and waveform/spectra/polarity-fits for all cases are summa- 
rized in Figs 4 and S1 –S6 , respecti vel y. By comparing histograms 
of first and second cases in each panel, we observe that the added 
polarity data in case 2 contribute significantly in reducing parameter 
uncertainties and, in particular, better constraining the source focal 
mechanism parameters, that is H (dip), Kappa (strike) and Sigma 
(rake). A comparison of the second and third cases shows that re- 
placing waveforms with spectra in the joint inversion resolves most 
parameters similarly well, such as DC source parameters. Although 
the model parameters depth and magnitude are notably better re- 
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Figure 6. Spectrum and waveform fits for CMT inversion of the M w 4.2 30 November 2018, event. The waveform and spectra are filtered between 0.03–0.12 
and 0.12–0.5 Hz, respecti vel y. For further details, see Fig. 5 . 
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olved, the spectrum, the location shift parameters and centroid time
re less well constrained in case 3 due to the discarded phase spectra
nformation. 

Cases 4 and 5 consider joint inversion with two different fre-
uency bands to illustrate the influence of intermediate-frequency
ata, that is spectra, in joint inversion. Data fits for the fifth case
re plotted in Fig. 5 and show that the inversion is able to fit the
ain phase with high variance reduction. Posterior distributions

Fig. 4 ) indicate that CMT parameters are well resolved by each
f these last two cases. A comparison between the posterior distri-
utions of these cases demonstrates that uncertainties of centroid
nd lune parameters decrease significantly when data of higher
requency range are included in the inversion. In the amplitude
pectra inversion, discarding phase information causes errors in ar-
i v al times. Consequentl y, solutions obtained from inversions with
pectra-only data are highly ambiguous. The estimated covariance
atrices for waveform and spectrum at station KSM04 for case 5

how highly correlated noise and uncorrelated noise, respecti vel y
 Fig. S7 ). 

.2 Field data examples 

.2.1 The M w 4.2 Fort St John earthquake 

n this section, we apply five cases to the M w 4.2 30 November 2018,
vent (Table 2 ), and vary combinations of data types to consider their
bility to constrain CMT parameters. We chose this event because
t has many high-quality waveforms to consider as the basis for a
eference solution. The MAP solution that we obtain for this event
sing 40 waveforms is consistent with previous studies (e.g. Pe ̃ na
astro et al. 2020 ) and we refer to it as the ‘reference solution’ in

he following (Fig. 7 ). 
Seismic waveform data are restituted, downsampled to 10 Hz,

nd rotated to source–receiver geometry to obtain high SNRs on
orizontal components. A 0.03–0.12 Hz bandpass filter is applied
o the 37-s time window around the P -wave arrival on the wave-
orm while amplitude spectra for 26-s windows are fit between
.12 and 0.5 Hz. We picked 36 polarities for the most impulsive
aveforms. 
Data that are included in cases 1 through 5, respecti vel y, are a

ingle waveform; single waveform and 36 polarities; single spec-
rum and 36 polarities; single waveform, 6 spectra and 36 polarities
nd 40 waveforms (Table 2 ). The waveform and spectra for station
ONT3 are chosen for the field data cases 1 through 3 since it

s the closest station with the highest SNR. The best solution was
btained in case 4 and not only does it fit the main phase of the
a veform w ell, but it also matches the amplitude spectra for the

ower frequency band, where events with such a magnitude excite
trong long-period signals (Fig. 6 ). 

Posterior marginal distributions of the solutions estimated for the
ve cases and the waveform inversion are summarized in Fig. 7 .
omparing cases 1 and 2 demonstrates that polarity data contribute

ignificantly to resolving the focal mechanism. Comparing cases
 and 4 shows that incorporating intermediate frequencies reduces
ncertainty of some parameters such as depth and magnitude. Al-
hough most parameters are resolved similarly to case 2, other pa-
ameters such as time and location shifts are less well resolved.
inally, comparing the results of the joint inference from case 4
ith case 5 shows that all parameters have similar MAP solutions,
ith small uncertainties although they are somewhat larger in case 4

han for case 5. Nonetheless, we conclude that the solution obtained
y the joint data set inversion (case 4) is of comparable quality
o the reference 40-waveform inversion (case 5). Notably, the lune
arameters of the moment tensor obtained by the joint inversion
ndicate a nearly pure DC moment tensor. This result is also illus-
rated by the MT decomposition (Fig. 8 ). This is reassuring, since
igh non-DC components for earthquakes may indicate susceptibil-
ty to theory errors. In fact, such non-DC components are often the
eason to constrain the MT to special cases (Vasyura-Bathke et al.
021 ). 
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Figure 7. Posterior distributions of the solutions of the M w 4.2 30 November 2018 event obtained by waveform and joint inversions. For further details, see 
Fig. 4 . 
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4.2.2 Ten M w ≤3 local/regional events 

Finall y, we jointl y invert the av ailable data of 10 events. For M ≤
3 events, Bayesian waveform inversion often is barely able to re- 
solve source parameters due to limited data quality. Therefore, we 
incorporate fewer but high-quality waveforms in our inversions. As 
a representative example, CMT results for the M L 2.5 10 Septem- 
ber 2020, event are discussed here in detail. This event has one 
high-quality waveform, along with a number of acceptable spec- 
tra (Fig. 9 ). We use data from stations at epicentral distances up 
to 50 km. A 30-s and 23-s window around manually picked body 
w ave arri v als is considered for the single waveform and amplitude 
spectra, respecti vel y. A third-order bandpass filter between 0.05 and 
0.2 Hz is applied to the waveform, and a frequency filter between 0.4 
and 1.0 Hz is applied to spectra. In addition, polarities are picked 
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Figure 8. Moment tensor decomposition and polarity fit of the solutions for the M w 4.2 Fort St John event (30 November 2018) obtained by the joint inversions 
of one waveform, 6 spectra and 36 polarities (case 4). White diamonds and black squares show positive and negative polarities. 

(a)

(b)

Figure 9. (a) Spectrum and waveform fits and (b) covariance matrices of residuals for the CMT inversion of M L 2.5, 10 September 2020, event. The waveform 

and spectra are filtered between 0.05–0.2 and 0.4–1.0 Hz, respecti vel y. The two last rows show non-Toeplitz covariance matrices estimated on the residuals of 
the MAP solution. For further details, see Fig. 6 . 
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Figure 10. Posterior distributions of the solutions of M L 2.5 10 September 2020, event obtained by joint inversion. Red lines show MAP model parameters. 

Figure 11. (a) Fuzzy focal mechanism with polarity fit and (b) lune of the 
solution obtained for M L 2.5 10 September 2020 event. 
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manually on displacement data that are filtered in the frequency 
band of 0.1–5.0 Hz. 

The results are presented as an example of waveform fits, which 
include 200 random samples of the ensemble, and covariance matri- 
ces (Fig. 9 ); 2-D posterior distributions (Fig. 10 ) that show qualita- 
tive statistics of model parameters and their correlations; the fuzzy 
focal mechanism and the lune (Fig. 11 ) that illustrates marginal- 
ization for the moment tensor decomposition. Dependability of the 
solutions are e v aluated b y data fits (Fig. 9 ), such that waveform 
fits are demonstrated in terms of the posterior predictive distribu- 
tion and fits on waveform and spectra are quantified by variance 
reduction (Vasyura-Bathke et al. 2020 ). The majority of predic- 
tions fit the main trend of the waveform and amplitude spectra. In 
addition, the inversion successfully resolves the amplitude of the 
waveform and those of amplitude spectra, which raises confidence 
that the depth and magnitude are well estimated. Generally, trans- 
verse signal components are better explained than others due to 
less complexity. Examples of the estimated non-Toeplitz covari- 
ance matrices for waveform and spectra at different stations for this 
event show correlation highlighting the importance of including 
correlated noise components in the noise estimation (Fig. 9 ). 

CMT parameters are resolved with low uncertainty and modes 
of the distribution are generally near the MAP model (Fig. 10 ). The 
strongest correlations can be observed between the longitude ( v ) and 
latitude ( w ) of the lune parametrization, and magnitude and depth 
of the event. Among centroid parameters, only east shift has a mild 
correlation with dip ( h ). The estimated depth and magnitude of the 
MAP model are the same as their corresponding catalogue values. 
Centroid location shifts are reasonable and small, which means that 
the catalogue location was reasonable. At ∼0.1 s, the STF length 
(duration) is also reasonable for this magnitude. Fault geometry 
parameters indicate a strike-slip mechanism caused by the NW–SE 

or SW–NE movement on a nearly vertical fault surface. 
The fuzzy focal mechanism for the solution (Fig. 11 ) shows 

a strike-slip mechanism with well-fit polarity data. Parameters V 

and W of the lune parametrization (Fig. 10 ) refer to deviatoric 
and isotropic components of the source mechanism, respecti vel y. 
Here, these parameters are small, which suggest that the source 
mechanism is nearly a pure DC. In addition, the lune plot (Fig. 11 ) 
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Figure 12. Examples of agreement between noisy waveforms not included in the inversion and prediction generated with the MAP model for these locations. 
The predicted waveforms agree with main data features, indicating a robust result. 
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resents the same information as a 2-D marginal. Although not
oncerning, the small non-DC component is expected for induced
vents, but still could be an artefact of the inference (e.g. Valentine
 Woodhouse 2010 ; Vasyura-Bathke et al. 2021 ). 
To summarize the results for all events, we present a map of

uzzy focal mechanisms obtained by the joint inversion (Fig. 2 ).
ost mechanisms are strike-slip dominated, while some include

blique thrust. 
To further study the quality of the CMT solutions, we present

omparisons of observed waveforms with predicted waveforms for
hannels not included in the inversion. Fig. 12 shows that the so-
utions of two events match the main phase even for waveforms
ith poor SNR (e.g. MONT01, BCH1A, BCH2A and MONT09).
his also supports the claim that we are able to resolve CMT mod-
ls with a small number of stations with little azimuthal cover-
ge. Ho wever , this result depends on the station setting and also
ath effects. Thus, a higher azimuthal station coverage is usually
esirable. 

 D I S C U S S I O N  A N D  C O N C LU S I O N  

e applied Bayesian joint inversion of waveforms, spectra and po-
arities with noise covariance estimation to several earthquakes of
 < 3. Source inversions may suffer from a lack of high-quality

ata for small to moderate earthquakes due to weak long-period
xcitation and/or sparse station coverage. In addition, the solu-
ion obtained by including highly contaminated waveform data
ay be unreliable. We choose only a single or few high-quality
av eforms and e xclude those that are noisy or produce poor vari-

nce reductions. Since these few waveforms are insufficient to
esolve CMTs with low uncertainty, the information is comple-
ented by amplitude spectra and first-motion polarities. All data

re extracted from seismic waveforms but in distinct frequency
ands: Polarity data are picked on broad-band waveforms filtered
 p  
etween 0.1 and 5.0 Hz, amplitude spectra are in the intermediate
and from 0.3 to 1.2 Hz, and waveforms are in the band 0.05–
.2 Hz. 

We apply Bayesian inference to our joint inversion to quantify the
ncertainties of model parameters. In this framework, we consider
wo likelihood functions based on the assumption of Gaussian-
istributed noise on the raw waveform data. Since the number of
ata vary significantly for the three data types, it is crucial to ac-
ount for data covariances in the case of spectra and waveforms.
therwise, polarity data would be overwhelmed by the other two
ata types or require subjective weighting. Covariance estimation is
 y an iterati ve method, performed during earl y stages of sampling
nd produces a non-Toeplitz covariance matrix (Vasyura-Bathke
t al. 2021 ). Inclusion of these co variance matrices remo ves the
equirement for subjective data weights from the joint inversion.
urther, the non-Toeplitz covariance matrix also accounts for ve-

ocity model mismatch, centroid location errors and other theory
rrors intrinsically. 

An assumption in the likelihood function (eq. 2 ) is the inde-
endence of noise: The formulation assumes that the noise of a
articular data type is not correlated with the noise on the other data
ypes. The justification for this formulation is that the waveforms
nd spectra are processed for non-overlapping frequency bands.
o support this assumption, we considered pre-earthquake noise,
rocessed identically to data employed in the inversion. For each
vent and stations that are common in both data types, we computed
ross-correlations for time series representative of waveforms and,
hat representative of spectra. The obtained Pearson coefficients are
elow 0.15 ( Table S3, Figs S8 –S14 ) indicating insignificant corre-
ation. 

The lune parametrization (Tape & Tape 2015 ) is utilized to
arametrize the moment tensor. This parametrization is a pro-
ound advantage for considering CMTs in a Bayesian framework
ince prior specification becomes intuiti vel y straightforw ard and the
arametrization permits changing the MT model constraints simply
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by limiting the prior for some parameters (e.g. limiting the MT to 
only consider DC mechanisms). 

Simulation cases demonstrated the method’s capability and reli- 
ability. For field data, we demonstrated the method for the largest 
event in the study area where many high SNR waveforms are avail- 
able and other published solutions exist. The results show that joint 
inv ersion can resolv e the CMT with just a single waveform com- 
plemented with spectra and polarities to comparable uncertainty as 
the reference solution based on 40 waveforms. Results for a M L 2.5 
event show similar results. Finally, results for 10 events in the region 
show robust results to M L 1.6. Estimates of CMTs for all events in- 
dicate predominant strike slip focal mechanisms with low CLVD 

and low isotropic components. Shallow depths are resolved for all 
events, and source durations appear to be reasonably resolved. 

Ov erall, we observ ed that incorporating amplitude spectra at in- 
termediate frequencies significantly reduces model parameter un- 
certainties. In addition, polarity data resolve the focal mechanism 

which, in turn, helps reducing uncertainties for the centroid and 
STF parameters. 
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