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A B S T R A C T

Inland water bodies play a vital role at all scales in the terrestrial water balance and Earth’s climate
variability. Thus, an inventory of inland waters is crucially important for hydrologic and ecological studies
and management. Therefore, the main aim of this study was to develop a deep learning-based method
for inventorying and mapping inland water bodies using the RGB band of high-resolution satellite imagery
automatically and accurately.

The Sentinel-2 Harmonized dataset, together with ZABAGED-validated ground truth, was used as the main
dataset for the model training step. Three different deep learning algorithms based on U-Net architecture were
employed to segment inland waters, including a simple U-Net, Residual Attention U-Net, and VGG16-U-Net.
All three algorithms were trained using a combination of Sentinel-2 visible bands (Red [B04; 665nm], Green
[B03; 560nm], and Blue [B02; 490 nm]) at a 10-meter spatial resolution.

The Residual Attention U-Net achieved the highest computational cost due to the increased number
of trainable parameters. The VGG16-U-Net had the shortest run time and the lowest number of trainable
parameters, attributed to its architecture compared to the simple and Residual Attention U-Net architectures,
respectively. As a result, the VGG16-U-Net provided the best segmentation results with a mean-IoU score of
0.9850, a slight improvement compared to other proposed U-Net-based architectures.

Although the accuracy of the model based on VGG16-U-Net does not make a difference from Residual
Attention U-Net, the computation costs for training VGG16-U-Net were dramatically lower than Residual
Attention U-Net.
1. Introduction

Inland waters (i.e., rivers, streams, lakes, reservoirs, wetlands, and
flood plains) significantly impact hydrological and biogeochemical cy-
cles. They play a vital role at all scales in the terrestrial water balance
and Earth’s climate variability (Zhang et al., 2021a; Cooley et al.,
2021). Furthermore, inland waters provide vital resources for humans
and are the sole habitat for an extraordinarily rich, endemic, and
sensitive biota. However, like many other ecosystems over the past cen-
tury, humans’ high demands on freshwater, continuous demographic
pressure, and climate change have threatened the existence of inland
water resources and biodiversity around the world (Dudgeon et al.,
2006). Consequently, tracking and quantifying human and climate
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change influence on global inland water is essential, particularly for
small water bodies, and delineating them is a prerequisite for further
monitoring, modeling, and management.

Since the 1970s, remote sensing techniques have become increas-
ingly popular for detecting and mapping inland waters regionally and
globally (Bukata, 2013; Palmer et al., 2015). Since the launch of
Sentinel-2, this trend has increased as Sentinel-2 is continuously ac-
quiring high-resolution images from the land surface. Therefore, the
scientific community and public and private sectors have used Sentinel-
2 data extensively for land cover/use monitoring, including water
bodies detection (Xu et al., 2019; Phiri et al., 2020). Many former
studies using methods like spectral indices (Feyisa et al., 2014; Zou
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et al., 2017), single band density slicing (Worden et al., 2021), or
supervised classification (Bangira et al., 2019; Ghasemigoudarzi et al.,
2020) for detecting and mapping water bodies as water bodies appear
dark in optical remote sensing due to high absorbance of irradiance in
the near-infrared (NIR) spectrum. Nevertheless, these methods exhibit
limitations and can be challenging when attempting to inventory inland
waters with satisfactory accuracy. For example, the determination of
a consistent threshold value is frequently hindered by fluctuations in
the physical environment across both space and time, as highlighted in
prior research (Worden and de Beurs, 2020). While some approaches
involve the use of multiple threshold values to identify an optimal
threshold (Ji et al., 2009), this may not be universally applicable,
particularly for water bodies with complex shapes, sizes, and spec-
tral characteristics. Additionally, such methods may lack robustness
in handling variations in image quality, resolution, and acquisition
conditions (Sekertekin, 2021; Kavats et al., 2022). In water body clas-
sification, shadows produced by mountains, trees, buildings, and river
banks can contaminate satellite imagery classification of water bod-
ies (Pan et al., 2020). Therefore, a new method is still desirable for
detecting and mapping inland waters where high-resolution orbital
remote sensing data automatically and accurately.

Recent advancements in deep learning, particularly the use of se-
mantic segmentation algorithms, play a pivotal role in classifying re-
mote sensing images (Zhao et al., 2017; Lv et al., 2022). Among
various semantic segmentation approaches, the U-Net architecture has
gained attention for achieving excellent recognition of fine objects in
complex scenes with relatively small amounts of training data (Abdi
et al., 2018; Li et al., 2019; He et al., 2023). Importantly, our re-
search seeks to investigate the robustness of U-Net architectures in
handling diverse geographical and environmental conditions, including
different terrains, climates, and characteristics of inland water bodies.
Despite the growing use of U-Net-based algorithms, there remains a
need for exploring diverse architectures tailored to specific challenges
and scenarios in remote sensing applications. Previous studies have
highlighted the superiority of U-Net in classifying land covers from
medium-resolution remote sensing data (Zhang et al., 2021b). Addition-
ally, innovative modifications, such as replacing the convolution layer
with a bottleneck structure, have demonstrated impressive accuracy
in segmenting water bodies while reducing model size and prediction
time (An and Rui, 2022). U-Net has also proven effective in addressing
shadow contamination issues in complex geographical scenes (Wang
et al., 2021). Continued exploration of U-Net-based models with diverse
architectures is crucial for segmenting various remote sensing scenar-
ios and feature types. The adaptability and customizability of U-Net
architectures make them versatile for addressing specific challenges,
providing potential solutions, and demonstrating applicability across
diverse remote sensing scenarios. Given the wealth of remote sensing
data available for applications such as land cover mapping and environ-
mental monitoring, U-Net-based models can be optimized for specific
tasks, such as segmenting small objects, handling multi-spectral data,
and processing high-resolution images.

This study stands out as a pioneering effort in its domain, as a
comprehensive review of the literature underscores a notable gap—
no similar research has been conducted to specifically address the
challenges of detecting and mapping inland waters in diverse geo-
graphical and environmental conditions using U-Net architectures. The
current investigation aims to bridge this void and contribute novel
insights to the field, making it a unique and valuable addition to the
current body of knowledge. The primary objective of this research is
to develop, implement, and test an accurate deep learning segmen-
tation method with reasonable computational cost for detecting and
segmenting inland water bodies from high spatial resolution (10 m)
remote sensing images. The choice of the U-Net is motivated by its solid
performance in semantic segmentation tasks. Additionally, two other
U-Net architectures, Residual Attention U-Net and VGG16-U-Net, are
explored to identify the best architecture for automated inland water
2

detection based on accuracy and computational cost.
2. Materials and pre-processing

2.1. Data preparation and pre-processing

This study acquired the raw images using the sentinel-2 Harmonized
dataset archived on the Google Earth Engine JavaScript platform (GEE).
The southern part of the Czech Republic, including the South Bohemian
region, was selected as the region of interest (Fig. 1). This part of Czech
republic were considered to train the model because of the more water
bodies in and artificial lakes existing in this region of the country.
Including images with more related RoI regions were helpful to train
more efficient models to predict the water bodies. Sentinel-2 images
acquired during summer 2022 with less than 10% of cloud covering
were considered as datasets for training and testing algorithms.

In this study, the combination of visible bands of sentinel-2 (Red
[B04; 665 nm], Green [B03; 560 nm], and Blue [B02; 490 nm]) were
considered and used to obtain true color images for segmentation pur-
pose. The reason of considering RGB bands is because the more bands
used, the more complex and computationally expensive the segmenta-
tion model. In other words, increasing model development and deploy
the model requires more time and computation power. Additionally,
not all bands may provide useful information for segmenting of water
bodies, so it is often more efficient to select a relevant subset of bands.
Therefore, using only the RGB bands, which produce true color images,
was a reasonable choice, given their sufficiency in achieving good
accuracy in segmenting water bodies. Using fewer bands can also help
reduce overfitting, which occurs when a model becomes too complex
and fits the training data too closely, resulting in poor generalization
to new data. By using a simpler model with fewer input features, the
risk of overfitting can be reduced and the generalization performance
of the segmentation model can be improved.

To achieve RGB images and render the image as a true-color com-
posite, The Earth Engine visualization parameters and specific bands
are configured as ‘B4’ (665 nm), ‘B3’ (560 nm), and ‘B2’ (490 nm) for
red, green, and blue color channels with 10-meter spatial resolution, re-
spectively. The ‘‘min’’ and ‘‘max’’ values in visualization parameters are
suitable for displaying reflectance from typical Earth surface targets.
The min value was set to zero, the max value was considered equal
to 4000, and the Gamma correction factor was set to 1.4. After col-
lecting the raw images from the Google Earth Engine (GEE) JavaScript
platform, Raw images were downloaded and transferred into the QGIS
software for further processing.

After transferring the raw image data into the QGIS, the specific
parts of the South Bohemian region (Fig. 1, the rectangle) was selected
as the main dataset. On the other hand, the labeled data from Czech
Republic inland waters provided by ZABAGED (Czech Geodetic and
Cadastral Office, 2019) were imported into the QGIS to generate the
shape file of the inland water for all parts of the Czech Republic. Then,
the same specific coordination from the GEE image and the labeled data
were exported as ‘‘Tiff’’ file with a big size of 46𝐾×46𝐾 pixel resolution.

In the next step, the image and mask in big size were patchified
into smaller parts (Fig. 2). That process generated the main dataset for
further analysis. The patchifing step splits images into small patches by
given patch cell size (Weiyuan et al., 2017) (ie. like cropping image in
big size into the small parts). Images were patchified and masked into
the 2048 × 2048 pixel resolution to achieve suitable region of interest
(ROI) area and avoid pixelating and blurring problems in the smaller
size of the images. The patchifying step helped us to convert the image
in big size into the images in smaller size to use in training step. After
patchifying the image and mask into smaller parts, we achieved 504
images as the main dataset. The main dataset was split into three parts:
(1) train set by randomly considering 322 images (80% of the main
dataset), (2) test set by randomly considering 101 images (20% of the
main dataset), (3) for model validation progress, 20% of the train set
randomly selected (81 images) to prevent over-fitting problem during
training progress and reach more stable performance for generated

models.
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Fig. 1. The map of the study area. The red region represented the area selected for the data collection phase. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
2.2. Neural network architecture

2.2.1. Simple U-Net
Deep neural network methods delivered promising outcomes in

classification and segmentation tasks in terms of accuracy when dealing
with a large dataset. One of the promising neural network architectures
for semantic segmentation is U-Net. The U-Net based methods deliver
promising outcome in different sensitive research fields including med-
ical and microscopy regions (Ronneberger et al., 2015; Ghaznavi et al.,
2022). The U-Net was proposed and created for semantic segmentation
based on the convolutional neural network (CNN) architecture and
comprised of an encoder–decoder convolutional network topology. The
encoder and decoder blocked in each level were connected to each
other via a bridge to combine features from the encoder part with
extracted features from the decode section. The feature representation
extracted by the decoder part is useful for positioning, whereas encoder
part features are efficient in achieving accurate segmentation. The
proposed architecture for the simple U-Net method applied in this
research is displayed in Fig. 3.

The first layer of the encoder part (Fig. 3, Part 𝐴) accepts images
with the size 512 × 512 with three color channel (RGB) mode as
input. The proposed U-Net structure has five levels. Each level consists
of two 3 × 3 convolutions followed by Batch normalization for each
convolution layer and applying a rectified linear unit ‘‘ReLu’’ as activa-
tion functions. In each level of the encoder part (down-sampling), the
image size was halved by applying 2 × 2 max pooling operation, and
the number of feature channels was doubled using convolutions. The
maximum value was selected in the 2 × 2 area with the stride of two
by max pooling operation. The encoder part of the network extracts
the features and learns an abstract representation of the input image
through a sequence of the encoder blocks.

In the decoder or up-sampling section (Fig. 3, Part 𝐵), the dimension
of the feature maps in each level was doubled from the layer at the
bottom to the top layer till achieved the exact same size as the input
images. The bridge connection combined the extracted features from
the encoder part into the decoder section. As a result of the concatena-
tion step, the channels of the output feature maps will be twice as big
as the size of the input features. The Concatenation step of feature maps
in U-Net gives us better localization information. The output of the
last decoder layer at the top includes 1 × 1 convolution with Sigmoid
activation to predict the probabilities value of pixels for classification
purposes. The size of the feature map at the output layer was achieved
the exactly as same size as the input layer by applying Padding in the
convolution process. The decoder part of the network used extracted
3

abstract representation from the encoder part and generated a semantic
segmentation mask. The Binary Focal Loss was used as loss function of
the U-Net.

2.2.2. Residual attention U-Net
The architecture of U-Net consists of encoder and decoder blocks

that are connected via a bridge at each level (Fig. 3). The bridge
connections are responsible for merging the down-sampling and up-
sampling paths together to reach spatial information. On the other
hand, the concatenation step may transfer many unimportant and
useless feature representations from the encoder part during the combi-
nation process. The attention mechanism implemented based on U-Net
architecture (Fig. 4, part 𝐷) was proposed by Oktay et al. (2018)
with a promising outcome in medical imaging. The soft attention
mechanism was implemented to keep and highlight the most represen-
tative features and enhance achieved segmentation results by simple
U-Net. The soft attention mechanism remark the important features
and represses activations in the unrelated regions. As a result, model
sensitivity and performance were slightly improved by employing the
attention gate without requiring complicated and heavy computational
costs (Ghaznavi et al., 2022).

The employed soft attention gate (Fig. 4, part 𝐷) getting two inputs,
𝑥 and 𝑔. The input 𝑥 was achieved by the concatenation bridges from
the early layers of the encoder part and includes better spatial informa-
tion. Input 𝑔 comes from the deeper layers of the network known as the
gating signal, which includes more efficient feature representation and
contextual information to identify the focus region and gives weight
to the different parts of the images. The attention coefficients 𝛼 ∈
[0, 1] identify, extract, and assign weights to the features belong to
the important part of the image regions in our case the water bodies.
The attention mechanism progress, getting the weights to the pixels
according to their relevance in training steps (Oktay et al., 2018). The
more relevant part of the image will get weights bigger than the less
relevant parts. So, by applying the achieved weights in the training
process, we trained model that is more attentive to the relevant image
parts. The multiplication of the input feature maps 𝑥𝑙 and the achieved
attention coefficient 𝛼 generate the output of the attention gate:

q𝐼𝑎𝑡𝑡 = 𝜓𝑇 (𝜎1(𝑊 𝑇
𝑥 𝑥

𝐼
𝑖 +𝑊

𝑇
𝑔 𝑔𝑖 + 𝑏𝑔)) + 𝑏𝜓 , (1)

𝛼𝐼𝑖 = 𝜎2(𝑝𝐼𝑎𝑡𝑡(𝑥
𝐼
𝑖 , 𝑔𝑖;𝛩𝑎𝑡𝑡)), (2)

whereas the 𝜎1 and 𝜎2 parameters correspond to the relu and sigmoid
activation functions and 𝛩 indicate different parameters including
𝑎𝑡𝑡
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Fig. 2. Train set images and corresponded ground truth images. The size of image is 512 × 512.
linear transformations 𝑊𝑥 and 𝑊𝑔 , function 𝜓 and bias terms 𝑏𝜓 and
𝑏𝑔 (Oktay et al., 2018).

Deeper neural networks deliver more effective performance in com-
plex classification and segmentation tasks (Nishimura et al., 2021).
Each level of the proposed U-Net-based architectures consists of many
convolutional blocks (Fig. 4). The input value enters into the Convolu-
tional blocks, the convolution operation, and the activation function
applied in the input value and generates the output. In neural net-
works, the output of each convolutional block is the input of the next
convolutional block. So, by making the neural network architecture
deeper, the calculated gradient value from one block to another will
be smaller because of the gradient vanishing effect, and the accuracy of
4

the trained model will degrade rapidly instead of improving. The gra-
dient vanishing problem appeared during the training procedure and
affected the model’s generalization ability. To mitigate this problem,
the residual mechanism was implemented and applied to the proposed
method to continuously update the calculated gradient values in each
convolutional block and improve the performance of trained models (Ni
et al., 2019). The proposed residual blocks, known as skip connections,
will bypass one or more layers and update the gradient values from one
or more previous layers into the layer step ahead. By combining the
soft attention mechanism with the residual mechanism, we will get the
weights into the important part of the image and overcome the gradient
vanishing problem during training progress.
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Fig. 3. The simple U-Net Architecture. Part 𝐴 represent the encoder section and part 𝐵 represent decoder section.
2.2.3. VGG16-U-Net
Different CNN architectures have been proposed to be combined

with the U-Net architecture for improving the trained model accuracy
and computational cost of the U-Net and reducing the number of
trainable parameters in comparison to the simple U-Net. The VGG is
the basis of CNN architecture proposed by Simonyan and Zisserman
(2015) and developed by the Visual Geometry Group from Oxford
University. The VGG was developed and proposed to reduce the number
of trainable parameters in the Convolutional layers and improve the
training time because of the structure of the developed architecture
proposed by Simonyan and Zisserman (2015). The VGG architecture
has many different variants depending on the number of layers from
VGG11 to VGG19. The VGG16 efficiently performed many object de-
tection and image classification tasks (Hamwi and Almustafa, 2022;
Wahyuni et al., 2021). Due to this, in this research, the hybrid VGG16-
U-Net architecture was chosen and implemented to compare with two
other methods and improve the semantic segmentation results in term
of performance and computational costs. To implement the proposed
hybrid network, the encoder part of the U-Net, which is responsible
for extracting the feature representation, was completely replaced with
the VGG16 structure (Fig. 5, part 𝐵). The VGG16 architecture at the
encoder part (Fig. 5, part 𝐴) consists of sixteen layers, including thir-
teen convolutional layers and three dense layers. The 3 fully connected
layers of Vgg16 (Fig. 5, part 𝐴, green rectangles) were replaced with
architecture that resembled the decoding part of U-Net, which formed
the expanding path with convolution layers and upsampling layers
(Fig. 5, part 𝐵). Hence, the VGG16 without the final 3 fully connected
layers was retained as the contracting path (Balakrishna et al., 2018).

The first layer of the encoder section takes the input image with
the size of 512 × 512 in RGB color mode and has 64 channels. Each
convolutional blocks in each level have max pooling progress with the
size of 2 × 2 and a stride of two to extract the maximal value. In each
level of the encoder section, the size of the image was half, and the
size of feature channels was doubled from 64 to a maximum of 512.
The right side of the network (Fig. 6, Part 𝐵) represents the decoder
part with five levels. The structure of the decoder section remained
the same as we applied in the simple U-Net method. Each level of
the encoder and decoder parts was connected via a concatenation
5

bridge. The concatenation step combines features extracted from the
encoder section with the decoder section, and this concatenation step
is important for achieving localization information. The last encoder
layer has 1 × 1 convolutional size to predict the probability value of
each pixel and generate the semantic segmentation by applying the
‘‘Sigmoid’’ activation function.

2.3. Training models

The computational platform used for implementing all methods is
Python 3.9. All deep learning frameworks were implemented using
Keras with the backend of Tensorflow (Abadi et al., 2016) to train
the best stable models. After developing methods and completing of
implementation phase for all CNN architectures, the complete method
was transferred and compiled on the Google Collab Pro + cluster
account. The google clusters are equipped with two vCPU as processors,
24 Gb of RAM as memory, and P100 and T4 graphical processor
unit (GPU)(Google LLC, California, USA). By the completion of the
data pre-processing step (Section 2), 80% of the main dataset was
chosen randomly as a train set (322 images), and the rest of 20%
was considered randomly as a test set (101 images) for testing and
evaluating the generated models’ performance. Meanwhile, 20% of the
training set was chosen randomly as the validation set (81 images)
to validate the model and prevent over-fitting problems during the
training process.

The input image size used in proposed CNN architectures was
512 × 512 px. All dataset images were resized from 2048 × 2048
px into 512 × 512 px as proper and specific input image size for
proposed CNN’s. We employed data augmentation variables during
model training for all three CNN methods. The best-achieved values
for each hyperparameter were reported in Table 1. The early stopping
parameters are useful to prevent the over-fitting problem in the training
phase. The threshold for patient value is set equal to 20. The ‘‘Relu’’
was selected as an activation function, and the Batch size value was
considered 8. As a description of data Augmentation parameters, the
‘‘rotation range’’ means randomly rotating images between [−90, 90]
degrees. The ‘‘width shift range’’ shift the image to the left or right
(horizontal shifts), and the ‘‘height shift range’’ parameter shifts the
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Fig. 4. The proposed architecture for Residual attention U-Net. Part 𝐴 represents the encoder section, and part 𝐵 represents the decoder section. Part 𝐶 represents the residual
mechanism. Part 𝐷 represent the soft Attention mechanism. Each feature map has size as 𝐻 ×𝑊 ×𝐷, which 𝐻 , 𝑊 , and 𝐷 represent height, width, and number of channels.

Fig. 5. Architecture of the VGG16 and its variants. 𝐴) represent the VGG16 network architecture. 𝐵) represent VGG16–U–Net architecture.
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Fig. 6. Architecture of the proposed Hybrid VGG16-U-Net model. 𝐴) represent the encoder part of VGG16 architecture, 𝐵) represent the decoder part of U-Net respectively.
Table 1
The value of Hyperparameters used for all CNN models.

Hyperparameter Value

Activation function Relu
Learning rate 10−3

Size of the Bach 8
Number of the Epochs 70
Early stopping 20
Number of steps in each epochs 100
Rotation range 90
Width shift 0.3
Height shift 0.3
Shear range 0.5
Zoom range 0.3
image vertically (up or down). The ‘‘shear range’’ parameter shows a
distorted image along an axis to create or rectify the perception angle.
The random zoom for the training images was obtained by the ‘‘zoom
range’’ parameter. For optimizing the network, we choose the ‘Adam’
optimizer. The learning rate value was considered to 10−3.

Semantic segmentation progress could be defined as a classification
task at the pixel level to classify those pixels into water bodies or other
classes. The segmented water bodies’ images with the ground truth (GT)
were compared to minimize the difference between them during the
training using the Dice loss. The Binary Focal Loss was used as a loss
function for semantic segmentation (Eq. (3)) (Lin et al., 2020):

Focal Loss = −𝛼𝑡(1 − 𝑝𝑡)𝛾 log(𝑝𝑡), (3)

Which 𝑝𝑡 ∈ [0, 1] represents the predicted probability value achieved
by the model for the ground truth class with label 𝑦 = 1; 𝛼𝑡 ∈ [0, 1]
corresponding to the weighting factor for class 1 and 1 − 𝛼𝑡 for class
0; and 𝛾 ≥ 0 representing tunable focusing parameter. Applying focal
loss efficiently achieved better segmentation performance in regions
of images that are challenging to segment (e.g., narrow inland water
bodies or inland bodies with a similar texture to forest) and separate
sensitive inland water bodies from the background. On the other hand,
the focal loss as loss function manages and reduces the participation
of the pixels belonging to the specific region that can be segmented
easier (e.g., big and visible inland waters) over the image region in the
7

model training progress. The model has the responsibility of updating
the gradient direction. This progress depends on the loss of the model.

2.4. Evaluation metrics

To evaluate segmentation models generated by CNN’s, different
evaluation metrics were used (Eqs. (4)–(8)). The TP represents a true
positive, FP indicates a false positive, FN corresponds to a false nega-
tive, and TN represents true negative values, respectively (Pan et al.,
2017). The generated models were evaluated with the test sets using
described metrics, and mean values of each metric were reported in
Table 3.

The accuracy (Acc) metric indicates the percentage of the pixels
which segmented correctly from water bodies. The Precision (Pre)
metric represents a ratio of the pixels segmented as water bodies that
exactly match the masks (GT). The Recall metric indicates the ratio
of pixels belonging to the water bodies in the mask (GT), which is
detected properly over the segmentation process. The Dice coefficient,
known as F1-score, indicates if the segmented area is equal to the mask
of the image (GT) in terms of location and level of detail. The F1-
score represents ascertaining how accurate is the segmentation result
in boundary regions (Csurka et al., 2013) and is more important than
the ACC metric for evaluating model performance. The most important
metric for segmentation model evaluation is Intersection over Union
(IoU), also known as the Jaccard similarity index. The mentioned



Applied Computing and Geosciences 21 (2024) 100150A. Ghaznavi et al.

I

Table 2
CNN’s architecture trainable parameters and runtimes.

Network name Training time Trainable parameters

U-Net 3:01’:47’’ 31,402,501
Residual Attention U-Net 4:17’:23’’ 39,090,377
VGG16-U-Net 2:53’:19’’ 25,862,337

metric represents the correlation between the prediction of the model
and mask (GT) (Long et al., 2015; Vijay et al., 2015), and indicates the
overlap and union area proportion for the model predicted and mask
(GT).

Acc = TP + TN
TP + FP + FN + TN (4)

Pre = TP
TP + FP (5)

Recl = TP
TP + FN (6)

Dice = 2 × Pre × Recl
Pre + Recl = 2 × TP

2 × TP + FP + FN (7)

oU =
∣ 𝑦𝑡 ∩ 𝑦𝑝 ∣

∣ 𝑦𝑡 ∣ + ∣ 𝑦𝑝 ∣ − ∣ 𝑦𝑡 ∩ 𝑦𝑝 ∣
= TP

TP + FP + FN (8)

3. Results and discussion

The proposed neural network models were well trained by process-
ing 70 epochs according to the training/validation loss and accuracy
plots (Fig. 7). To achieve the best training performance and stability,
we assume all models were trained well according to the best-optimized
hyperparameter values listed in Table 1. The best hyperparameter val-
ues were achieved by training several models based on different values
of hyperparameters to achieve the best model performance and training
stability. The trained models were evaluated using a test dataset to
assess the performance of the proposed models based on the metrics
written in Eqs. (4)–(8).

The simple U-Net model had an average computational cost in
comparison with the Residual attention and VGG16-U-Net architecture.
However, the number of the trainable parameters in the Residual
attention U-net increased dramatically because of soft attention and
residual mechanism, which cause the highest computational cost by this
architecture. On the other hand, VGG16-U-Net had the lowest number
of trainable parameters and, as a result, the shortest run time because
of the structure of this architecture and achieved the best performance
compared with the other two proposed methods (Table 2).

Fig. 8 shows the segmentation results achieved by different pro-
posed CNN architectures. The result of segmentation accomplished by
U-Net did not manage to segment all the water bodies over the test
set image and suffered from a miss segmentation problem (Fig. 8, red
circle). The Residual Attention U-Net segmented the borders of water
bodies in complete shape, and the segmentation result was improved
in comparison with the simple U-Net. Nevertheless, the result achieved
by Residual Attention U-Net faced the under-segmentation problems
in some water bodies regions to detect and segment some edges as
visualized in Fig. 8 (green circle). The best performance of the segmen-
tation was achieved by the VGG16-U-Net method. The result represents
a more precise and accurate segmentation of the water bodies’ borders,
especially in the edge region and sensitive areas (Fig. 8, light blue
circle).

Table 3 displays the evaluation of different U-Net-based proposed
models with different evaluation metrics using (Eqs. (4)–(8)) as the
mean value for all the metrics. The simple U-Net achieved the lowest
segmentation performance according to the value of Mean-IoU and
other evaluation metrics. The Residual Attention U-Net model repre-
sents a more improved segmentation result in comparison with the
U-Net model in terms of the same test set image and evaluation metric
8

values. In one more step, the segmentation result was further improved
after applying the VGG16 encoder architecture with U-Net as a hybrid
VGG16-U-Net method.

The U-Net architecture is one of the promising semantic segmenta-
tion methods which have been used in different research fields. The
simple U-Net have been selected as first method to implement and
apply in our study. As next phase, we slightly improved the obtained re-
sult by modifying the simple U-Net architecture by adding the residual
mechanism together with soft attention mechanism as extension into
the simple U-Net. At the last step, we replaced the encoder (feature
extraction) part of the U-Net with more powerful VGG16 architecture
to build hybrid CNN architecture with more efficient feature extraction
section and compare the obtained result with previous methods in term
of performance and computational costs.

To the best knowledge, there is no similar research that has been
done before based on the proposed methods for detecting and seg-
menting inland water. However, some researchers applied different
deep learning algorithms to detect and segment the inland waters.
Table 4 represent the comparison of the similar literature with the
proposed methods in this study. Zhong et al. (2022) proposed a noise-
cancelling transformer network (NT-Net) for the automatic extraction
of lake water bodies from remote sensing images and resolve the
over-segmentation problem obtained by other literature. The proposed
method obtained a 0.862 accuracy value in terms of the IoU met-
ric. Zhang and Wang (2019) proposed a modified feature extraction
network and a modified encoder–decoder network based on depth-wise
separable convolution for segmenting the water bodies. The proposed
method achieved 0.984 IoU metric accuracy. The authors in Xiang
et al. (2023) proposed a dense pyramid pooling module (DensePPM)
to extract global prior knowledge with a dense scale distribution for
Segmenting Water Bodies From Aerial Images. The proposed method
obtained a 0.842 metric value in terms of the IoU metric. Chang
et al. (2022) proposed modified U-Net with residual mechanism and
attention mechanism in encoder section based on PMS1 remote sens-
ing data of GF2 satellite. The authors achieved good result (i.e., IoU
= 0.9270). Ch et al. (2022) used Sentinel-2 image with two Band3
(Sentinel-2 Green Channel) and Band8 (Sentinel-2 Infrared Channel)
and combined these two channel by following ‘‘NWDI’’ formula (as
described in original paper) to achieve dataset images and then applied
simple U-Net architecture to analyze them. The authors achieved 0.89
of Mean IoU score based on suggested method.

4. Conclusions

The efficiency and quality of the segmentation of orbital remote
sensing images are the fundamental elements influencing the applica-
tion of remote sensing for land cover/use mapping. Image semantic
segmentation methods based on deep learning remarkably eliminated
conventional segmentation methods’ shortcomings (e.g., no distinct
segmentation due to complex image background or many target in-
stances in one image). This paper analyzed and compared three dif-
ferent deep learning, U-Net-based methods, including simple U-Net,
Residual Attention U-Net, and VGG16-U-Net, to detect and segment
inland water bodies using high-resolution satellite images. The results
of this study indicate that the U-Net-based algorithms can be employed
to inventory inland water bodies fast, accurately, and inexpensively
in terms of computation cost. The results of this study can pave the
way for implementing precision land cover mapping based on high-
resolution satellite imagery by providing an objective, fast, accurate
algorithm for inventorying land covers globally. Therefore, this study
can be extended further to investigate other state-of-the-art deep learn-
ing algorithms also to evaluate them for other types of land cover/use
mapping. The code used in this study is publicly available on our Gitlab
repository (https://git.gfz-potsdam.de/ali/remotesensing-hida).

https://git.gfz-potsdam.de/ali/remotesensing-hida
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Fig. 7. The training loss and accuracy plots for U-Net (first raw), Residual Attention U-Net (second raw), and VGG16-U-Net (third raw).

Fig. 8. Result of Segmentation for the U-Net (the red circle visualizes the miss-segmentation of water bodies), Residual Attention U-Net (the green circle visualizes the under-
segmentation issue), and the VGG16-U-Net (light blue circle visualizes the accurate segmentation of the water bodies. The size of images is 512 × 512. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 3
The performance of the CNN Models evaluated by the different metrics. Green highlighted
values indicate the best performance of segmentation according to the reported metrics.

Network Accuracy Precision Recall m-IoU m-Dice
U-Net 0.9710 0.9997 0.9709 0.9707 0.9849
Residual Attention U-Net 0.9852 0.9986 0.9861 0.9848 0.9923
VGG16-U-Net 0.9855 0.9981 0.9869 0.9850 0.9924
Table 4
Comparison of the proposed CNNs with other similar literature. The highlighted Green value
represent the highest segmentation accuracy achieved by proposed methods.
Models IoU Dice Acc
prop. U-Net 0.9707 0.9849 0.9710
prop. Residual Attention-U-Net 0.9848 0.9923 0.9852
prop. VGG16-U-Net 0.9850 0.9924 0.9855
NT-U-Net (Zhong et al., 2022) 0.862 – –
Modified Encoder-Decoder (Zhang and Wang, 2019) 0.984 – –
DensePPM (Xiang et al., 2023) 0.842 – –
Res2U-Net (Chang et al., 2022) 0.9270 – –
ResNet50 (An and Rui, 2022) 0.9781 – –
U-Net (Ch et al., 2022) 0.89 – –
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