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Abstract We present SeisMIC, a fast, versatile, and adaptable open-source software to estimate seismic
velocity changes from ambient seismic noise. SeisMIC includes a broad set of tools and functions to facili-
tate end-to-end processing of ambient noise data, from data retrieval and raw data analysis via spectrogram
computation, over waveform coherence analysis, to post-processing of the final velocity change estimates. A
particular highlight of the software is its ability to invert velocity change time series onto a spatial grid,making
it possible to create maps of velocity changes. With the software, we implement new data formats ensuring
uniformity, flexibility, interoperability, and integrity. To tackle the challenge of processing large continuous
datasets, SeisMIC can exploit multithreading at high efficiency with an about five-time improvement in com-
pute time compared to MSNoise, probably the most widespread ambient noise software. In this manuscript,
we provide a short tutorial and tips for users on how to employ SeisMIC most effectively. Extensive and up-
to-date documentation is available online. Its broad functionality combined with easy adaptability and high
efficiency make SeisMIC a well-suited tool for studies across all scales.

1 Introduction
Over the past twenty years, the analysis of temporal
changes in seismic velocity has become a standard tool
in seismology. Seismologists exploit records of repeat-
ing sources, such as explosives (e.g., Nishimura et al.,
2000; Hirose et al., 2017), vibrators (e.g., Clymer and
McEvilly, 1981; Ikuta et al., 2002), airguns (e.g., We-
gler et al., 2006; Yang et al., 2018), or earthquake dou-
blets (e.g., Poupinet et al., 1984; Sawazaki et al., 2015),
to quantify such changes. Commonly, the analysis
of delays focuses on the later arriving, multiply scat-
tered wave train - the so-called coda, which samples the
medium to a greater spatial extent than thefirst-arriving
energy and is sensitive even to minute velocity changes
(dv/v) in the order of per-mills (Snieder et al., 2002). We
refer to this technique as coda wave interferometry.
While active source coda wave interferometry accu-

rately resolves dv/v, studies using artificial sources are
logistically challenging and expensive. Repeating nat-
ural sources, on the other hand, rarely occur in regular
patterns, allowing only for a coarse temporal resolution
of dv/v in seismically active regions. Sens-Schönfelder
and Wegler (2006) obtained dv/v by analysing modifi-
cations in the correlations of continuous waveforms.
Their method, passive image interferometry (PII), re-
lies on the diffusive energy field of the ubiquitous ambi-
ent seismic noise (Sens-Schönfelder andWegler, 2011).
PII has successfully been applied to quantify velocity
changes, for example due to seasonal meteorological

∗Corresponding author: makus@gfz-potsdam.de

cycles (e.g., Sens-Schönfelder and Wegler, 2006; Wang
et al., 2017), earthquake damage (e.g., Brenguier et al.,
2008; Minato et al., 2012), volcanic deformation (e.g.,
Sens-Schönfelder et al., 2014b; Donaldson et al., 2019),
groundwater fluctuations (e.g., Clements and Denolle,
2018; Illien et al., 2021;Mao et al., 2022), landslides (e.g.,
Bièvre et al., 2018), or climate-change-induced thaw-
ing (e.g., Mordret et al., 2016; Lindner et al., 2021).
This breadth of applications makes PII a widely used
methodology.
Processing and analysing continuous waveforms

comeswithmultiple challenges due to the large amount
of raw and derived data, such as the need for efficient
processing and storage strategies (Arrowsmith et al.,
2022). Still today, many authors use unpublished codes
to produce results for later publication and interpreta-
tion making it difficult for fellow researchers to repro-
duce or adapt the analyses. Using community codes
published in the spirit of the FAIR principles (Barker
et al., 2022) can facilitate the reproducibility of re-
search, exchange in the community, and progress in
science. Only a few software solutions exist for ambi-
ent noise seismology. Perhaps the most popular among
these are MSNoise (Lecocq et al., 2014) and NoisePy
(Jiang andDenolle, 2020). However, aswewill show and
discuss here, the existing software still leaves a niche to
fill. For example, MSNoise is more specialised for end-
to-end workflows and automated monitoring solutions,
lending itmore towards applications in large observato-
ries, whereas, recently, NoisePy has undergone devel-
opment towards cloud computing. To fill the remain-
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Figure 1 A flowchart summarising SeisMIC’s modules and their purposes. A general workflow starts with data retrieval,
continues with the computation of correlation functions, fromwhich a velocity change time series can subsequently be esti-
mated. We illustrate this with the example given in section 3. The depicted floppy disk marks database management mod-
ules. Operations and processes are shown in blue, whereas objects and databases are shown in orange. For the sake of
simplicity, we omit non-essential objects and functions, instead, the flowchart focuses on the core processes.

ing gap, we introduce SeisMIC (Seismological Monitor-
ing using Interferometric Concepts, Makus and Sens-
Schönfelder, 2022), a fast, robust, flexible, and easily
adapted Python tool to compute, process, and analyse
dv/v. Due to these attributes, SeisMIC especially excels
in the analysis of campaign data, where both ease of use
and flexibility are crucial.

2 Modular Structure

2.1 Whom is it for? - The Philosophy behind
SeisMIC

As outlined above, monitoring surveys are applied to a
broad spectrum of research scopes resulting in a high
diversity of requirements for research software. With
that in mind, we developed SeisMIC to be flexible and
adaptable to user needs. As opposed to working with a
black box, users work close to the source code, making
it easy to develop individualised workflows. Modules,
submodules, or even single objects and functions of the
code can also be used individually. Yet, the software re-
mains a light and fast package, in which we avoid over-
head due to non-essential functionality. For example, in
contrast to MSNoise, we avoid heavy database manage-
ment structure for continuous observatory monitoring,
resulting in a significantly faster processing (see section
2.3.2) and giving SeisMIC an advantage in the analysis of

campaign based data.

Learning to use a new code and even only deter-
mining whether a code satisfies one’s need is a large
time investment. To guarantee a fast start and a steep
learning curve, we aligned SeisMIC closely with ObsPy
(Beyreuther et al., 2010), with whose syntax almost all
seismologists are familiar. In addition, we host tutori-
als and extensive, regularly-updated documentation at
https://petermakus.github.io/SeisMIC/. All objects,meth-
ods, and functions have documentation strings accord-
ing to the Sphinx standard.

As developers, we follow the FAIR principles (Hong
et al., 2022). That is, we make SeisMIC findable, acces-
sible, interoperable, and reusable. SeisMIC is a commu-
nity code with clearly communicated community stan-
dards, and users can discuss or report issues, suggest
changes, or submit pull requests via GitHub. We dis-
tribute SeisMIC under the European Union Public Li-
cense 1.2.

Lastly, we keep up to high standards regarding func-
tional robustness. We test functional integrity using a
combination of integral and unit tests. To date, SeisMIC
has successfully been applied to a broad range of appli-
cations, such as volcanic environments (Makus et al.,
2023b,a), lab-scale applications (Asnar et al., 2023), and
cryoseismological analyses (Nanni et al., 2023).
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2.2 Implementation
As commonplace in Python, we structure SeisMIC in
a modular fashion. We divide the program into clear
modules, which, in turn, are subdivided into submod-
ules. These modules can either be used separately or
connected into a workflow/pipeline, starting from data
retrieval and concluding with the computation, plot-
ting, and postprocessing of dv/v objects. We show a
chart with a simplified overview of SeisMIC’s modular
structure in Figure 1.
As shown in Figure 1, SeisMIC consists of four main

modules. seismic.trace_data hosts the code for
reading raw waveform data and station information.
Alternatively, it can request data from FDSN servers.
SeisMIC handles waveform data in miniseed format in
daily chunks, while it saves station information in Sta-
tionXML format. Generally, station response informa-
tion is only necessary if the user opts to remove the sta-
tion response before correlating. However, basic sta-
tion information, such as the station’s geographic coor-
dinates, is always required.
All objects and functions to preprocess waveform

data and compute correlation functions (CFs) are lo-
cated in seismic.correlate . We include commonly
used preprocessing functions such as detrending, ta-
pering, amplitude clipping, sign-bit-normalisation, or
spectral whitening (Bensen et al., 2007). For a complete
and up-to-date list of preprocessing functions, consult
SeisMIC’s documentation. Users can easily import cus-
tom processing functions into the workflow. We com-
pute CFs by transferring traces to matrices, computing
the Fourier transform, and then computing their cross-
correlation in the frequency domain. Suppose we want
to calculate all available correlations from a dataset of
M waveforms, of which each has N samples (indices m

and n, respectively). Then, the respectivemathematical
operations can be expressed as follows:
First, we compute the discrete Fourier transform of

the matrix s containing the waveforms in the time do-
main:

Sm,k =
N∑

n=1

sm,ne− i2π
N

kn (1)

where i =
√

−1 and k is the sample index of the signal in
the frequency domain. Secondly, we obtain the corre-
lation matrix C by computing the product of the matrix
with the complex conjugate of itself. We then repeat the
operation M times, each time rolling the complex con-
jugate matrix by j = {1, 2, .., M} lines:

Co,k = Sm,kSm+j,k (2)

where the bar indicates the complex conjugate and o in-
dexes the station pair. In the described scenario, we ob-
tain M2 CFs, which are subsequently transferred back
to the time domain:

Co,n = 1
N

N∑
k=1

Co,ke
i2π
N

kn (3)

The CFs are then stored as special objects with at-
tributes, plotting and post-processing methods. Fi-
nally, SeisMIC writes the CFs to a storage- and

computationally-efficient HDF5 container (Koranne,
2011).
All functionality to estimate velocity changes from

the CFs resides in seismic.monitor . Currently, Seis-
MIC supports the estimation of velocity changes us-
ing the stretching technique (Sens-Schönfelder andWe-
gler, 2006) and we are implementing the wavelet-cross-
spectrum analysis (Mao et al., 2020).
The stretching technique compares a reference cor-

relation function C̃n to a CF Cl
n computed from data

at an arbitrary subwindow l of the total time series.
Note that we omit the index o indicating the station pair
since this operation is independently executed for each
station pair. There are several approaches to obtain-
ing C̃, all with their unique advantages, SeisMIC sup-
ports the use of single or multiple references (Sens-
Schönfelder et al., 2014b). In SeisMIC, we implemented
a grid search, in which we evaluate C̃ at a new time vec-
tor τ̃ stretched (or compressed) with the stretching fac-
tor κj:

τ̃j = τe−κj (4)

Note thatwe base the exponential stretching on aTay-
lor extension for small velocity changes. This assump-
tion is more accurate than themore common τ̃j ≈ τ(1 +
κj) and has the advantage of yielding linearly reversible
stretched functions. In the supplementarymaterial, we
provide a derivation.
Using our stretched time vector, we obtain a stretched

reference correlationmatrix with J lines, where J is the
total number of tested stretch factors. Afterwards, we
compute the zero-lag correlation (i.e., the normalised
dot product) between each stretched reference and Cl:

Rl
j =

N∑
n=1

C̃j
nCl

n

(
N∑

n=1

(C̃j
n)2

N∑
n=1

(Cl
n)2

)−1/2

(5)

The stretching factor κj = −dv/v resulting in themax-
imum Rl

j corresponds to the negative apparent velocity
change at time step l. The maximum value of R mea-
sures the velocity change estimate’s stability and is of-
ten referred to as coherence. We then computeRl

j for all
time steps resulting in the similarity matrix R, the final
velocity change time series, and a corresponding coher-
ence time series. Note that R is usually not computed
for the whole coda, but just for a user-defined subset of
lag time samples. In SeisMIC, dv/v can either be jointly
inverted from causal (right) and acausal (left side) or es-
timated from either side, which might be desirable for
active source experiments or if one side of the CF ex-
hibits a superior signal-to-noise-ratio.
Finally, the computed velocity change time series can

be post-processed and plotted using pre-implemented
or custom functions. In addition, SeisMIC can invert
a set of velocity change time series from different sta-
tions onto a map using the inversion method described
byObermannet al. (2013). To our knowledge, SeisMIC is
currently the only publicly available software that sup-
ports spatial inversion of velocity change time series.
The workflow steps outlined above rely entirely on

well-known Python libraries, including NumPy (Har-
ris et al., 2020), SciPy (Virtanen et al., 2020), ObsPy
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Table 1 Extraction from the header of a correlation function computed in section 3.

Field name Value Explanation
network X9-X9 SEED network codes, dash-separated
station IR1-IR1 SEED station codes, dash-separated
channel HHE-HHE SEED channel codes, dash-separated
location - SEED location codes, dash-separated (may be empty)
corr_start 2016-01-25T01... UTC start time of the correlated traces
corr_end 2016-02-25T01... UTC end time of the correlated traces
start_lag -25.0 computed start lag in seconds
...

...
...

(Beyreuther et al., 2010), Matplotlib (Hunter, 2007), and
h5py (Collette et al., 2020). To ensure the best stability,
we only utilise the most well-maintained projects and
keep the number of dependencies to aminimum. Some
of SeisMIC’s core functionalities are based on the MIIC
software project (Sens-Schönfelder et al., 2014a). Seis-
MIC’s latest beta version 0.5.3 is compatiblewithPython
3.10 and 3.11.

2.2.1 Data Formats and Standards

At the time of writing, there are no established stan-
dards for data handling in ambient noise seismology
that would facilitate the exchange of correlation func-
tions and subsequent processing with different tools.
In the seismological community, excellent examples of
well-designed data representations that developed into
quasi-standards are the ObsPy (Beyreuther et al., 2010)
trace and stream classes for waveform data and the in-
ventories for station metadata. Such successful repre-
sentations require some core attributes:

1. Uniformity: Various datasets have the same set of
attributes, making them directly comparable.

2. Easy andflexible I/O (i.e., input/output), wheredata
canbe read,modified and stored later. Reading and
writing operations are fast and easy. Modifications
can be stored safely.

3. Interoperability: Data can easily be imported
and exported into broadly used applications or li-
braries, facilitating data exchange.

4. Integrity: The data format must contain all infor-
mation required for later processing, analysis, or
cataloguing. No crucial information should be lost.

With SeisMIC, we suggest a representation of noise
correlation functions implementing these attributes.
For correlation functions, we base our data representa-
tion on the successful ObsPy streams and traces by in-
troducing the CorrTrace and CorrStream classes that
incorporate the specific requirements of CFs to ensure
uniformity and integrity.
For the storage of CFs, the seismological standard

for waveform data, MiniSEED, is not appropriate since
it does not allow for the storage of the required meta
information. The solution provided in SeisMIC stores
the data itself in the form of a NumPy array comple-
mentedwith a header containing information about the

recording and correlation computation, such as sam-
ple rate, start and duration of the correlated time win-
dows, minimum and maximum lag times, seed identi-
fiers of the used stations, and coordinates of these sta-
tions. We show an extract of the header fields for an
exemplary dataset in Table 1. CorrTrace headers also
contain information about executed processing steps,
such as filtering or tapering. The naming of stations fol-
lows the SEED convention. To ensure interoperability,
data and header can easily be converted into NumPy ar-
rays and Python dictionaries, respectively. The objects
come with processing and plotting methods. As out-
lined above, SeisMIC saves CorrStreams in hdf5 con-
tainers, from which they can later be read, modified,
and saved again.

2.3 Benchmark and Performance

In ambient noise seismology, it is not uncommon to
workwith data volumes in the order of terabytes. Wead-
dress the arising computational and storage challenges
with efficient and high-performance computing (HPC)
compatible code design. To this end, SeisMIC enables
parallel computing of correlations, velocity change esti-
mates and spatial inversions, where the computation of
CFs is the most expensive operation by a large margin.
We implement parallel computing using mpi4py (Dal-
cin and Fang, 2021), which relies on the message pass-
ing interface (MPI). In contrast to other Python multi-
threading solutions, MPI-based solutions work seam-
lessly on high-performance computing (HPC) and clus-
ter solutions.
In SeisMIC, the computationally most expensive

parts of the workflow described in section 2.2 are the
calculation of correlation functions, the associated pre-
processing, and the estimation of the final velocity
change time series. Therefore, an effective parallelisa-
tion scheme matters the most in these steps. For users,
it is also important to understand howmemory require-
ments scale. For the computation of CFs and the pre-
processing of raw data, each core reads different raw
data in chunks of equal length (see Listing 3 for details).
Subsequently, the same core performs the preprocess-
ing. For the cross-correlation operation, each core is re-
sponsible for a different component combination. This
implementationmakes the RAMusage practically inde-
pendent of the number of cores used. Thus, RAM us-
age will mainly depend on the length of the raw data

4 SEISMICA | volume 3.1 | 2024



SEISMICA | SOFTWARE REPORT | SeisMIC - Seismological Monitoring using Interferometric Concepts

1 2 4 8 16 32 64
Number of Threads

0

1

2

3

4

5

6

7

8

9

N
or

m
al

is
ed

 P
ro

ce
ss

in
g 

Ti
m

e

1 station
2 stations
4 stations
8 stations

Figure 2 Multi-core scaling properties of SeisMIC. We show compute times for auto-correlations as a function of number of
three-component datasets and number of parallel processing threads. The data points correspond to the mean processing
time and the error bars to its standard deviation for ten operations (mostly too small to be visible). The processing times are
normalised by the timeneeded to compute the correlations for one station using only one thread. The shaded areamarks the
areawhere the number of threads exceeds the number of physical cores, 40, i.e., the areawhere hyperthreading is employed.

chunks read in each step (i.e., a smaller read length will
lead to lower memory usage) and its sampling rate (i.e.,
a lower sampling rate will lead to lowermemory usage).
Resulting CFs are written to h5 files immediately after
correlation or stacking and thememory is freed. In con-
trast, SeisMIC computes the final dv/v estimate with ”1-
core per component combination”. Here, a single core
loads all available CFs for one component combination
and executes the stretching algorithm and the associ-
ated processing. Therefore, for the final dv/v calcula-
tion, the memory requirement scales with the number
of employed cores.

2.3.1 Multicore Scaling

To test how SeisMIC’s computational performance
scaleswith the number of used threads, we compute au-
tocorrelations from three component data on a single
cluster node featuring an Intel Cascadelake CPU struc-
ture that is equipped with 2 CPU sockets, each holding
20 physical cores that can each execute two threads in
parallel. For our test, we compute CFs from 30 days of
waveformdata. SeisMIC reads daily chunks ofminiseed
files, which it subsequently decimates, here to a sam-
pling rate of 25 Hz, after imposing an anti-alias filter.
The daily waveforms are then detrended, tapered, and
filtered with a pass band between 0.01 and 12 Hz. The
data is then sliced into hourly traces, which are again
linearly detrended, filtered between 2 and 8 Hz, and
clipped if the amplitude exceeds a threshold of 2.5 times
its standard deviation. Then, SeisMIC computes hourly
CFs in the frequency domain and saves them in a cus-

tomised HDF5 container after performing an inverse
Fourier transform. We provide the YAML file containing
the processing parameters in the supplementary mate-
rial. We execute this operation using 1, 2, 4, 8, 16, 32,
and 64 threads for data from 1, 2, 4, and 8 stations (i.e.,
3, 6, 12, and 24 channels and component combinations).
For each configuration, we repeat the computation ten
times.

Figure 2 shows the mean processing time and stan-
dard deviation over the ten operations per unique
nthreads-nstations-combination. We normalise the pro-
cessing times by the time required for nthreads = 1 and
nstations = 1. While nthreads ≤ nchannels, where, in our
case, nchannels = 3nstations, the processing time scales
close to linearly with the number of used threads, in-
dicating an excellent parallel computing performance.
As most of the parallel processing in SeisMIC works on
a one-core-per-channel basis, only very little increase
can be expected beyond this threshold. Indeed, for
nchannels < nthreads, the code reaches a performance
plateau. From here on, the processing time increases
with a further increase of nthreads, probably due toMPI’s
communication overhead. Based on the shown results,
we would discourage hyperthreading (i.e., using more
threads than available physical cores), which leads to
a significant performance drop. Generally, one should
not employmore threads than the total number of avail-
able channels for the computation of correlation func-
tions or the total number of channel combinations for
the dv/v estimation.
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Figure 3 Compute times for a cross-correlationworkflow for all six unique component combinations between eight seismic
stations using MSNoise 1.6.3 (Lecocq et al., 2014) and SeisMIC 0.5.3. The height of the bars indicates the mean processing
time over five iterations with the error bars representing the standard deviation. For hardware information and the exact
parametrisation of the workflows, consult the text body.

2.3.2 Comparison with MSNoise

To analyse howSeisMIC’s processing speed compares to
the latest release of MSNoise (Lecocq et al., 2014), 1.6.3,
we choose to calculate cross-correlations, which is the
most expensive operation in a standard workflow, tak-
ing upmore than 95% of the total compute time. In this
benchmark, we retrieve hourly cross-correlations for 14
days of raw waveform data between eight 3-component
broadband seismometers sampling at 100 Hz. We set
the preprocessing to be identical for both programs.
First, the data are decimated to 25 Hz. Subsequently,
we detrend, taper, andband-pass filter the data between
2 and 4 Hz. Before computing the CFs, we apply one-
bit normalisation and spectral whitening. We do not
remove the instrument response. Note, however, that
both MSNoise and SeisMIC execute the response re-
moval using ObsPy (Beyreuther et al., 2010) and will
therefore take the same amount of compute time and
resources. Finally, we save the hourly CFs and daily CF
stacks for all six unique component combinations with
a length of 50 seconds. We perform the benchmark on
the same Intel-Cascadelake-based node that we use in
section 2.3.1.
We show the processing times required by MSNoise

and SeisMIC for the outlined operation as a function
of employed threads in Figure 3. Despite having re-
ceived a significant performance boost with the update
to version 1.6.x, MSNoise still needs about five times as
long and thrice asmuch random accessmemory (RAM)
as SeisMIC to execute the cross-correlation workflow,
putting SeisMIC at a similar efficiency level as NoisePy
(see Jiang and Denolle, 2020). In addition, SeisMIC

offers a broader range of preprocessing options than
NoisePy or MSNoise. MSNoise creates one miniseed
file per CF, resulting in less complexwriting operations,
which aremore evenly distributed across the cores. For
this benchmark, this translates to a slightly better scal-
ing between thenumber of cores and the computational
time but also in a high number of files, which can be
undesirable for large datasets. SeisMIC, on the other
hand, creates one file per component combination. In
every case,MSNoise remainsmore than twice as slowas
SeisMIC. Note that the shown times do not include the
time that MSNoise takes to set up a database and scan
new data, which can take a significant amount of time,
whereas these operations are practically instantaneous
in SeisMIC.
While the presented results are encouraging, we re-

mark that we could decrease compute times even fur-
ther by exploiting the potential of modern graphic pro-
cessing units (GPUs), which can correlate ambient seis-
mic noise with high efficiency (Clements and Denolle,
2021; Wu et al., 2022). Implementing such algorithms
belongs to the intermediate-term goals of SeisMIC’s de-
velopment.

3 A Practical Example of a Workflow:
FromRawWaveformData to a Veloc-
ity Change Time Series

In this section, we demonstrate how to obtain a dv/v

time series using aminimal workflow in SeisMIC. In the
supplementary material, we provide two Jupyter note-
books containing the source code used for this work-
flow. The exemplary data are recorded by stationX9.IR1
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Figure 4 Time dependent spectrogram of the raw waveform at X9.IR1. We compute the spectrogram after removing the
instrument response using 2 hours Welch windows. Note the energy spike caused by the Zhupanov earthquake. The energy
amplitude is normalised by its maximum.

around the date of the M7.2 Zhupanov earthquake in
Kamchatka, Russia. In the following, we investigate the
impact of the event on the seismic velocity in the sta-
tion’s vicinity. A discussion of the result lies beyond the
scope of this technical paper and has already been per-
formed byMakus et al. (2023b). We conducted this anal-
ysis using SeisMIC’s implemented workflow, which is
parametrised using a simple YAML file (see supplemen-
tary material). In the following, we will take a step-by-
step tour through said workflow and provide somemin-
imal code examples. For further examples, we advise
the reader to consult SeisMIC’s documentation and our
GitHub page.

3.1 Data Retrieval
To start, we download data from an FDSN-compatible
server. In our case, we download data from station
X9.IR1, available over the GEOFONFDSN service (Quin-
teros et al., 2021). For conciseness, we restrict this ex-
ample to 11 days of data from 25 January to 5 February
2016. In section 2.3, we show how SeisMIC performs
when confronted to larger datasets recorded on several
stations and how compute time scales when employing
multiple cores. Our exemplary time window comprises
the 28 January Zhupanov earthquake, whose coseismic
velocity drop we want to investigate. In SeisMIC, we
can initiate the data download using the Store_Client
class and its method download_waveforms_mdl :

Listing 1 Downloading data using SeisMIC
from obspy import UTCDateTime

from seismic.trace_data.waveform import
Store_Client

starttime = UTCDateTime(2016, 1, 25)

endtime = UTCDateTime(2016, 2, 5)

# Decide where data are stored
sc = Store_Client('GEOFON', '/path/to/project

', read_only=False)
sc.download_waveforms_mdl(

starttime, endtime, clients=['GEOFON'],
network='X9',

station='IR1', location='*', channel='HHE
')

Under the hood, this will initiate ObsPy’s (Beyreuther
et al., 2010) MassDownloader to download continuous
waveform data from the specified station if not already
present locally. Here, we will compute autocorrelations
using only the east component of the seismogram. We
can use SeisMIC to get a first idea of the spectral content
of our waveform and to investigate in which frequency
bands we might find stable noise sources suitable for
PII.We showa spectrogramcomputed usingWelchwin-
dows (see, e.g., Barbe et al., 2010) as implemented in
SeisMIC in Figure 4.

3.2 Computing Autocorrelations

After downloading the waveforms, we can correlate
them to obtain CFs. When computing correlations, we
have ample preprocessing options, which, for brevity,
we will not discuss here in detail. Most fundamentally,
we must set the correlation length, corr_len , (i.e., the
duration of the time windows to be correlated), the in-
crement between these time windows, corr_inc , the
correlation method (in our case, autocorrelation), and
the frequency window to be filtered. The user defines
all options in the YAML file, but they can also provide
parameters in a Pythondictionary. For this example, we
choose a correlation length of one hour and a frequency
band between 2 and 4 Hz. In SeisMIC, the Correlator
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Figure 5 Hourly autocorrelations of ambient noise recorded by the east component of X9.IR1. This plot showcases two
styles to plot correlations in SeisMIC. (a) Autocorrelations plotted as a colour image. The colours scale with the amplitude
of the correlation. We superimpose the average of all shown autocorrelations on top of the heatmap. (b) Autocorrelations
plotted as a section plot. In this plot, each hourly CF corresponds to one curve. Here, we only show the causal side of the CF.

class handles the correlation workflow.

Listing 2 Downloading data using SeisMIC
from seismic.correlate.correlate import

Correlator

# sc is the previously initatied Store_Client
c = Correlator(sc, options='path/to/params.

YAML')
st = c.pxcorr()

To illustrate the syntax of the parameter file, we showan
extract of it below. Note that the keys preProcessing ,
TDpreProcessing , and FDpreProcessing can also im-
port custom, external functions as long as input argu-
ments and return objects follow a predefined syntax.

Listing 3 params.YAML
...
read_start : '2016-01-25 00:00:01.0'

read_end : '2016-02-05 00:00:00.0'
sampling_rate : 25
remove_response : False
combination_method : 'autoComponents'
preProcessing : [

{'function':'seismic.correlate.
preprocessing_stream.detrend_st',
'args':{'type':'linear'}},

{'function':'seismic.correlate.
preprocessing_stream.cos_taper_st',
'args':{'taper_len': 100,

'lossless': True}},
{'function':'seismic.correlate.

preprocessing_stream.stream_filter',
'args':{'ftype':'bandpass',

'filter_option':{'freqmin':0.01,
'freqmax':12.49}}}]

subdivision:
corr_inc : 3600
corr_len : 3600
...
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Figure 6 The waveform coherence as a function of lag time and frequency for the dataset from station X9.IR1 and channel
HHE. For details, consult the text body.

corr_args : {'TDpreProcessing':[
{'function':'seismic.correlate.

preprocessing_td.detrend',
'args':{'type':'linear'}},

{'function':'seismic.correlate.
preprocessing_td.TDfilter',
'args':{'type':'bandpass','freqmin'

:2,'freqmax':4}},
],
'lengthToSave':25,
'center_correlation':True,
'normalize_correlation':True,
...
}

...

Its pxcorr method will internally handle preprocess-
ing and correlation. It will also initiate MPI to enable
parallel processing. In Figure 5, we plotted the CFs us-
ing SeisMIC’s plotting tools. Due to the high noise level
in the chosen time window and frequency band, a well-
defined coda emerges from the CFs (see Makus et al.,
2023b, for details).

3.3 Waveform Coherence
For a first assessment of which frequency bands are
well-suited for a velocity change analysis, we can use
a spectrogram like the one we show in Figure 4. Ad-
ditionally, one can use SeisMIC’s waveform coher-
ence function. The waveform coherence corresponds
to the averaged zero-lag cross-correlation between a
reference CF and CFs at time t (Steinmann et al.,
2021). In Figure 6, we show the waveform coherence
for our exemplary dataset computed between hourly
CFs and the average CF as a reference. We deter-
mine the coherence for 5s long lapse-time windows
and one-octave-wide frequency bands jointly for pos-
itive (causal) and negative (acausal) lag times. Seis-

MIC computes waveform coherence using the Monitor
class and its compute_waveform_coherence_bulk()
method (see supplementary material).
Figure 6 leads us to infer a high stability and energy

content between 0.5 and 4 Hz. The coherence remains
high until late lag times, e.g. for 3 Hz centre frequency,
up to 75 periods. From this, we infer a highly scattering
medium paired with a high energy content in this fre-
quency band originating from the volcanic system (see
Makus et al., 2023b). Therefore, we henceforth focus on
the analysis of dv/v between 2 and 4 Hz.

3.4 Computing Velocity Changes Using the
Stretching Method

Using the procedure theoretically outlined in section
2.2, we can estimate the evolution of the seismic veloc-
ity in the study period. Like previously, the parametri-
sation is handled over the YAML file (see supplementary
material). Before computing dv/v, we smooth the one-
hour CFs with a 4-hour long Hanning window. As refer-
ence CF, we use the mean of all CFs. Then, we compute
dv/v for lag times between 3.5 s and 12 s simultaneously
from the causal and acausal parts of the coda. We plot
the resulting velocity change time series using one of
SeisMIC’s standard plotting templates in Figure 7.
Even though we do not focus on data interpretation

in this article, we should take a brief look at the pre-
sented results. Most notably, we identify a clear velocity
drop coincidingwith the regionalM7.2 Zhupanov earth-
quake. Interestingly, the resolution of the dv/v time se-
ries is high enough to identify a diurnal cycle that could
be caused by air temperature and pressure variations,
for example, observed by Wang et al. (2020), or might
be due to lunar and solar tides as reported by Yama-
mura et al. (2003) and Sens-Schönfelder and Eulenfeld
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Figure 7 Velocity change time series estimated from the CFs shown in Figure 5. The increment between each data point
is one hour and the shown dv/v is derived from CFs that are smoothed over 4 hours. The points’ colour scales with the
correlation coefficient (coherence) between the stretched CF and the reference CF. We plotted the origin time of the M7.2
Zhupanov earthquake,which occurredon 28 January 2016, as a vertical red line. Anobvious velocity drop coincidingwith the
event can be identified. A subsequent recovery and more subtle differences in seismic velocity between day- and nighttime
are visible.

(2019). Lastly, we note that the correlation coefficient
is significantly lower before 26 January 2016. We link
this observation to a transient change in thewavefield as
described by Makus et al. (2023b) and Steinmann et al.
(2023).

3.5 Spatial Imaging of Velocity Changes
Velocity change estimates like the one presented in Fig-
ure 7 show dv/v as a function of time but do not di-
rectly yield insight into the spatial distribution of these
velocity changes. Coda waves, as used in PII, sam-
ple the medium at a high spatial extent. While this
allows to detect distributed weak velocity changes or
changes located away from the path of direct waves,
it prevents a simple inference of the affected location
along a ray path or Fresnel volume. The affected loca-
tion can, however, be estimated using sensitivity ker-
nels that describe the time-dependent energy distribu-
tion of the wavefield for a statistically uniformmedium.
For a theoretical derivation of the sensitivity kernels
based on the Radiative Transfer Theory, refer to Mayor
et al. (2014), Margerin et al. (2016), and Zhang et al.
(2022).
In SeisMIC, we implemented a simplified approach

relying on sensitivity kernels derived from an approxi-
mate solution of the Boltzmann equation for a homoge-
neous medium (Paasschens, 1997) describing isotropic
scattering of acoustic waves. Using these sensitivity
kernels and a linearised inversion scheme proposed by
Obermann et al. (2013), we can map a 2-dimensional
distribution of dv/v at a fixed time ti resulting in
dv/v(ti, x, y).
In SeisMIC, the module seismic.monitor.spatial

contains the necessary functions for the outlined ap-
proach. To illustrate the procedure and make our ex-

ample easily adaptable and reproducible, we create a
synthetic velocity-change model, which we then for-
ward model onto a random station configuration. After
adding noise to the synthetic data, we try to recover the
initial model using the inverse algorithm. In detail, we
proceed as follows: First, we create a synthetic veloc-
ity change model with an extent of 40 km×40 km and
a spatial resolution of 1 km (Figures 8 (b) and (d)). The
background medium has a homogeneous velocity of 3
km

s and a transportmean free path l0 of 30 km. Then, we
place an arbitrary number of stations on random posi-
tions along the grid. Using sensitivity kernels of cross-
and autocorrelations, we solve the forward problem to
compute dv/v, as it would be obtained from the CFs in
the presence of the spatial velocity variations. The sen-
sitivity kernels are computed for lapse timewindowsbe-
tween 14 and 34 s. To the dv/v values, we add random
noise. This noise follows aGaussiandistribution around
0% velocity change with a standard deviation of 0.1%.
Finally, we invert for the synthetic model employing
the damped linearised inversion (Tarantola andValette,
1982). We show the results of this inversion in Figures
8 (a) and (c) for 4 and 32 stations, respectively. There,
we also indicate the used damping parameters. The op-
timal damping parametersminimise both themisfit be-
tween the initial and the retrievedmodel and themodel
complexity and can be found using the L-curve crite-
rion, as discussed by Obermann et al. (2013). This in-
version relies on two damping parameters, the correla-
tion length λ determining how strongly related neigh-
bouring grid cells are and the model variance σm that
the model may assume.

The results demonstrate that increasing the number
of stations is themost powerful tool to decrease themis-
fit between the inversion result and the input model.
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Figure 8 Two examples of the spatial inversion using different parametrisations and station configurations.(a)Result of the
spatial inversion algorithm using four stations, a model variance σm = 0.1 km

km2 , and a correlation length λ = 2 km. (b) The
synthetic velocity model and station configuration used to obtain (a). (c) Result of the spatial inversion algorithm using 32
stations, σm = 0.01 km

km2 , and λ = 2 km. (d) The synthetic velocitymodel and station configuration used to obtain (c). For an
exhaustive description of the parametrisation and the inversion steps, consult the text body.

While the geometry of the synthetic model is poorly re-
trieved for a configuration using only four stations, we
can reproduce the model quite accurately with 32 sta-
tions.
The supplementary material contains a Jupyter note-

book to reproduce or modify these results with an ar-
bitrary number of stations, velocity change model, and
damping parameters. We also include options to in-
vert for dv/v only utilising data from auto- or cross-
correlations and using sensitivity kernels from split
coda windows (i.e., with lapse time windows sliced into
narrow sub-windows). In the supplement, we show re-
sults that exploit these options. Based on these, we ar-
gue that adding dv/v information from auto- and cross-
correlations, improves the accuracy of the result no-
tably, whereas splitting the coda yields only minor im-
provements.

4 Conclusion and Outlook
We presented SeisMIC, a software to estimate changes
in the seismic propagation velocity from continu-
ous records of seismic ambient noise. SeisMIC con-
tains functionalities for the end-to-end processing of
velocity-change time series, including data retrieval,

the computation of correlation functions, calculat-
ing velocity change time series using the stretch-
ing method, and postprocessing as well as inverting
dv/v time series onto a spatial grid. While these func-
tions can be part of a workflow, they are also intended
to be used separately and can easily be altered and
adapted to individual processes. In SeisMIC, we imple-
ment anewdata format for correlation functions, which
provides uniformity, flexibility, interoperability, and in-
tegrity. Thereby, we hope to foster a broader discussion
in the community regarding data standards, which, we
believe, would aid data exchange, efficiency, and repro-
ducibility of ambient noise studies.
In the near future, we will release versions capa-

ble of estimating dv/v employing algorithms other than
the stretching method, like the wavelet-cross-spectrum
analysis (Mao et al., 2020). Other future milestones in-
clude exploiting the computational power ofGPUs to de-
crease the compute time of noise correlations even fur-
ther and adding solutions that automatically update cor-
relation function databases.
SeisMIC complements existing software to process

ambient noise. Highlights are its broad functionality,
high efficiency, and versatility applicable to local small-
scale studies on a laptop computer as well as surveys us-
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ing large-Narraysprocessedoncomputer clusters. Seis-
MIC is available on GitHub as a well-documented and
regularly maintained open-source software.
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