English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Synergistic inhibition of green rust crystallization by co-existing arsenic and silica

Authors
/persons/resource/jpperez

Perez,  J.P.H.
3.5 Interface Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Tobler,  Dominique J.
External Organizations;

/persons/resource/benning

Benning,  Liane G.
3.5 Interface Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Perez, J., Tobler, D. J., Benning, L. G. (2024 online): Synergistic inhibition of green rust crystallization by co-existing arsenic and silica. - Environmental Sciences: Processes and Impacts.
https://doi.org/10.1039/D3EM00458A


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5025256
Abstract
Arsenic and silica are known inhibitors of the crystallization of iron minerals from poorly ordered precursor phases. However, little is known about the effects of co-existing As and Si on the crystallization and long-term stability of mixed-valence Fe minerals such as green rust (GR). GR usually forms in anoxic, Fe2+-rich, near-neutral pH environments, where they influence the speciation and mobility of trace elements, nutrients and contaminants. In this work, the Fe2+-induced transformation of As- and/or Si-bearing ferrihydrite (FHY) was monitored at pH 8 ([As]initial = 100 μM, Si/As = 10) over 720 h. Our results showed that in the presence of As(III) + Si or As(V) + Si, GR sulfate (GRSO4) formation from FHY was up to four times slower compared to single species system containing only As(III), As(V) or Si. Co-existing As(III) + Si and As(V) + Si also inhibited GRSO4 transformation to magnetite, contrary to systems with only Si or As(V). Overall, our findings demonstrate the synergistic inhibitory effect of co-existing Si on the crystallization and solid-phase stability of As-bearing GRSO4, establishing an inhibitory effect ladder: As(III) + Si > As(V) + Si > As(III) > Si > As(V). This further highlights the importance of GR in potentially controlling the fate and mobility of As in ferruginous, Si-rich groundwater and sediments such as those in South and Southeast Asia.