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A B S T R A C T   

Soil organic carbon (SOC) and total nitrogen (TN) contents in different soil horizons are essential for vegetation 
growth and crucial indicators to evaluate soil quality in reclaimed mining areas. Compared with conventional 
wet chemistry methods, soil spectroscopy, including imaging spectroscopy, can be used as a cost and time- 
efficient soil analysis technique. However, there is a great challenge in combining laboratory point spectra 
and laboratory hyperspectral imagery for mapping vertical distribution of SOC and TN (0–100 cm) in reclaimed 
soils. This is primarily because mixing of spectral data from different sources and technologies to improve soil 
models is still in its infancy. The main objective of this study is to provide a generic workflow to efficiently 
evaluate and map reclaimed mine soils in different horizons using imaging spectroscopy and machine learning 
approaches. A total of 65 soil samples (0–100 cm) were collected from three reclaimed mining lands and one 
natural site in northern China. Both point soil spectral information and hyperspectral images (350–2500 nm) 
were obtained under laboratory condition. In order to enhance the relationship between soil quality indicators 
and spectral features, the stacked feature selection algorithms and three-bands spectral indices were proposed for 
further modelling. Three machine learning methods (partial least squares regression; PLSR, random forest; RF, 
and radial basis function model; RBF) based on the point spectra were applied to calibrate and map continuous 
vertical distribution of SOC and TN. According to the results, thirty spectral bands were identified as important 
spectral features for SOC and eighteen bands for TN. With feature spectral bands and optimized three-bands 
spectral indices, the RF model yielded the best predictions for both SOC (R2 = 0.97, RMSE = 7.5 g kg− 1) and 
TN (R2 = 0.78, RMSE = 0.33 g kg− 1). It was concluded that imaging spectroscopy can be used to quantify and 
map soil quality indicators for better monitoring ecological restoration process in reclaimed soil of mining site.   

1. Introduction 

Surface mining results in large areas of mined land with open pits 
and dumps causing serious environmental issues, such as plant elimi-
nation, soil removal, environmental pollution, and overburdening due 
to excavation, landform reshaping, and subsurface hydrologic regimes 
(Bi et al., 2018; Ussiri and Lal, 2005; Wang et al., 2014). Mine soils refer 
to Technosols, which formed during the mining process of “stripping- 
transporting-storing-transporting-covering” (Feng et al., 2019). This 
type of soil generally contains low organic matter and nutrients 

compared to soils in the natural environment (Liu et al., 2017). There-
fore, land reclamation aims to improve soil quality by increasing the 
content of soil organic carbon (SOC), total nitrogen (TN), phosphorous 
(P), and exchangeable potassium (K) in Technosols, even reach its 
original status (Upadhyay et al., 2016). 

According to mine reclamation regulations in China (Standard for 
quality control of land reclamation, 2013), the surface Technosols (0–50 
cm) are required to be reclaimed according to different land use plans. 
On the other hand, Liu et al. (2017) pointed out that the vertical dis-
tributions of SOC and TN in the subsoil (60–100 cm) of reclaimed mine 
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areas are highly dependent on different dumping methods. They also 
found that land use and vegetation cover could highly affect the changes 
in the continuous vertical distribution of SOC and TN contents up to 80 
cm depth in the reclaimed mine site. In addition, Kumar et al. (2015) 
found that the vertical distribution of SOC and TN contents in soil profile 
was influenced by reclamation years. Thus, the SOC and TN distribution 
in different horizons could be considered as important indicators to 
show the efficacy of reclamation and even guide ecological restoration 
in future (Šourková et al., 2005). However, in order to systematically 
monitor vertical distribution of reclaimed soil in various mining loca-
tions, a large number of soil samples are required to obtain sufficient soil 
data and information. 

During the last few decades, wet chemical analysis methods have 
widely been used to monitor mine soils around the world. However, 
field investigations with laboratory chemical analysis are time- 
consuming and costly. To overcome these challenges, numerous re-
searchers attempted to use proximal sensors to estimate soil properties 
in a rapid, economical, and environmentally friendly way (Andrade 
et al., 2020; Ben-Dor and Banin, 1995; Gholizadeh et al., 2018). Several 
studies have shown that visible and near infrared (VIS-NIR; 350–2500 
nm) reflectance spectroscopy could extract different soil information 
through various chemometric modelling approaches (Ben-Dor and 
Banin, 1995; Heller Pearlshtien and Ben-Dor, 2020; Tavakoli et al., 
2023). This is because most of chemical, physical and mineralogical 
composition of soil information can be effectively characterized by soil 
spectral information. Meanwhile, different statistical methods have to 
be applied to efficiently calibrate and extract useful spectral information 
for targeted soil properties, because spectral information does not 
directly provide quantitative soil property values. 

Moreover, some specific spectral characteristics and indices can be 
used to identify reclaimed soils in different landforms of dumping sites 
(Bao et al., 2017). Meanwhile, the SOC in mine soils can be estimated 
through spectroscopy techniques coupled with machine learning algo-
rithms (Gholizadeh et al., 2020; Wei et al., 2020). To date, most studies 
mainly focused on topsoil (0–20 cm) using field and laboratory spec-
troscopy (Feng et al., 2019; Jiang et al., 2017; Wang et al., 2019). 
However, in case of the need to map and visualize the distribution of soil 
properties in reclaimed soils, particularly through the various horizons, 
imaging spectroscopic methods could be more efficient compared to 
point spectroscopy because imaging spectroscopy has the advantage of 
obtaining both spectral and spatial domain information (Ben-Dor et al., 
2009). Many studies have also proved that spectral information from 
VIS-NIR range (400–2500 nm) could be particularly important for SOC 
and TN calibration process (Ben-Dor and Banin, 1995; Martin et al., 
2002; Stenberg et al., 2005). 

However, there were only very few studies applied imaging spec-
trocopy (400 nm-2500 nm) to spatially characterize the undisturbed soil 
cores in deeper soil horizons. Steffens et al. (2013) extracted 66 spectral 
information from hyperspectral imagery (400–990 nm) to predict SOC 
and TN contents in forest soils (0–30 cm). Sorenson et al. (2020) suc-
cessfully estimate and map the continuous vertical distribution of SOC, 
TN, and clay content using imaging spectroscopy (1000–2500 nm) at the 
soil depth of 0–100 cm in forest soil of Canada. Moreover, Steffens et al. 
(2021) showed the great potential of using spectral images from two 
spectral ranges (410–970 nm and 970–2500 nm) to quantitatively map 
SOC from undisturbed soil cores (0–30 cm). They also found that im-
aging spectroscopy with its millions of spectra available in one image, 
overfitting can easily occur pretending a higher accuracy. Therefore, a 
robust and transfer predicting calibration model is of great importance 
to acquire spatial distribution of soil horizons from hyperspectral 
imagery. 

To estimate and map SOC and TN using laboratory-based imaging 
spectroscopy various machine learning approaches have been investi-
gated (Jordan and Mitchell, 2015). Recently, many researchers 
attempted to apply different machine learning methods for extracting 
soil spectral information in a more efficient way. Wu et al. (2018) 

showed that hyperspectral images with machine learning methods could 
efficiently map continuous vertical distribution (0–100 cm) of salt 
contents. Xu et al. (2021) compared various machine learning methods 
namely artificial neural networks (ANN), Cubist, gaussian process 
regression (GPR), Random Forest (RF), Support vector machine (SVM), 
extreme learning machine (ELM), k-nearest neighbour (KNN), multi-
variate adaptive regression splines (MARS), and extreme gradient 
boosting (XGBoost) to predict TN in paddy soils, fluvo-aquic soils, and 
black soils. They found that SVM yielded the best predictions with 
higher R2 and lower RMSE values. Additionally, linear models such as 
partial least square regression (PLSR) maintain the capability to handle 
soil spectral information from a relatively homogeneous or a small 
geographical area. Meanwhile, the PLSR is the most common tool used 
to calibrate spectra and soil chemical components. The advantage of the 
PLSR algorithm is that it maximizes the covariance between variable X 
and reference Y and thus the resulting spectra are directly related to the 
soil characteristics (Wadoux et al., 2021). However, non-linear and non- 
monotonic methods could more efficiently deal with soil information 
from more complex environments (i.e., geological, mineralogical, or 
climatic) or large datasets such as images (de Santana et al., 2021; 
Jordan and Mitchell, 2015). The RF algorithm is typically known as a 
hierarchical nonparametric method and is often used to estimate com-
plex nonlinear relationships between spectral data and soil properties 
(Douglas et al., 2018). In addition, radial basis function (RBF) neural 
network as a feed-forward neural network with only a 3-layer network 
structure attains a better function approximation ability and can 
approximate any non-linear function with an arbitrary accuracy 
(Emamgholizadeh et al., 2018). Li et al (2021) attempted to apply RBF to 
estimate soil salinity and showed RBF had the great potential to deal 
with soil information. 

Due to the large number of bands, the VIS-NIR hyperspectral images 
(350–2500 nm) have high dimensional data. Thus, several feature se-
lection methods have been proposed to be applied to the multivariate 
models in order to extract useful spectral information from a high 
dimension dataset. For instance, Xu et al. (2020) applied hyperspectral 
imagery with artificial neural networks (ANN), cubist regression tree 
(Cubist), gaussian process regression (GPR), and support vector machine 
(SVM) as well as the competitive adaptive reweighted sampling (CARS) 
feature selection method to map SOC in paddy soils. They found that 
feature selection methods could simplify the models and improve the 
computation efficiency. Araujo et al. (2001) proposed a successive 
projections algorithm (SPA) as a novel feature selection algorithm for 
multivariate calibration analysis, which could effectively decrease the 
complexity and collinearity of spectral data matrix by performing simple 
projection operations in a vector space. More than 10 years later, Peng 
et al. (2014) successfully applied SPA with SVM to improve SOC pre-
diction accuracy based on the selected spectral bands. 

Nevertheless, one of the major concerns about using machine 
learning models is that it is perceived as a black box with low inter-
pretability. For instance, shapley additive explanation (SHAP) values 
could represent the contribution of covariates to the final model pre-
dictions (Lundberg and Lee, 2017). Until very recently, some researchers 
from soil science community started to apply SHAP values and interpret 
different geospatial models for a better understanding calibration pro-
cess (Beucher et al., 2022; Haghi et al., 2021; Padarian et al., 2020). 

Currently, most predicting models have been based on spectral data 
extracted from hyperspectral imagery of dry samples with constant 
conditions. However, the hyperspectral imageries usually are obtained 
from fresh samples, resulting in various uncertainties due to different 
measurement conditions (e.g., roughness, moisture, roots, et). Those 
uncertainties can largely affect final predictions, when models apply to 
images. Therefore, some soil scientists tried to develop models from 
laboratory spectra (350–2500 nm) and directly transfer models to 
hyperspectral images for predicting and mapping different soil proper-
ties. For instance, Zhang et al. (2022) also established a workflow to 
transfer models from laboratory spectra to satellite imagery (i.e., GF-5) 

S. Peng et al.                                                                                                                                                                                                                                     



Ecological Indicators 158 (2024) 111437

3

for some heavy metals (Zn, Ni, and Cu) mapping. The results revealed 
that transferring the model could be a reliable approach for mapping Zn, 
Ni, and Cu in coal mine soils. 

So far, the imaging spectroscopy has not yet been used to charac-
terize SOC and TN in the reclaimed soils (0–100 cm) and to monitor 
reclamation process in mining sites. Moreover, to the best of our 
knowledge, transfer of a model based on laboratory point spectroscopy 
on dry soil samples to laboratory hyperspectral imagery on fresh soil 
samples for mapping vertical distribution of SOC and TN (0–100 cm) in 
reclaimed soils of a mining area has never been conducted. Therefore, 
there is still a great challenge in establishing a robust model based on 
point spectra and then applying to hyperspectral imagery for mapping 
deeper soil horizons. In order to fill this knowledge gap and facilitate the 
assessment of reclaimed soils in deeper horizons through the use of 
spectroscopy technology, we aimed to develop a generic workflow to 
evaluate and map reclaimed soils in different horizons using spectral 
information from both point and imaging spectroscopy through various 
machine learning approaches. This work focused on three reclaimed 
sites of coal mine area in the northern part of China. The other two 
objectives of this study were 1) to improve SOC and TN prediction using 
machine learning methods based on the calculated three-bands spectral 
indices and the selected feature bands and 2) to map and differentiate 
the distribution of SOC and TN contents through the horizons (0–100 
cm). 

2. Materials and methods 

2.1. Study area 

The study area is located in northeastern China, with a remarkable 
continental climate. The annual average temperature is below 0℃. The 

precipitation varies from 450 to 550 mm and is concentrated in July and 
August. The elevation of the study area ranges from 550 m to 800 m 
(Yang et al., 2014). Three reclaimed study sites and one natural site were 
selected for the current study, as shown in Fig. 1 (based on the standard 
map released by the Ministry of Natural Resources of the People’s Re-
public of China [No. GS (2019)1822]). The reclaimed sites belong to a 
typical fragile ecological area of grassland with poor ecosystem resis-
tance in which, soils are predominantly chestnut soil with a 20–50 cm 
humus layer and some low-lying areas having meadow soils. The 
detailed information on the three study sites and one natural site is listed 
below:  

1) Reclaimed site I: Bao Ri Xi Le surface coal mine (119◦51′ E, 49◦22′ N) 
with the area of about 42 km2, where intensive mining and artificial 
reclamation activities started since 2004 and 2009, respectively. The 
soil pH ranges between 6.8 and 7.7 and the main plant species are 
icegrass, sheepgrass, elymus dahuricus (major reclamation plant), and 
leather oats.  

2) Reclaimed site II: Yimin surface coal mine (YSCM, 119◦42′ E, 48◦37′ 
N) with the area of about 10 km2, where intensive mining and nat-
ural recovery were started in 1985 and 1999, respectively. The soils 
are deficient in phosphorus, rich in potassium, and moderate in ni-
trogen with the pH values of 8.0–9.1. The plants grown on the sur-
face are goatgrass, mosswort, artemisia, dandelion, solanum, and 
ashwort.  

3) Reclaimed site III: Dalai Nur coal mine, which is a postmining site 
(DNCM, 117◦45′ E, 49◦27′ N) with a mining life of more than 100 
years and the mining activities were closed in 2012. The waste dump 
covers an area of 13 km2. Soil salinization after pasture degradation 
has already occurred in some areas. Soils are deficient in nitrogen 
and phosphorus and pH ranges from 5.5 to 7.5. The main plants that 

Fig. 1. Study area and location of three open mines.  
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recover naturally on the surface are ashwort, cryptomeria, echinocer-
eus, goatgrass, tussock grass, and commissures.  

4) Natural site: an undisturbed area is located in a typical meadow 
grassland near three reclaimed study sites. The pH values are in the 
range of 8.0–9.1 and the main vegetation covers can be classified as 
Potentilla, Carex, Stipa, and Oxytropis. 

2.2. Soil sampling and data sources 

2.2.1. Soil sampling and chemical analyses 
The fieldwork was conducted in August 2017. All soil cores were 

collected using a closed sampler with an internal diameter of 10 cm. 
Site I: four completed soil cores (0–100 cm) from four different 

reclaimed years (2011, 2012, 2013, and 2014) were collected. 
Site II: two completed soil cores (0–100 cm) from two different 

reclaimed years (2005 and 2009) were collected. 
Site III: two completed soil cores (0–100 cm) from two different 

reclaimed years (2000 and 2005) were collected. 
The collected soil cores were kept as fresh samples in individual 

plastic tubes. We kept the cores in the fridge with 2–5 degree after 
sampling. Due to the appearance of the rock in deeper horizons, it was 
difficult to take all soil cores from the depth 0–100 cm in reclaimed 
mining fields. Therefore, three uncompleted soil cores (one core from 
0 to 30 cm and two cores from 0 to 50 cm) only for point spectra and wet 
chemistry analysis were collected, which resulted in 11 point-spectra 
with the associated SOC and TN values. Meanwhile, nine completed 
soil cores (0–100 cm) covered the variation of reclamation mode and 
time information were taken to obtain the point spectra, hyperspectral 
imagery, and wet chemistry analysis. It provided nine hyperspectral 
images and 54 point-spectra with their associated SOC and TN values. 
Finally, a total of 65 spectra according to different depths (0–10, 10–20, 
20–30, 30–50, 50–70, and 70–100 cm) with the associated soil proper-
ties were used for the calibration process, and nine hyperspectral images 
were used for mapping purposes. Additionally, these 65 soil samples for 
point spectral and wet chemistry analysis were collected from all soil 
cores. 

For the chemical analysis of the soil samples, every fresh sample was 
weighed approximately 200 g. All samples were then air-dried, crushed, 
and sieved through a 2 mm mesh for SOC and TN analysis using a dry 
combustion (Vitti et al., 2016) and an elemental analyzer (LECO CHN, 
LECO Laboratory Equipment Corporation, MI, USA) in a commercial 
laboratory with certification of proficiency by International Organiza-
tion for Standardization ISO 17025:2005. 

2.2.2. Hyperspectral imaging and point spectra acquisition and processing 
The undisturbed fresh soil samples from soil cores were directly used 

for hyperspectral imageries collection. We first removed upper part of 
the plastic tube to expose entire soil profile for image scanning. Before 
scanning, we used knife to carefully smooth the surface of the soil pro-
file, stones larger than 1 cm were removed from the surface before 
scanning. Therefore, image spectral information was obtained directly 
from the soil surface without any effects from plastic tube. All hyper-
spectral imageries were captured using the GaiaSorter hyperspectral 
imaging system with two combined sensors developed by Zolix Co., Ltd 
(Beijing, China). The first sensor covers spectral range from 400 to 1000 
nm with 2.8 nm spectral resolution, giving 176 bands, while the second 
sensor covers spectral range from 1000 to 2500 nm with 10 nm spectral 
resolution, giving 272 bands. Four 200 W bromine tungsten lamps 
provided a constant light source during the data acquisition. The 
exposure time was 12 ms, the scanning speed was 2 cm/s, and the dis-
tance between the samples and detector was 30 cm. The raw spectra 
were consisted of 448 spectral bands. The hyperspectral images were 
acquired and processed by SpecVIEW software (SpecView Ltd., Uckfield, 
UK) and saved in RAW format. All hyperspectral images were processed 
and analyzed using ENVI v5.3 software (Exelis Visual Information So-
lutions, Boulder, CO, USA). To eliminate noise at the edges of each 

spectrum, eight bands were removed from each spectrum at 2450–2500 
nm. Finally, each imagery consisted of 440 spectral bands in total and 
were used for mapping the vertical distribution of SOC and TN contents. 
In order to reduce noises from light scattering, all hyperspectral images 
were pre-treated by the Savizky-Golay technique (Savitzky and Golay, 
1964) with a window size of 11. 

For collecting point spectral information, soil samples were air-dried, 
crushed, and sieved through a 2 mm mesh. The point spectral infor-
mation of dried samples was obtained with an SVC-HR-1024 spectror-
adiometer (Spectra Vista Corporation, NY, USA). The spectral range was 
between 350 and 2500 nm with a spectral interval of 1.5 nm, giving 973 
data points. The light source was a 50 W halogen bulb at a 45◦ zenith 
angle. A SpectralonTM white plate (Lab-sphere, NH, USA) was used every 
30 min as the standard reference. Each sample was repeatedly scanned 
10 times over the central area of the sample, and the average value was 
taken as the reference spectrum. The collected point spectra were 
resampled through a cubic spline interpolation to match the spectral 
resolution of the hyperspectral imagery (440 bands). Finally, the point 
spectra were used to develop SOC and TN prediction models. In order to 
enhance the relevant peaks of the spectra and reduce the influence of 
particle size, different preprocessing approaches were applied. First, the 
Savizky-Golay technique was followed by a window size of 11 then 
baseline corrections were applied. 

2.3. Modelling methods 

2.3.1. Feature selection and spectral indices calculation 
In order to improve the computation efficiency and accuracy of the 

final predictions, two feature selection methods were conducted. 
The Pearson correlation coefficient (PCC) was firstly applied to 

resolve high-dimension issues through identifying the specific spectral 
regions that can be related to the SOC and TN (He et al., 2015; Wang 
et al., 2019). A subset of the selected bands could be generated through 
the PCC feature selection to specifically target SOC and TN (p < 0.001). 
However, the selected feature bands after PCC still had the situation of 
strong collinearity. We then applied the SPA feature selection method to 
solve feature redundancy-related issues (Araújo et al., 2001) on the re-
sults of the PCC- feature band selection. The SPA is a projection-based 
wrapper approach that accounts correlation between variables by 
minimizing the vector space collinearity (Galvão et al., 2001). The SPA 
algorithm has earlier been used for band screening of various spectral 
information (Peng et al., 2014). 

Band combination algorithms have commonly been used to generate 
different spectral indices through various mathematical transformation 
methods to enhance final predictions of different soil properties (Wang 
et al., 2018; Zhang et al., 2020a). We applied three-bands spectral 
indices of the optimal band combination algorithm (Tian et al., 2011) to 
explore more potential spectral response relationships between the soil 
properties and feature bands. The following equations were proposed for 
the three-bands spectral indices’ calculations: 

TBI1 =
(
Ri − Rj

)/(
Rj − Rk

)
(1)  

TBI2 =
(
Ri + Rj

)/
Rk (2)  

TBI3 =
(
Ri − Rj

)/(
Rj + Rk

)
(3)  

TBI4 = Ri
/(

Rj × Rk
)

(4)  

TBI5 =
(
Ri − Rj

)/[(
Ri − Rj

)
−
(
Rj − Rk

)]
(5)  

where, TBI is three-band index, and Ri, Rj and Rk are reflectance values 
of different selected feature bands (for SOC, i, j, k = 1 to 30; for TN, i, j, k 
= 1 to 18). Each calculation was based on equation from (1) to (5) 
individually and calculated band by band, which gave five initial TBI 
values that linked to each three bands combination. The correlation 
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coefficient between soil properties and each initial TBI result were 
compared, the optimal spectral index was selected according to the 
highest correlation coefficient. 

2.3.2. Model development and accuracy assessment 
In order to select representative soil samples to cover all soil varia-

tions for calibration purposes, 50 soil samples (~75 %) were selected, as 
the training set, by set partitioning based on joint X-Y distance (SPXY) 
method, which has been originated from the Kennard–Stone (KS) algo-
rithm (Kennard and Stone, 1969). The SPXY first selects two samples 
with the farthest Euclidean distance, then selects samples with the 
maximum and minimum distances until the number of samples reaches 
the specified number (Galvao et al., 2005). The rest of the 15 samples 
(~25 %) were used for the independent validation purpose (testing set). 

The calibration models were developed based on the point spectra 
and soil properties (SOC and TN contents), then further applied to map 
the hyperspectral images. Three the most common algorithms (PLSR, RF 
and RBF) which cover both linear and non-linear situations were used to 
calibrate spectra and soil properties in this study. The PLSR (Geladi and 
Kowalski, 1986) and RF (Breiman, 2001) have intensively been used for 
modelling practices in soil science during the last 30 years (Atzberger 
et al., 2010; Bartholomeus et al., 2008; Ogrič et al., 2019; S. Wang et al., 
2018). The RBF neural network is a type of leading network with an 
intermediate layer (Ghorbani et al., 2013) along with a stimulus func-
tion for the neuron and a radial function with a specific center and width 
(Kalra et al., 2005). Therefore, the RBF neural network is expected to 
outperform traditional multilayer perceptions and has been applied in 
predicting some soil properties (Girosi and Poggio, 1990; Li et al., 2021). 

Therefore, three commonly used machine learning approaches for 
chemometric modelling were used to calibrate point spectra as variable 
with the associated soil properties as response variable (SOC and TN 
contents). Each approach (PLSR, RF, and RBF) was individually applied 
to two different spectral datasets: 1) full spectral dataset with 440 bands 
and 2) the selected feature bands + five calculated three-bands spectral 
indices. All calibration models were developed with leave-one-out cross- 
validation. For the PLSR model, the optimal numbers of factors were 
determined by minimizing the prediction error of validation. The 
models were subsequently applied and tested on independent validation 
set. Finally, a total of 6 models were developed for each studied soil 
property (SOC and TN), and the independent validation results from 
different models were compared. In this study, the PLSR calculations 
were implemented using the “pls” package in R version 4.2.1. The RF 
regression model was built using the “TreeBagger” function in MATLAB 
software and the number of trees was set to 1000, as recommended by 
Wang et al. (2018). Finally, the RBF programs were operated using 
MATLAB software’s “newrbe” function. 

To evaluate the final performance of the models, a coefficient of 
determination (R2), root mean square error (RMSE), Lin’s concordance 
correlation coefficient (LCCC), and bias were utilized. R2 is a measure of 
the proportion of explained variance in data. The larger the value of R2 

in the range of 0 to 1, the more stable the model and the better its fit. The 
deviation between the predicted and observed values can be detected 
using the RMSE and bias. Therefore, the smaller the RMSE and bias of 
the model, the more accurate its prediction ability is. LCCC determines 
the extent to which the 1:1 regression line deviates from the uniform 
slope based on accuracy and bias measurements (Lin, 1989). Large 
values of LCCC are indicators of a good predictive model. In addition, 
the statistical differences between the mean values of soil SOC and TN in 
each layer and the sample points after inversion were analyzed. 

R2 =

∑n
i=1(ŷi − y)2

∑n
i=1(yi − y)2 (6)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

(7)  

LCCC =
2rsŷsy

sŷ
2 + sy

2 + (ŷ − y)2 (8)  

bias =
1
n

∑n

i=1
(yi − ŷi) (9) 

where, yi and ŷi are the observed and predicted values at the time i, n 
is the number of total samples, y and ŷ are the mean of the observed and 
predicted values, r is the Pearson correlation coefficient between the 
observed and predicted values, and sy and sŷ are the standard deviations 
of observed and predicted values. 

In this study, SHAP analysis (Lundberg et al., 2018) was used to 
understand input variables’ effects and interpret machine learning 
models’ performance. The SHAPs are constructed to clarify the impor-
tance of each input variable by comparing the contribution to the model 
according to the presence or absence of each variable (Haghi et al., 
2021). Fig. 2 indicates a concise description of the procedure used in this 
study. 

3. Results and discussion 

3.1. Exploratory data analysis 

3.1.1. SOC and TN descriptive statistics 
Fig. 3 shows the distributions of SOC and TN from three reclaimed 

sites and one natural site. The number in the sample label represents the 
year when the reclamation of the sample collection area began. At the 
natural site, the concentration of SOC and TN gradually decreased with 
increasing the depth. At the reclamation site I, the SOC and TN contents 
in topsoil (0–20 cm) were much higher than soils below 20 cm depth 
during the years 2012 and 2013. Indeed, the reclamation activities of 
artificial revegetation quickly increased SOC and TN contents in topsoil 
through litter accumulation (Liu et al., 2017). However, subsoils in site I 
(2014) had higher SOC and TN contents than the topsoil. 

It can also be seen that at the reclamation site II, the contents of SOC 
and TN in 2005, greatly increased with increasing depth (Fig. 3). This 
changing trend was contrary to what we have shown in the natural site. 
Meanwhile, in 2005 and 2009, the SOC contents in the site II were 
higher than those of the natural site at all depths. Though, TN contents 
in 0–10 cm were lower than the soils in the natural site. Various 
dumping strategies could explain this unusual trend of SOC and TN 
vertical distribution. 

Regarding the reclamation site III, similar patterns of SOC content 
were found in the years 2000 and 2005 at the depths below 20 cm 
(Fig. 3). Moreover, in 2000, the changes of SOC and TN contents in 
topsoil (0–20 cm) were similar to those in natural site. This is mainly 
because longer reclamation years occurred in this site during the year 
2000. In addition, soils with the highest SOC and TN were located be-
tween the depths 30 and 50 cm. No regular SOC and TN trends through 
the horizons were found in these two sites (site I and II). 

3.1.2. Soil spectra characteristic 
Based on different SOC (5.22–84.91 g kg− 1) and TN (0.33–4.16 g 

kg− 1) contents, selected seven representative laboratory spectra were 
shown in Fig. 4 to demonstrated how SOC and TN contents could affect 
spectral information. It can be seen that the reflectance intensity was 
gradually decreased by increasing the SOC and TN contents. Soil sam-
ples with the highest SOC content (84.91 g kg− 1) and TN content (4.16 g 
kg− 1) showed the lowest reflectance values (Fig. 4). Considering these 
two spectra, we detected the first peak around 665 nm, which were 
associated with soil samples with low SOC (5.22 g kg− 1) and TN (0.50 g 
kg− 1) contents. This was mainly due to iron-containing minerals 
(Scheinost, 1998). The absorption features that appeared near the 
wavelengths of 1400, 1900, and 2200 nm in the spectra of all samples, 
caused by the combined vibration of water bound in the interlayer lat-
tices as a hydrated cation and water adsorbed on the particle surface 

S. Peng et al.                                                                                                                                                                                                                                     



Ecological Indicators 158 (2024) 111437

6

Fig. 2. Flowchart of the procedure applied in this study.  

Fig. 3. Characteristics spline of the three reclaimed sites (a, b, and c) for SOC and (d, e, and f) TN. The numbers represent the reclamation years, for example, site I 
(2005) indicates reclamation was done in 2005. 
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(Stenberg et al., 2010), while the spectral feature at 2300 nm can be 
related to organic matter (Araújo et al., 2014). 

3.2. Feature selection 

3.2.1. Feature bands selection 
The correlation between the soil properties (SOC and TN) of 65 

samples and corresponding reflectance values from each band were 
calculated and displayed in Fig. 5. For SOC, this study showed that the 
correlation coefficient increased dramatically from the wavelength 350 
to 1400 nm and then decreased slightly until 2450 nm. The highest 
correlation value (0.76) was recorded at 1400 nm. For TN, the corre-
lation coefficient ranged from 0.36 to 0.70 for the wavelengths 2450 and 
400 nm, respectively. Although, the correlation generally indicated a 
gradual decrease from 350 to 2450 nm (Fig. 5). 

The SPA feature selection was also performed and the results were 
shown in Fig. 6. The best combination of feature bands was based on the 
lowest root mean square error of cross-validation (RMSECV) from mul-
tiple linear regression. For SOC, a total of 30 bands were selected as 
feature bands, in which, 29 bands were from 1100 to 1500 nm and one 
band was from 1890 nm. Several studies have also highlighted the 
importance of the NIR spectral region for determining SOC contents 
(Sarkhot et al., 2011; Vohland and Emmerling, 2011), which is in cor-
respondence to this study. The reason is that the overtones and 

combinations of fundamental vibrations related to soil composition and 
stretching and bending of N–H, O–H, and C–H groups are concentrated 
in the NIR region (Thissen et al., 2004; Viscarra Rossel et al., 2006). A 
total of 18 bands were chosen and considered as feature bands for the TN 
evaluation, which 7 bands were located in the visible (VIS) region and 
11 bands were in the NIR region. Our results agreed with previous 
findings, Jiang et al. (2017) reported important bands (420, 470, 520, 
680, 1000, 2200 and 2300 nm) for TN estimation. Sorenson et al. (2018) 
also reported similar result for SOC (1093, 2312, 2374, 1874, 2355, 
1917, 1930, 2493, 2262, 1867 nm) and TN (2043, 1010, 985, 991, 1484, 
2024, 2011, 2062, 2087, 1490 nm) estimation. Nevertheless, our study 
has not found important feature bands after 2000 nm for both SOC and 
TN estimation. This probably because of the reclaimed soils generally 
contain more SOC than soils from nature sites. Also, due to NIR region is 
characterized by broad, superimposed, and weak vibrational modes, 
which gives the broad and overlapping bands (Stenberg et al., 2010). 
Consequently, in this case, the majority of spectral features occurred 
after 2000 nm that are mainly associated with soil minerals, not strongly 
linked to SOC and TN. 

3.2.2. Three-bands spectral indices 
The chosen optimal three-bands spectral indices with the highest 

coefficient values were summarized in Table.1. It can be seen that for 
spectral indices related to SOC content, both TBI4 and TBI5 had the 
highest correlation coefficient of 0.86. However, for TN content, the 
spectral indices of TBI1 produced the highest correlation coefficient of 
0.84. Compared to raw spectral information, the spectral indices showed 
stronger correlation with SOC and TN contents. This is most likely 
because the mathematical calculation could fully consider the interac-
tion information between the bands, minimize the influence of irrele-
vant bands, and enhance the relationship between soil composition and 
spectral information (Zhang et al., 2021, 2020b; Zhu et al., 2020). 

3.3. Comparison of the developed models 

3.3.1. Performance of different prediction models for SOC and TN 
Table 2 shows the general statistics of SOC and TN of the 50 cali-

bration samples and 15 validation samples were used in this study. 
Samples from three study sites represent a highly heterogeneous dataset. 
Samples for SOC calibration ranged from 5.22 to 84.91 g kg− 1, for SOC 
validation ranged from 13.94 to 80.40 g kg− 1. Samples for TN calibra-
tion ranged from 0.28 to 4.16 g kg− 1, for TN validation ranged from 0.56 
to 3.15 g kg− 1. 

The performance of different prediction models for SOC and TN is 
shown in Table 3. Based on the feature bands and spectral indices 
derived from point spectra, the RF approach produced the best predic-
tion accuracy for both SOC (R2 = 0.97, RMSE = 7.5 g kg− 1, LCCC = 0.84, 
bias = 3.70 g kg− 1) and TN (R2 = 0.78, RMSE = 0.33 g kg− 1, LCCC =

Fig. 4. Reflectance after preprocessing of partial soil samples with different contents of (a) SOC and (b) TN.  

Fig. 5. The PCC between SOC and TN contents, and reflectance (65 samples).  
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0.74, bias = 0.19 g kg− 1) compared to the rest of methods (PLSR and 
RBF). This is consistent with the results of the previous studies (Hong 
et al., 2019; Tan et al., 2020), which demonstrated that RF could achieve 
stable and satisfactory predictions. However, RBF could not perform as 
well as it was expected for SOC prediction. The reason might be that the 
RBF approach could work more effectively and extract enough features 

from full spectral information in dealing with non-linearities in high 
dimension data (Kalra et al., 2005). 

Regarding the RF technique, comparing the models developed from 
the full spectra feature bands, and spectral indices (Table 3), it can be 
noticed that the models from the feature bands, and spectral indices 
gave better results by decreasing 15 % of RMSE value in the TN pre-
dictions. Because through the feature selection process, the invalid in-
formation and noise were removed (Xiaobo et al., 2010), and the 
correlation between TN and reflectance values increased. Based on the 
feature bands and spectral indices, SOC prediction had minor 
improvement due to the high correlation between SOC and reflectance 
values. Nevertheless, it would save much computing time when applied 
to a large dataset. 

For the PLSR models extracted from the feature bands and spectral 
indices, it was found that the RMSE value significantly decreased by 38 
% for SOC prediction and 27 % for TN compared to the PLSR models 
based on the full spectra. Moreover, the LCCC value increased from 0.36 
to 0.75 for SOC and from 0.30 to 0.66 for TN. The accuracy of the models 
developed by PLSR with feature bands and spectral indices datasets was 
comparable to or better than the RBF-based models. While, previous 
studies have demonstrated that PLSR as a linear method does not 
perform well, when the non-linearity appears in the dataset (Peng et al., 
2014; Xu et al., 2021, 2020).These results indicated that feature selec-
tion could efficiently enhance the PLSR model’s predictability and 
extract linear information from high dimensional data. 

3.3.2. Model interpretability using SHAP 
In order to reveal the importance of each input variable, the SHAP 

analysis provides a detailed interpretation (Mai et al., 2022). Hence, in 
Fig. 7, we highlighted the best SOC and TN predicting results from the 
RF approach with the associated SHAP values. We found that compared 
to the feature bands, most of the optimal spectral indices provided 
relatively remarkable contribution to both SOC and TN contents pre-
diction. For SOC modelling process, all spectral indices contributed the 
most. Meanwhile, apart from the spectral indices (TBI1, TBI3, and TBI4), 
the wavelengths 433.7 and 1385.8 nm also ranked in the top 5 

Fig. 6. The operation processes using SPA (left), selected feature bands (right), 30 bands for SOC and 18 bands for TN.  

Table 1 
Pearson correlation coefficient of the band combinations of the optimal spectral 
indices with SOC and TN contents.  

Index SOC TN 

Bands combination |r| Bands combination |r| 

TBI1 (1324.2 nm-1425.0 nm)/ 
(1425.0 nm-1441.8 nm)  

0.74 (1217.7 nm-543.6 nm)/ 
(543.6 nm-488.4 nm)  

0.84 

TBI2 (1486.6 nm + 1105.7 nm)/ 
1167.3 nm  

0.77 (1385.8 nm + 617.0 nm)/ 
781.4 nm  

0.80 

TBI3 (1486.6 nm-1324.2 nm)/ 
(1486.6 nm + 1105.7 nm)  

0.75 (1357.8 nm-1217.7 nm)/ 
(1357.8 nm + 617.0 nm)  

0.79 

TBI4 1486.6 nm/(1105.7 nm ×
1105.7 nm)  

0.86 1385.8 nm/(659.4 nm ×
659.4 nm)  

0.83 

TBI5 (1486.6 nm-1402.6 nm)/ 
[(1486.6 nm-1402.6 nm) - 
(1402.6 nm-1324.2 nm)]  

0.86 (426.9 nm-961.8 nm)/ 
[(426.9 nm-961.8 nm) - 
(961.8 nm-1217.7 nm)]  

0.81  

Table 2 
Statistical descriptions of the SOC and TN contents (g kg− 1).  

Parameters SOC TN 

Calibration 
set 

Validation 
set 

Calibration 
set 

Validation 
set 

Sample 
number 

50 15 50 15 

Minimum 5.22 13.94 0.28 0.56 
Maximum 84.91 80.40 4.16 3.15 
Mean 17.56 26.20 1.14 1.67 
Median 16.10 18.83 1.04 1.63  

Table 3 
Performance of the SOC and TN models based on full-spectra (440 bands), and feature bands + optimal spectral indices (SOC: 30 bands + 5 indices, TN: 18 bands + 5 
indices).  

Input datasets ML approach SOC TN 

R2 RMSE LCCC bias R2 RMSE LCCC bias 

Full-spectra PLSR  0.70  14.8  0.36  5.03  0.57  0.51  0.30  0.33 
RF  0.94  7.5  0.86  3.92  0.68  0.39  0.67  0.22 
RBF  0.89  9.5  0.77  5.24  0.65  0.41  0.61  0.23 

Feature bands + five optimal spectral indices PLSR  0.95  9.2  0.75  4.22  0.75  0.37  0.66  0.25 
RF  0.97  7.5  0.84  3.70  0.78  0.33  0.74  0.19 
RBF  0.95  10.0  0.69  4.53  0.73  0.40  0.64  0.27  
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Fig. 7. The important rankings of optimal featured set of SOC and TN.  

Fig. 8. Soil maps for the vertical distribution of SOC (a) and TN (b) content (g kg− 1).  
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predictors of TN content. We also found that TBI1, TBI3, and TBI4 had 
the highest SHAP values for SOC evaluation too. However, the TBI5 
could not contribute to the TN modelling process as much as the other 
examined indices; which could be linked to the spectral bands for the 
TBI5 calculation. 

3.4. Mapping vertical distribution of SOC and TN contents 

The RF model with the highest accuracy based on point spectra data 
was finally applied to the hyperspectral imagery for the mapping pur-
pose. The vertical distribution of SOC and TN (0–100 cm) in different 
soil cores were illustrated in Fig. 8a and b, respectively. It can be seen 
that the topsoil from the natural site had a clear decreasing trend for 
both SOC and TN content with increasing of the depth, which is proved 
by the results in Fig. 3 too. The SOC contents start to be stabilized 
(approx.: 16 g kg− 1) from the depth 20 cm, while TN contents stabilized 
(approx.: 1.2 g kg− 1) after 30 cm. We have also noticed that the litter 
layer of natural grassland resulted in higher SOC and TN contents in the 
first 20 cm than in the deeper horizons, according to Jobbágy and 
Jackson (2000) and Li et al. (2015). 

At the site I (2011), we found a clear difference between top 50 cm 
and the lower part of soil core for both SOC and TN contents (Fig. 8). 
This could be explained by reclamation history and vegetation covers. 
The reclamation project at this site was conducted six years before the 
sampling campaign of the current study and most probably the 
increasing of SOC and TN contents could be positively correlated with 6 
years of revegetation (Burke et al., 1990). The dominant specie is Elymus 
dahuricus Turcz, which could accelerate the SOC accumulation in the 
topsoil (Li et al., 2016). For the site I (2012), which was located on the 
dumping site with slope gradient of approximately 15–20◦, the SOC and 
TN contents were lower in general than other sites. The topsoil (0–30 
cm) was more heterogeneous than soils from the deeper horizon. This 
was most likely due to the effect of landform and vegetation type. The 
surface vegetation type of Artemisia sieversiana Ehrhart ex Willd was 
selected to be planted to prevent soil erosion and loss instead of 
improving soil properties (Wang et al., 2011). Conversely, the site I 
(2013 and 2014) were located in a relatively flat area. Therefore, they 
presented higher SOC contents compared to the site I (2012). The main 
vegetation cover in this area was Melilotus officinalis, which might be 
difficult to significantly influence SOC changes in such a short period 
(3–4 years) (Moyes and Bowling, 2016). On the other hand, we found 
that this type of vegetation had some azotification effects (Wolf et al., 
2004), which resulted in higher TN contents accumulation in topsoil 
(0–20 cm). 

For the site II, the reclamation project was conducted ten years 
before sampling campaign in 2017. However, the vertical distribution of 
SOC and TN was not as expected as the natural site. One reason might be 
a disordered dumping technique during the mining activities. As shown 
in Fig. 8, at the site II (2005), the soils with high SOC and TN contents 
were found in the deeper depths (70–100 cm). We assume that surface 
natural soils were not kept and stored at the beginning of the mining 
activities as requested by the guideline (Shaughnessy et al., 2022), but 
were directly dumped into an open-pit. In addition, this site was 
reclaimed without any man-made revegetation as the vegetation in 
these two sites was generated and recovered through natural seeding. 
The vegetation coverage in the natural recovery area was far lower than 
in the artificial vegetation coverage area (such as site I). This was 
because artificial planting significantly accelerated soil redevelopment 
process in mining lands (Singh and Singh, 2006). 

The mining activities in the reclaimed site III were kept active for 
over 100 years and were then closed in 2012. This site was reclaimed 
under a 100 % natural process. At the site III (2000), the reclaimed 
project was carried out over 17 years before the sampling for this study. 
Based on the results in Fig. 8, it can be found that the SOC and TN 
contents in the first 50 cm were relatively higher than in the deeper 
horizons. It was also seen that the TN content of the topsoil was similar 

to the soils from the natural site (Fig. 8). The reclamation years signif-
icantly influence the SOC changes in this site after a long term period 
(Srivastava et al., 1989). In addition, we have also observed high SOC 
and TN contents after the depth 90 cm in the site III (2000); the disor-
dered dumping way could also explain this. Nevertheless, in the site III 
(2005), no clear changes in the SOC and TN contents through the soil 
cores were observed and the site was remained low in concentration 
compared to the other sites even after ten years of reclamation. We 
believe that the quality of the mine soil will not be improved even after 
over ten years, if no planting and topsoil covering project is executed. 
Hence, it is important to monitor soil reclamation progressively in 
mining areas. 

Generally, our results indicated that dumping strategies could 
significantly influence the distribution of SOC and TN through all ho-
rizons and ultimately affect the soil quality after reclamation in the 
mining areas, which has also been confirmed by Cao et al. (2015) and 
Feng et al. (2019). 

In soil science, soil profiles are commonly classified as O-A-B-C ho-
rizons (Fig. 9). The O and A horizons are normally rich in case of the SOC 
and TN contents to support the growth of surface vegetation (Gholiza-
deh et al., 2022; Wang et al., 2022). Nevertheless, this study revealed the 
reality and consequences of disordered dumping way in targeted three 
reclamation sites. For example, if topsoil is not be kept and dumped in 
order of O-C-B-A mode, the O and A horizons might wrongly be moved 
to the bottom as C-B-A-O or disorder pattern that is highlighted in Fig. 9. 
Meanwhile, the B or C horizons with relatively low nutrients and high 
stone content are transferred to the upper layers, which cannot provide 
sufficient nutrients and water for vegetation growth. Latinopoulos 
(1981) emphasized that inappropriate dumping and reclamation mea-
sures can largely affect the establishment of a sustainable soil ecosystem 
after intensive mining activities. This study also demonstrated no sig-
nificant improvement in SOC and TN contents even after over ten years 
of reclamation by disordered horizons. Therefore, the sequential 
dumping strategy is curial to reconstructing soil horizons for supporting 
vegetation growth and establishing a sustainable soil ecosystem (Feng 
et al., 2019). Meanwhile, VIS-NIR imaging spectroscopy can reveal soil 
quality changes in different horizons and has appeared to be a promising 
technique for soil quality assessment of reclaimed sites in mining areas. 

4. Conclusions 

This study proposed a workflow that combines point and imaging 
spectroscopy to estimate and map vertical distribution (0–100 cm) of 
SOC and TN contents in different reclaimed sites of a mining area in 
China in order to evaluate the quality of soil health in reclaimed mine 
sites. 

We concluded that: 1) in total of 30 feature bands were selected and 
5 spectral indices were calculated for SOC modelling, and 18 feature 
bands were selected and 5 spectral indices were calculated for TN 
modelling. 2) the model derived from the RF machine learning method 
with optimized bands and spectral indices yielded the best predictions 
for both SOC (R2 = 0.97, RMSE = 7.5 g kg− 1, LCCC = 0.84, bias = 3.70 g 
kg− 1) and TN (R2 = 0.78, RMSE = 0.33 g kg− 1, LCCC = 0.74, bias = 0.19 
g kg− 1). 3) based on the SHAP values, all spectral indices contributed the 
most to SOC modelling process, while the spectral indices (TBI1, TBI3, 
and TBI4) and feature bands (433.7 nm and 1385.8 nm) made signifi-
cant contributions to TN prediction. 4) based on the hyperspectral im-
agery technique, the vertical distributions of SOC and TN contents in the 
natural site were decreased gradually from the topsoil to the deeper 
layers. However, in the reclaimed mine soils, the changes in the vertical 
distribution of both SOC and TN were highly depended on the various 
dumping, reclaiming strategies and reclaiming years. The results sug-
gested that mapping vertical distribution of SOC and TN could better 
indicate how dumping technique affects the reclaimed soil layer in the 
mining activities. 

In future studies, imaging spectroscopy can be used to monitor other 
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soil properties, such as soil moisture content and particle size, which are 
closely related to reclamation processes. In addition, the laboratory 
spectral-based model needs to be further verified in more reclaimed 
sites, and soil maps can be validated independently or map uncertainly 
assessment can be conducted. Successful implementation of these ideas 
will significantly reduce the cost of sampling and chemical analysis 
related to the monitoring of mine areas’ reclamation. 
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