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S U M M A R Y 

The recent rapid improvement of machine learning techniques had a large impact on the way 

seismological data can be processed. During the last years several machine learning algorithms 
determining seismic onset times have been published facilitating the automatic picking of large 
data sets. Here we apply the deep neural network PhaseNet to a network of over 900 permanent 
and temporal broad-band stations that were deployed as part of the AlpArray research initiative 
in the Greater Alpine Region (GAR) during 2016–2020. We selected 384 well distributed 

earthquakes with M L ≥ 2.5 for our study and developed a purel y data-dri v en pre-inv ersion 

pick selection method to consistently remove outliers from the automatic pick catalogue. This 
allows us to include observations throughout the crustal triplication zone resulting in 39 599 P 

and 13 188 S observations. Using the established VELEST and the recently developed McMC 

codes we invert for the 1-D P - and S -wave velocity structure including station correction terms 
while simultaneously relocating the events. As a result we present two separate models differing 

in the maximum included observation distance and therefore their suggested usage. The model 
AlpsLocPS is based on arri v als from ≤130 km and therefore should be used to consistently 

(re)locate seismicity based on P and S observations. The model GAR1D PS includes the entire 
observable distance range of up to 1000 km and for the first time provides consistent P - and 

S -phase synthetic traveltimes for the entire Alpine orogen. Comparing our relocated seismicity 

with hypocentral parameters from other studies in the area we quantify the absolute horizontal 
and vertical accuracy of event locations as ≈2.0 and ≈6.0 km, respecti vel y. 
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1  I N T RO D U C T I O N  

While the underlying cause for the Alpine orogeny can be attributed 
to the collision of the Eurasian and African continental plates, the 
complex interactions and reorganizations of wedged microplates 
such as the Adriatic Plate is yet not fully understood (Schmid et al. 
2004 ; Handy et al. 2010 ). 

This collision did not only form the present day surface topog- 
raphy of the orogen but also caused the formation of a crustal root 
beneath the mountain belt leading to strong variations in Moho 
depths ranging from 20 to 25 km in the Nor ther n and Nor thwester n 
foreland to 50–55 km beneath the Central and Western Alps (Spada 
et al. 2012 ). The European AlpArray research initiative (AlpArray 
Seismic Network 2015 ) aims to gain novel insights into the Alpine 
oro gen y in space and time. The central part of this interdisciplinary 
and international project (involving 36 institutions from 11 coun- 
tries) was to densify the existing permanent seismic networks by the 
temporary AlpArray Seismic Network (Het ényi et al. 2018 ). Addi- 
tional networks with a more local focus such as the SWATH-D (Heit 
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et al. 2021 ) were also deployed to study in high resolution specific 
aspects of the Alpine oro gen y. Based on this unprecedented data set 
a wide range of seismological methods was applied to sharpen our 
understanding of plate/microplate reorganization, mantle dynamics 
and their relation to surface processes. 

Recent studies hav e lev eraged the AlpArray data set to (re)-assess 
seismicity as well as to refine the P and S wave 1-D and 3-D ve- 
locity structure in the Greater Alpine Region (GAR). Recently, a 
comprehensi ve anal ysis of the seismicity in the entire GAR between 
2016 and 2019 has been conducted by Bagagli et al . ( 2022 ). They 
used observations from distances of up to of 300 km to invert for 
a 1-D P -wav e v elocity model and hypocentral parameters with the 
well-established VELEST code (Kissling et al. 1994 ). On a more 
local scale Jozi Najafabadi et al. ( 2021 ) inverted P and S phases with 
epicentral distances of up to 160 km for a 1-D velocity model resolv- 
ing the upper and mid crust beneath the Central Eastern Alps using 
an Markov chain Monte Carlo (McMC) algorithm from Ryberg & 

Haberland ( 2019 ). Using data from the Swiss seismic network Diehl 
et al. ( 2021 ) published a local 3-D P - and S -wav e v elocity model 
ress on behalf of The Royal Astronomical Society. This is an Open Access 
s Attribution License ( https://creati vecommons.org/licenses/b y/4.0/ ), which 
 any medium, provided the original work is properly cited. 
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or the broader Swiss region. Complimentary, ambient noise studies
btaining 3-D crustal and upper mantle S -wave velocity models of
he GAR have been conducted by K ästle et al. ( 2018 ) and Sadeghi
agherabadi et al. ( 2021 ). 
In this study, we inv ert trav eltime observations from the 384

vents and 958 seismic stations displayed in Fig. 1 in order to ob-
ain for the first time a joined 1-D P - and S -wave velocity model for
he GAR including station correction terms while simultaneously
elocating the seismicity. A very basic task inherent to earthquake
ocation and seismological tomographic studies is the determina-
ion of seismic phase arri v al times. Considering the huge amount of
a veforms a vailable nowada ys the application of automatic picking

ool is indispensable. Accompanied by the recent rapid advances in
esearch and application of artificial intelligence in general several
eep neural network based seismic picking algorithms have been
ev eloped. The y were found to reach the level of accuracy of human
nalysts (Weiqiang & Beroza 2018 ; Woollam et al. 2019 ) and have
een used for v arious seismolo gical task such as monitoring of vol-
anoes (Lapins et al. 2021 ) and real-time analysis of seismograms
Kuang et al. 2021 ; M ünchmeyer et al. 2021 ). We carefully assess
he performance of the most widely used neural network pickers
n our data set using Seisbench—A toolbox for machine learning in
eismology based on Woollam et al. ( 2022 ) and M ünchmeyer et al.
 2022 ). 

For the inversion we apply the McMC and VELEST algorithms
o our P - and S -phase data and as a result present the first orogen
ide traveltime based 1-D P - and S -wave model of the GAR. Our
lpsLocPS model with resolution in the upper and mid crust is based
n observations from distances of 0–130 km and allows consistent
re)localization of seismicity within the GAR using P and S phases.
he GAR1D PS model incorporates arri v als from up to 1000 km
nd therefore resolves the entire crust and the uppermost mantle. 

 DATA  

he majority of waveforms analysed is provided by the AlpArray
eismic network (Het ényi et al. 2018 ) which has been in operation
rom 2015 to 2021 as part of the European interdisciplinary Al-
Array Research initiative. Due to a hexagonal packing strategy,
he partially heterogeneous distribution of permanent broad-band
tations in the GAR could be ef fecti vel y densified to a maximum
tation spacing of 52 km. Thus, each point within the GAR is located
ithin a 30 km radius of a seismic broad-band station. Additionally,

rom October 2017 until September 2019 the SWATH-D network
mproved the station spacing in the Eastern and Southern Alps to
5 km (Heit et al. 2021 ). 

We used the FDSN client implemented in ObsPy (Krischer et al.
015 ) to collect station metadata and seismic broad-band waveform
ata from 958 stations in the GAR between the years of 2016 and
020. Only data with a sampling rate of at least 100 Hz and a chan-
el of either ‘HH?’, ‘BH?’ or ‘EH?’ has been considered. We do not
emove the instrument response during processing. For consistency
easons, we resample all data to PhaseNet’s (Weiqiang & Beroza
018 ) required sampling rate of 100 Hz before feeding the wave-
orms to several deep learning picking algorithms. Event detections
ith M L ≥ 2.5 and corresponding initial hypocentral parameters are
btained from the European–Mediterranean Seismic Centre (EPOS-
MSC)( https:// www.seismicportal.eu/ ). The used 958 stations and
84 events are shown in Fig. 1 as red triangles and blue circles,
especti vel y. 
 M E T H O D S  

.1 Phase picking 

.1.1 Evaluation of neural network picking algorithms using 
eisbench 

he recent rapid improvement of machine learning techniques had
 strong impact on seismic data analysis. We utilize this develop-
ent by testing the performance of the most widely used neural

etwork picking algorithms on our seismic waveform data. With
he recently published Seismology Benchmark collection SeisBench
Woollam et al. 2022 ) we applied the deep-neural-network pick-
ng algorithms PhaseNet (Weiqiang & Beroza 2018 ), Earthquake-
ransf ormer (EQT ; Mousavi et al. 2020 ) and GPD (Ross et al.
018 ) to waveforms recorded in the Swiss Alpine region for which
 high quality manual reference pick catalogue from Diehl et al.
 2009a ) w as av ailable. This catalo gue consists of 1801 P -phase
icks recorded from 1997 to 2006 and was compiled for a local
ar thquake tomog raphy study of the g reater Swiss area (Diehl et al.
009a ). 

The neural network pickers are built on different architectures and
ere trained on distinct training data sets yielding one final model
er architecture and training data pair. Seisbench incorporates sev-
ral models for each picker based on different training data such
s the ETHZ (SED at ETH Zurich 1983 ), SCEDC (SCEDC 2013 ),
CEDC (NCEDC 2013 ), INSTANCE (Michelini et al. 2021 ) and
TEAD (Mousavi et al. 2019 ) data sets. In order to assess the pick-
rs’ performance we compared the picks obtained by each neural
etwork to the high quality manually picked catalogue of phase
rri v al times and associated quality classes. 

The performance of the picking algorithms is assessed by the
ean offset μ, the standard deviation σ and recall of the neural

etwork picks with regard to the manual catalogue. These parame-
ers are compared in Table 1 for the tested combinations of network
rchitectures and training data sets. 

Although μ and σ are only varying moderately between the
ifferent automatic pickers, the recall, defined as the percentage
f retrieved picks from the reference data, fluctuates significantly.
his parameter strongly depends on the user-defined probability

hreshold t prob . The lower the threshold, the higher the number of
icks is in general and therefore increases the recall but at the same
ime causes more erroneous picks. 

We decided to use the neural network PhaseNet in its original
onfiguration, that is t prob = 0.3, trained on the NCEDC data set for
ll further analysis, since its higher recall in our opinion outweighs
he slightly increased mean offset μ. 

Fig. A1 shows a comparison of 1702 matching picks from Diehl
t al. ( 2009a ) and PhaseNet . As the mean offset of μ = 0.15 s in-
icates, the entire distribution is slightly shifted to ne gativ e values,
hat is late PhaseNet picks. Fur ther more, it can be observed that
he number of outliers with | � t | > 1.0 s is significantly larger for
e gativ e values. Late PhaseNet picks predominantly occur in the
istance range of ≈100–300 km coinciding well with the crustal
ross-over distance of Pg , PmP and Pn phases where PhaseNet is
ot able to al wa ys pick the rather small amplitude Pn first arri v al.
n Section 3.4 , we present a purely data-driven approach to con-
istently remove the overcritical Pg / Sg picks while minimizing the
umber of discarded first arri v al observ ations. 

Seismicity in the GAR is mainly limited to the upper crust with
ew exceptions (Bagagli et al. 2022 ). This generally causes a rather
ronounced appearance of the crustal Pg , PmP and Pn phases and

https://www.seismicportal.eu/
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae077#supplementary-data
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Figure 1. Overview map of the Greater Alpine region showing locations of the 958 broad-band seismic stations (red triangles) and 384 events (blue dots) with 
M L ≥ 2.5 used in this study. Purple dots are showing the seismicity of the AlpArray Research Seismicity-Catalogue from Bagagli et al. ( 2022 ). Stations VARN 

(NE Italy) and WETR (SE Germany) referred to in Fig. 9 are highlighted with cyan stars, locations at which 1-D v s profiles (Fig. 11 ) are extracted from the 3-D 

S -wave models from K ästle et al. ( 2018 ) and Sadeghi Bagherabadi et al. ( 2021 ) are marked with light green diamonds. 

Tab le 1. Tab le assessing the performance based on mean μ, standard devi- 
ation σ and recall of several neural network picking algorithms trained on 
various benchmark data sets using Seisbench (Woollam et al. 2022 ) when 
compared to the manual P -phase pick catalogue from Diehl et al. ( 2009a ). 

Neural network Training data μ (s) σ (s) 
Recall (per 

cent) 

PhaseNet NCEDC (org) − 0 .15 0.27 95 
ETHZ − 0 .07 0.30 80 
STEAD − 0 .12 0.28 64 
INSTANCE 0 .02 0.37 90 

EQT INSTANCE − 0 .12 0.26 80 
ETHZ − 0 .05 0.27 79 
STEAD − 0 .09 0.19 35 
SCEDC − 0 .08 0.26 55 
Original − 0 .09 0.26 36 

GPD ETHZ − 0 .13 0.24 91 
STEAD − 0 .1 0.22 92 
SCEDC − 0 .09 0.17 67 
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thus creates a more comple x wav efield than in, for example a sub- 
duction zone setting. 

3.1.2 PhaseNet versus manual picks 

As a next step we further verify the applicability of PhaseNet to our 
data set and compare its accuracy against the inevitable influence 
of human subjectivity when manually determining phase arrival 
times. Therefore, a human analyst picked P - and S -phases from 30 
events with epicentres in the Central Alpine area recorded in 2018. 
Six of these events were picked by a second analyst to exemplarily 
validate the picking accuracy. Values of μ and σ are not deviating 
significantly between both comparisons (see Fig. A2 ) supporting the 
conclusion that PhaseNet ’s picks are almost as accurate and con- 
sistent as manually determined onset times. Generally, the S -phase 
discrepancies are slightly higher most likely due to the less impul- 
sive onset within the P -phase coda. When comparing PhaseNet and 
manual picks over several epicentral distance ranges we observe an 
increase of the standard deviation with distance for picks observed 
between 0 and 300 km (Figs A3a–c) and no further increase in 
deviation for picks from distances ≥300 km ( Fig. A3d). 

Finally, we compare PhaseNet to a set of manually revised picks 
from Jozi Najafabadi et al. ( 2021 ) comprising 16 events from the 
Central Alps within the boundaries of the SWATH-D network (see 
Fig. A4 ). P - and S -phase inconsistencies are very similar to the 
values from Table 1 and Fig. A2 . 

3.2 Development of a weighting scheme based on 

PhaseNet ’s pick probability 

Most earthquake location and inversion algorithms allow the as- 
signment of an uncertainty value or weight to each individual phase 
arri v al in order to increase the impact of accurate picks on the in- 
version result. The importance of a consistent weighting of picks 
based on their accuracy and the influence on the resulting tomo- 
graphic image has been demonstrated by Diehl et al. ( 2009b ). Even 
though PhaseNet does not output the uncertainty of the preferred 
onset time, if run in default mode it outputs a probability between 
0.3 and 1.0 for each pick. Thus, in order to assign a weight to each au- 
tomatic pick we investigated the correlation between the PhaseNet 
probability and manually determined pick qualities based on the 
1702 matching manual reference picks from Diehl et al. ( 2009a ). 
Fig. 2 shows the deviations of manual and PhaseNet picks when 
clustering PhaseNet picks to the probability ranges 0.3–0.6, 0.6–
0.75, 0.75–0.9 and 0.9–1.0. Picks with higher probabilities deviate 

art/ggae077_f1.eps
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae077#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae077#supplementary-data
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https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae077#supplementary-data
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Figure 2. Difference in determined P -phase onset time between the high precision manual pick catalogue from Diehl et al. ( 2009a ) and PhaseNet ’s picks. 
Each panel corresponds to PhaseNet picks within the specified probability range. 
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ignificantly less from the manual reference pick indicating a cor-
elation between probability and accuracy of the PhaseNet picks.
iehl et al. ( 2009a ) assigned the classes 0, 1, 2, 3 and 4 corre-

ponding to absolute pick uncertainties of 0.05, 0.1, 0.2, 0.4 and
 0.4 s to each of their picks. Fig. 3 shows the number of picks

er class for the same PhaseNet probability ranges as above. The
ost accurate manual picks predominately show up in the high-

st PhaseNet probability range, while lower class manual picks
re more likely to fall into lower probability ranges. We use this
orrelation to estimate an average pick uncertainty ε. For each
robability range the uncertainties associated to the manual pick
lasses 0–3 are averaged while weighted by the number of corre-
ponding picks. Class 4 picks are not considered since they were
ot assigned a discrete uncertainty value. Even though the absolute
alues of ε seem to be an underestimation of the actual uncertainty
hen compared to the values of μ and σ in Fig. 2 , the trend of

ncreasing accuracy with increasing pick probability is systematic
hich suggests relative weighting of PhaseNet picks based on their
robability. 
.3 Event section plot 

s an illustrative way to display the vast amount of seismic data
vailable for this study we show an event section plot of a M L = 3.8
 vent in NE Ital y in Fig. 4 (a). The trace nor malized ver tical com-
onents are shown over their epicentral distance. The traveltime on
he y -axis is corrected with the approximate upper-crustal P -wave
elocity of v p = 6.0 km s −1 , so that the arri v al of the direct Pg wave
s aligned horizontally. Synthetic onset times are computed with
onLinLoc (Lomax et al. 2000 ) based on the 1-D P -wave veloc-

ty model from Diehl et al. ( 2009a ) and a constant v p / v s ratio of
.73 and indicated with purple and pink horizontal bars for P and S
hases, respecti vel y. Although PhaseNet ’s P -phase picks as selected
r discarded by the 2-fit method (Section 3.4 ) are shown in red and
lue, respecti vel y. S -phase picks are plotted in green (selected) and
range (discarded), accordingly. At distances from ≈200 to 450 km
haseNet also frequently picks the later arriving direct Pg -phase

hat is often misidentified as an incoming S -phase (orange) pos-
ibly due to its shallow incidence angle. Similarly, the Sn -phase

art/ggae077_f2.eps
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Figure 3. Number of manually assigned pick classes for P phases in Diehl et al. ( 2009a ) for the four given PhaseNet probability ranges. The error estimate 
ε averages the accuracy values from 0.05 to 0.4 s as assigned to each pick class in Diehl et al. ( 2009a ) weighted by their occurrence in the corresponding 
probability range. 
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often seems to be mislabelled as a P phase. Therefore, when ap- 
plying the 2-fit-method we are considering all PhaseNet picks at 
distances ≥200 km within ±7 s of the synthetic S -phase onset to be 
Sn phases regardless of their PhaseNet label. Those manually rela- 
belled onsets are indicated by green circles with red edgecolour in 
Fig. 4 (a). 

3.4 Selection of a r eliab le data subset 

The task of identifying and removing outliers in the data is of 
increased importance when dealing with an automatically picked 
catalogue of arrival times usually containing more erroneous picks 
than manually picked data. In principle, this can be approached from 

the model as well as from the data side. Selecting outliers based on 
the model requires detailed a priori information of the region in 
order to remove picks based on their residual with respect to a 
certain reference model. Here, one has to be careful to not simply 
select picks that confirm the initial assumptions and discard data 
that contains valuable true signal, but deviates from the reference 
model. 

To mitigate such a model anchoring, we developed a purely data 
driven approach. Fig. 4 (b) illustrates our new ‘ 2-fit-method ’ ap- 
plied to P -phase arri v als from the same event as in Fig. 4 (a). Phase 
onsets are plotted over epicentral distance with their reduced travel- 
time v red = 8.0 km s −1 . Blue crosses mark the synthetic arri v al time 
based on the 1-D model from Diehl et al. ( 2009a ) and green crosses 
draw a ±7 s corridor around them. Since all picks outside of this 
corridor are discarded it has to be wider than the maximum ex- 
pected signal amplitude. Initially, a weighted linear regression is 
fit through arri v als from 0 to 100 km and extrapolated. Picks within 
the blue corridor at distances ≥150 km within 4 σ of this extrapo- 
lation are discarded as overcritical Pg phases (cyan). Later arri v als 
(purple) are discarded as potential PmP phases. Another weighted 
regression is fit through the remaining data between 250 and 700 km 

and extrapolated in both directions until it intersects the first fit for 
the direct arri v als. All arri v als within 2 σ of these two regressions 

art/ggae077_f3.eps
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Figure 4. (a) Event section plot showing the normalized traces of vertical components over their epicentral distance for a M L = 3.8 event at 2.0 km depth in 
NE Italy. The traveltimes on the y -axes are corrected with the approximate upper-crust P -wave velocity of v p = 6.0 km s −1 . Synthetic onset times based on the 
1-D P -wav e v elocity model from Diehl et al. ( 2009a ) and a constant v p / v s ratio of 1.73 are marked with purple and pink horizontal bars for P and S phases, 
respecti vel y. PhaseNet P - and S -phase picks selected by the 2-fit method are shown in red and green, while discarded P - and S -onsets are plotted in blue and 
orange, respecti vel y. Green markers with red edgecolour are onsets that have been labelled as P phases by PhaseNet , but are considered to be Sn phases due 
to their proximity to the synthetic S -onset. (b) Illustration of the 2-fit method to discard erroneous picks. PhaseNet P -phase arri v als are plotted over epicentral 
distance with a reduction velocity of 8.0 km s −1 . The corridor of considered picks is marked with green crosses at ±7 s around the synthetic onset (blue crosses) 
based on the 1-D model from Diehl et al. ( 2009a ). A linear regression is fit through the picks from 0 to 100 km and then extrapolated. All picks within the 
blue corridor at � ≥ 150 km within 4 σ of this fit are labelled as overcritical Pg phases (cyan) and discarded. Later phases with � ≥ 150 km are discarded as 
PmP arri v als (purple). A second weighted linear regression is fit through arri v als from 250 to 700 km and extrapolated until its interjection point with the first 
fit. Arri v als within 2 σ of the fits plotted in red are selected, while the remaining picks marked in grey are discarded. In the case of more than one arri v al on 
the same trace, only the first arrival within 2 σ of the fit is considered. First and later arri v als on the same trace are marked with black and lime edgecolours, 
respecti vel y. 
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re selected for the inversion and marked with red circles, while
he remaining picks plotted as grey circles are not considered for
urther processing. In the case of multiple picks per trace, only the
rst arri v al within the 2 σ range around the regression is selected.
n example of this ‘2-fit-method’ applied to S -arri v als is shown in
ig. A5 . 
This approach requires a rather linear moveout of the di-

ect Pg / Sg wave which only is given for events shallower than

art/ggae077_f4.eps
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≈15 km. After manual inspection our ‘2-fit-method’ yielded sta- 
ble results for 384 events selecting a total of 39 599 P and 13 188 S 
observations. 

Testing the ‘2-fit-method’ on the reference data set from Diehl 
et al. ( 2009a ) reduces μ = −0.15 s to μ= −0.09 s and σ = 0.27s to 
σ = 0.15 s when comparing the manual picks to the initial and the 
selected PhaseNet picks, respecti vel y. 

While the number of Pg -phases picked by PhaseNet (Fig. 4 a) 
matches the number of manually pickable onsets (see Fig. A6 ) 
rather well, for all other phases the PhaseNet picks outnumber 
the manual ones. Out of all PhaseNet picks there are 410 P 

phases and 178 S phases selected, compared to the manual 286 
P and 68 S onsets. Especially, the Sn onset could not be man- 
ually determined at all and has been consistently picked as the 
overcritical Sg phase, due to its low signal-to-noise ratio within 
the P coda, in particular between ≈150 and 280 km epicentral dis- 
tance (see Fig. A6 ). The overcritical Pg and Sg phases are con- 
sistently picked by PhaseNet well beyond distances of 400 km. 
Since this study focuses purely on first arrivals we discarded 
them all. Nev ertheless, the y contain additional information that 
could be very valuable to studies incorporating secondary arri v al 
picks. 

3.5 Spatial distribution of initial residuals 

A map view of the P- and S -phase residuals with respect to the 1-D 

model from Diehl et al. ( 2009a ) for the same event as in Fig. 4 is 
shown in Fig. 5 . Black dots mark station locations where waveforms 
were recorded but no phase onset within the corridor of ±7 s around 
the synthetic arri v al time w as detected b y PhaseNet . Picks selected 
and discarded by the 2-fit-method are marked as circles and dia- 
monds, respecti vel y. The map shows a rather smooth distribution of 
residuals with few contrasts between neighbouring stations. Over- 
critical Pg / Sg phases are mostly showing up as (dark)red circles and 
are consistently identified and discarded. Around the cross-over dis- 
tance on the western edge of the SWATH-D network some picks 
might have been wrongly discarded since they appear reasonable 
when compared to residuals from neighbouring stations. This is ac- 
ceptable, though, since the main objective of this step is to select a 
set of reliable picks. 

3.6 Computation of minimum 1-D models with VELEST 

and McMC 

We apply two different algorithms to simultaneously invert for a 
minimum 1-D P - and S -wave velocity model including station cor- 
rection and hypocentral parameters from the selected seismic onset 
times. The VELEST (Kissling et al. 1994 ) code is well established 
for this task and requires an initial layered velocity model. While 
we use starting values for v p from Diehl et al. ( 2009a ) with slightly 
modified values in the upper mantle and an initial v p / v s = 1.71 based 
on an average of the model from Diehl et al. ( 2021 ), hypocen- 
tral parameters are taken from EPOS-EMSC. We tested ≈200 
combinations for the three layer boundaries at depths between 15 
and 45 km in order to find the parametrization with the best fit 
for our data and did not apply additional damping to individual 
layers. Since the inverse problem is linearized iterati vel y around 
the given initial parameters substantial a priori information is 
necessary. 

Additionall y, we appl y the Bayesian McMC algorithm as initially 
de veloped b y Ryberg & Haberland ( 2019 ). The McMC approach 
explores the entire discretized model space for each parameter and 
updates one single model parameter per iteration step. While mod- 
els that lead to a reduced misfit are al wa ys accepted, models with 
increased misfit can be accepted as well with a low probability to 
overcome local minima. 

As a result, the model will converge towards the global minimum 

of the objective function within the defined model boundaries. Even- 
tually, a certain number n of the best-fitting models are statistically 
analysed to obtain uncertainty bounds for each model parameter 
based on its variance through the final set of well fitting models. 
Due to the so-called transdimensionality of the algorithm the num- 
ber of model layers as well as the location of layer boundaries 
is optimized during the inversion yielding a smooth, gradient-like 
velocity model. 

Since no initial model is given and the model boundaries are 
widely set to 2.0 km s −1 ≤ v p ≤ 12.0 km s −1 and 1.0 ≤ v p / v s ≤ 2.5 
only minimum a priori information is implemented leading to a 
data-driv en e xploration of the entire reasonable model space. 

The w orkflo w to wards the minimum 1-D models computed with 
VELEST and McMC is given in Table 2 and consists of three 
subsequent inversion runs. 

The first run includes P and S phases with epicentral distances 
� ≤ 130 km for a spatiall y homo geneousl y distributed subset of 
78 events in order to capture the average upper crustal P - and S - 
wav e v elocity structure without introducing a bias towards areas of 
increased seismicity and thus denser ray coverage. In the second 
run we compute the final locations for all 384 events by fixing the 
velocities from the first run and relocating all events using a total 
of 16 351 P and 10 967 S phases with � ≤ 130 km following Diehl 
et al. ( 2021 ) who showed a decrease of hypocentre accuracy when 
including distant observations for earthquake localization. During 
the third run we fix the event locations and additionally include 
23 248 P and 2221 S observations with � ≥ 130 km in order to 
increase resolution in the lower crust and upper mantle. Station 
corrections and origin times are updated in each step and used as 
input for the subsequent run. 

We perform one set of inversion runs with picks relati vel y 
weighted based on their PhaseNet probability and another one with- 
out weighting. There is no significant difference in the velocity 
structure and a standard deviation of σ = 0.5 km in the final epicen- 
tres with no systematic offset. Therefore, we decided to not include 
pick weights in our final models. 

4  R E S U LT S  

4.1 VELEST and McMC minimum 1-D models 

Fig. 6 shows the 1-D v p , v p / v s and v s distribution of 
the AlpsLocPS McMC (orange), AlpsLocPS VELEST (red), 
GAR1D PS McMC (purple) and the 10 best-fitting (blue, dashed) 
as well as the final best-fitting (lime) GAR1D PS VELEST models. 

In general the resulting P -wave velocity models (Fig. 6 a) 
match quite well, except for the uppermost crust where both Alp- 
sLocPS models exhibit increased values and the GAR1D PS McMC 

model shows a gradual velocity increase contrary to the 
GAR1D PS VELEST model. The large velocity jump at 32 km 

depth in the VELEST model is somewhat smoother in the 
McMC model, which still contains a rapid increase of v p be- 
tween 28 and 34 km depth. In this depth range the uncertainty in 
the GAR1D PS McMC model as well as the deviation of the 10 
best-fitting GAR1D PS VELEST models is highest. 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae077#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae077#supplementary-data
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Figure 5. Initial P - and S -phase traveltime residuals of PhaseNet picks with regard to the 1-D velocity model from Diehl et al. ( 2009a ) for the same event as in 
Fig. 4 . Onsets selected and discarded by the 2-fit method are marked by circles and diamonds, respecti vel y, while stations without phase picks despite available 
waveform data are denoted with black dots. 

Table 2. Overview of the w orkflo w consisting of three subsequent inversion runs resulting 
in the final 1-D v p and v s models, hypocentral parameters x , y , z and t org and station correction 
terms τP and τ S . 

#run Model v p , v s x , y , z t org τP , τ S #ev � 

run1 Free Free Free Free 78 0–130 km 

run2 AlpsLocPS Fix Free Free Free 384 0–130 km 

run3 GAR1D PS Free Fix Free Free 384 0–1000 km 

Figure 6. Comparison of the AlpsLocPS McMC (orange), AlpsLocPS VELEST (red), GAR1D PS McMC (purple) and the 10 best-fitting (blue, dashed) as well 
as the final best-fitting (lime) GAR1D PS VELEST 1-D velocity models. v p , v p / v s and v s distributions are plotted in panels (a), (b) and (c), respecti vel y. 
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In the comparison of the derived v p / v s models (Fig. 6 b) the largest
iscrepancy between all models again is present in the uppermost
rust. For the remaining depth range the models are matching
ithin their error margins with the highest uncertainty between
5 and 50 km depth. 

Similar to v p , the v s structure of the McMC models (Fig. 6 c)
hows a gradual increase in the upper crust in contrast to the
ayered VELEST models with no systematic shift between the
w o, though. Belo w 10 km depth the models are matching very
ell with the highest uncertainty again between 25 and 50 km
epth. 
s  
.2 VELEST and McMC event locations and station 

orrections 

ince the McMC algorithm is not given any initial hypocentres a
omparison with the VELEST locations can be seen as a ‘shift-test’
hich is commonly used to assess the dependency of final hypocen-

res from the initial locations. Resulting locations do not show a
ignificant systematic shift and a horizontal and vertical scattering
f σ lat /lon = 0.5 km and σ dep = 2.3 km, respecti vel y ( Fig. A10 ). 

The final P - and S -phase station corrections τP and τ S of the
AR1D PS VELEST model are displayed in Fig. 7 and show a

mooth trend rather than unreasonable small scale oscillations.

art/ggae077_f5.eps
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Figure 7. P - and S -phase station correction terms corresponding to the 1-D VELEST model based on observations from all distances. 
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They are in good agreement with station corrections of the 
GAR1D PS McMC (see Fig. A9 ). Minor differences can be at- 
tributed to the fact that VELEST computes station corrections rel- 
ative to a reference station with τP = 0.0 s whereas McMC has the 
boundary condition of a zero mean value of all values of τP / S . 

In summary, both VELEST and McMC models are explaining 
the data similarly well and velocities as well as hypocentres are 
coinciding well within the uncertainties. 

4.3 Residual analysis 

Fig. 8 shows the remaining P- and S- phase residuals corresponding 
to the final VELEST model for several epicentral distance ranges. 
P -phase residuals show a normal distribution around negligibly 
small mean values μ and increasing values of standard deviations 
σ with increasing distances � ranging from σ = 0.42 s ( � = 0–
70 km) to σ = 1.03 s ( � = 300–1000 km). For � ≥ 150 km no 
significant increase of the residual with distance is observed. S- 
phase residuals at � ≤ 150 km also follow a standard distribution 
with onl y slightl y increased v alues compared to P residuals. At 
� ≥ 150 km S -residuals are showing a increased standard deviation 
while being strongly reduced in the number of observations. 

In the following we present polar diagrams of remaining P -phase 
residuals observed at single stations. Fig. 9 (a) shows residuals for 
station VARN in NE Italy displayed over their distance and BAZ 

range. The distribution clearly clusters into a batch of predominantly 
ne gativ e residuals at � ≤ 150 km and another batch of predomi- 
nantl y positi ve residuals at � ≥ 250 km. 

A comparable effect of BAZ dependent clusters can be seen 
in Fig. 9 (b) displaying the remaining residuals of station WETR 

located in eastern Bavaria. While observations from the southwest 
show ne gativ e residuals throughout, for arri v als from the South 
positive residuals are obtained. 

A special focus of this study lies on the inaccuracy of the au- 
tomatic PhaseNet picks that are obtained in the crustal cross-over 
distance of Pg , PmP and Pn phases. Thus, we computed a set of 
1-D VELEST models with varying layer boundaries for a catalogue 
including picks from all distances and for a catalogue excluding 
the distance range from 130 to 300 km. The 20 best-fitting models 
for both catalogues in Fig. A7 show, that adding picks from the 
cross-over distance mainly impacts the resulting velocity models in 
the lower crust, but does not introduce a significant shift towards 
systematically higher or lower velocities in either model. 

We assessed the remaining residuals of picks from all distances 
corresponding to the best-fitting model computed when excluding 
the cross-over distance and find that picks in the cross-over distance 
do not show increased final residual values compared to observa- 
tions from ≥300 km (see Fig. A8 ). Therefore, all following models 
we present contain observations from the entire epicentral distance 
range. 

5  D I S C U S S I O N  

5.1 Static station corrections 

We notice only mild variations of the P station corrections in the 
actual mountain range. In the contrary, larger variations of the S - 
station corrections are present, particularly in the SE we notice 
a prominent patch of ne gativ e station corrections. These match 
qualitati vel y with a region of ele v ated v p / v s ratio in the LET study by
Jozi Najafabadi et al. ( 2022 ). As we include epicentral distances up 
to 1000 km in our GAR1D PS model calculated station corrections 
(Fig. 7 ) are not only representing local site effects in the vicinity of 
each station but are systematicall y af fected b y large scale geolo gical 
structures of the GAR such as Moho topography. Stations along the 
nor ther n edge of the network in central German y exclusi vel y record 
phases from distances ≥200 km travelling updip along a southward 
dipping Moho (Spada et al. 2012 ) systematically reducing their 
traveltime. Therefore, static station corrections of ≈+ 2 s are most 
likel y caused b y Moho topo graphy rather than local site effects. 
At stations with observations from near as well as far offsets such 
as station VARN in NE Italy a scalar station correction term is not 
sufficient to correct for distance-dependent residuals as illustrated in 
Fig. 9 (a) leaving clusters of near and far observations with ne gativ e 
and positive remaining residuals, respectively. As Fig. 10 shows, this 
impact of Pn / Sn phases on the station corrections causes an increase 
of final residuals for Pg and Sg phases compared to their residuals 
after the relocation step where epicentral distances were limited to 
� max = 130 km. Although Pg -phase residuals are almost doubling 
from σ = 0.25 s to σ = 0.46 s the increase in Sg -phase residuals 
from σ = 0.44 s to σ = 0.51 s is less prominent due to the smaller 
number of Sn observations impacting the final S station corrections. 
This suggests that the final static station corrections are not adequate 
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Figure 8. Distribution of remaining VELEST residuals for P phases (blue) and S phases (orange) observed within several epicentral distance ranges. 

Figure 9. Polar diagrams illustrating the spatial distribution of the remaining VELEST P -phase residuals over BAZ and distance observed at the stations VARN 

(NE Italy) (a) and WETR (SE Germany) (b). Station locations are highlighted in Fig. 1 . 
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Figure 10. (a) Pg -phase residuals with regard to the model after the relocation step (blue) and after the final inversion run (orange). (b) Sg -phase residuals 
with regard to the model after the relocation step (blue) and after the final inversion run (orange). 
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to consistently correct for local site effects we recommend to use 
our intermediate model AlpsLocPS and its station corrections as 
published in the Suppor ting Infor mation to locate seismicity within 
the GAR for P and S phases with epicentral distances ≤130 km. 
For events with a sufficient number of near observations, larger 
distances should not be considered an yw ay, due to the introduced 
increase of location uncertainty as shown by Diehl et al. ( 2021 ). 
In the following, we will compare our AlpsLocPS and GAR1D PS 
models to previous studies of the region. 

5.2 Comparison of 1-D velocity models 

Fig. 11 (a) shows the GAR1D PS VELEST (lime) and 
GAR1D PS McMC (purple) 1-D v p models of this study in 
comparison with previous models from Bagagli et al. ( 2022 ) 
(blue), Diehl et al. ( 2021 ) (dark green) and Jozi Najafabadi et al. 
( 2021 ) (cyan). The orogen wide model from Bagagli et al. ( 2022 ) 
is in good agreement with both our models showing no systematic 
of fset and de viations due to dif ferent layering are mainly averaging 
out over depth. Generall y, v alues of v p are matching well between 
all models for the mid-crustal range between 10 and 20 km and are 
de viating slightl y stronger above and below, which is consistent 
with the increased uncertainty of the McMC model in these depths. 
Deviations and increased uncertainties at shallow depths might be 
due to the high trade-off between station corrections and velocity 
values in the upper crust. 

Similarly, the v p / v s ratio is well constrained for the mid-crustal 
range of 10–20 km depth as Fig. 11 (b) demonstrates. Above and 
below this range the displayed v p / v s values are varying stronger. 
Fig. 11 (c) compares the 1-D v s models derived in this work with 
the smaller scale studies from Jozi Najafabadi et al. ( 2021 ) (cyan) 
& Diehl et al. ( 2021 ) (dark green) and selected 1-D profiles of 
3-D S -wav e v elocity models obtained from ambient noise stud- 
ies by K ästle et al. ( 2018 ) (blue) and Sadeghi Bagherabadi et al. 
( 2021 ) (orange). The dashed, dotted and dash–dotted lines corre- 
spond to profiles from the Central Alps (46.85 ◦N, 12.91 ◦E), Po 
plain (45.05 ◦N, 10.99 ◦E) and Western Alps (45.85 ◦N, 7.01 ◦E), re- 
specti vel y, as marked in Fig. 1 . Since these profiles are local rep- 
resentations of the velocity structure a detailed comparison with 
our models is not reasonable but represent the lateral variability in 
the GAR. The best agreement of all models is again visible in the 
mid-crust between 10 and 25 km depth followed by a range of in- 
creased deviation down to ≈45 km in accordance with the increased 
uncertainty of the GAR1D PS McMC model. As expected due to 
its thick sedimentary cover (Zuffetti & Bersezio 2021 ), the profile 
from the Po plain shows significantly lower shallow velocity values. 

From the comparison above we conclude that the average velocity 
structure of the GAR is determined most consistently in the depth 
range between 10 and 25 km. For shallower depths model velocities 
are deviating stronger partially due to the high trade-off between 
velocity and station corrections which themselves greatly depend 
on the epicentral distance range selected. Receiver function studies 
(Spada et al. 2012 ; Mroczek & Tilmann 2021 ; Michailos et al. 2023 ) 
uniformly show large Moho topography ranging from 20 km in the 
nor ther n Alpine foreland to more than 50 km beneath the Central 
Alps. As the substantial variations and uncertainties of the compared 
models within this depth range show, this large 3-D structure can 
not be captured in a 1-D model. Therefore, our models give a 
value of the average seismic velocities throughout the GAR. Below 

the maximum Moho depth of ≈55 km the models with sufficient 
resolution are in good agreement again. 

Despite the mentioned issues, we present the first joined 1-D P - 
and S -wave velocity model and associated station corrections for 
the GAR based on seismic traveltimes. This will serve as input for 
subsequent high resolution 3-D tomographic study and provides 
consistent synthetic traveltimes, for example useful for removing 
outliers in the pick catalogue. 

5.3 Comparison of hypocentres 

In order to quantify the absolute accuracy of the determined event 
locations we compare our VELEST hypocentres to the results from 

art/ggae077_f10.eps
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Figure 11. Compilation of our GAR1D VELEST (lime) and GAR1D McMC (purple) 1-D v p , v p / v s and v s models compared to results from previous studies 
within the GAR. (a) Comparison of our v p models to the 1-D models from Bagagli et al. ( 2022 ) (blue), Diehl et al. ( 2021 ) (dark green) and Jozi Najafabadi 
et al. ( 2021 ) (cyan). (b) Comparison of our v p / v s models to Diehl et al. ( 2021 )(dark green) and Jozi Najafabadi et al. ( 2021 ). (c) Comparison of our v s models 
to Diehl et al. ( 2021 ) (dark green), Jozi Najafabadi et al. ( 2021 ) and selected 1-D v s profiles from the 3-D ambient noise studies from K ästle et al. ( 2018 ) 
(darkblue) and Sadeghi Bagherabadi et al. ( 2021 ) (orange). The dashed, dotted and dash–dotted lines correspond to profiles from the Central Alps (46.85 ◦N, 
12.91 ◦E), Po plain (45.05 ◦N, 10.99 ◦E) and Western Alps (45.85 ◦N, 7.01 ◦E), respecti vel y. 

Table 3. Comparison of deviations in event locations from Jozi Najafabadi et al. ( 2021 ), Bagagli et al. ( 2022 ) and our VELEST 

locations. For each pair of catalogues the number of matching events and the mean μ as well as the standard deviation σ for latitude, 
longitude and depth are listed. 

Jozi Najafabadi et al. ( 2021 ) versus Jozi Najafabadi et al. ( 2021 ) versus Bagagli et al. ( 2022 ) versus 
Bagagli et al. ( 2022 ) VELEST this study VELEST this study 

#Events 106 40 307 
σ lon in km 2.1 1.5 1.3 
μlon in km −0.4 −0.2 −0.4 
σ lat in km 2.5 2.1 2.3 
μlat in km −0.6 −0.1 −0.7 
σ dep in km 6.1 5.8 6.3 
μdep in km −0.8 0.1 −0.1 
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agagli et al. ( 2022 ) and Jozi Najafabadi et al. ( 2021 ). A com-
arison of the 106 events matching between these two previous
tudies shows lateral variations of σ lat = 2.5 km and σ lon = 2.1 km
ith no significant systematic shift ( Fig. A11 ). Event depth scatters

tronger with σ dep = 6.1 km. Table 3 gives an overview of varia-
ions in event locations from Bagagli et al. ( 2022 ), Jozi Najafabadi
t al. ( 2021 ) and our VELEST model. Deviations throughout the
hree comparisons are quite consistent with values of σ lat / σ lon be-
ween 1.3 and 2.5 km and σ dep between 5.8 and 6.3 km. Comparing
he final McMC locations to the previous studies yields very similar
ffsets. 

This indicates that events in the GAR generally can be located
ith a horizontal accuracy of ≈2 km using a 1-D velocity model

ncluding station corrections. Hypocentral depths are v arying b y
≈ 6 km between all catalogues and are not more consistent when

ncluding S phases as it has been done by Jozi Najafabadi et al.
 2021 ) and this study. All referenced studies used their own pick-
ng methods and slightly different seismic stations which likely
ontributed to the rather large discrepancy in hypocentral depth.
or more accurate event locations a denser station network and a
onsistent high resolution 3-D velocity model is required as, for
xample the local tomographic study of the Swiss region by Diehl
t al. ( 2021 ) showed. 
1

 C O N C LU S I O N  

n this work, we present joined 1-D P - and S -wave velocity mod-
ls including station corrections for the GAR based on seismic
ata from the AlpArray Seismic Network comprising more than 900
ermanent and temporal seismic broad-band stations. We assess the
erformance of several state-of-the-art deep neural network picking
lgorithms with the Seismology Benchmark collection SeisBench
nd find PhaseNet to be the most suited for our data set, especially
ue to its high recall on the test data. 

Comparison of pick probabilities attributed to each pick by
haseNet with the manually assigned pick classes in a high preci-
ion reference catalogue show a clear correlation between PhaseNet
robabilities and manual pick class as well as consistency of onset
imes of automatic and manual picks. 

We developed a 2-fit-method selecting picks based on their con-
istency in a data-driven w ay independentl y of a priori information
uch as an initial reference model. Choosing strict selection parame-
ers allows us to consistently remove the overcritical Pg / Sg arri v als
nd thus include phases from the crustal cross-over distance in-
reasing the resolution in the lower crust. Our final pick catalogue
ontains 18 820 P - and 12 005 S -arri v als observed at epicentral dis-
ances from 0 to 150 km and 20 781 P - and 1553 S -arri v als from

50 to 1000 km. 
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We demonstrate how distant observations can overprint the in- 
fluence of local site effects in station correction terms when min- 
imizing the final remaining residual at the cost of increasing the 
misfit for near observations. Therefore, we publish the 1D P - and 
S -wave model AlpsLocPS including station corrections based on 
picks with epicentral distances from � = 0 to 130 km for consistent 
event localization throughout the entire GAR and a second model 
GAR1D PS with data from � = 0 to 1000 km resolving the entire 
crust and uppermost mantle allowing the computation of synthetic 
P - and S -phase traveltimes for the GAR. 

A comparison of hypocentres determined in this work with lo- 
cations of matching events from other studies shows epicentral 
uncertainties of σ lon/lat ≈1.5–2.5 km and variations in hypocentral 
depth of σ dep ≈ 6.0 km. 
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C écile Doubre, Sven Egdorf, ETHZ-SED Electronics Lab, Tomis- 
lav Fiket, Kasper Fischer, Wolfgang Friederich, Florian Fuchs, Sig- 
ward Funke, Domenico Giardini, Aladino Govoni, Zolt án Gr áczer, 
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Figure S1 Assessment of PhaseNet’s performance when com- 
pared to the high quality manually determined P -phase arri v al time 
catalogue from Diehl et al. ( 2009a ). 
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Figure S1 (a) Comparison of PhaseNet and manually determined
 - and S -phase arri v al times from 30 events. (b) Comparison of P -
nd S -phase arri v al times of 6 events independently picked by two
uman analysts. 

Figure S3 Comparison of PhaseNet against manually determined
 - and S -phase arri v al times as in Fig. A2 (a) for the epidistance

anges from 0 to 70 km (a), 70–150 km (b), 150–300 km (c) and
00–1000 km (d). 

Figure S4 Assessment of PhaseNet’s performance when com-
ared to the manually revised P - and S -phase picks from Jozi Na-
afabadi et al. ( 2021 ). 

Figure S5 Illustration of the 2-fit method to discard erroneous
icks. PhaseNet S -phase arri v als are plotted over epicentral distance
ith a reduction velocity of 4.6 km s −1 . The corridor of considered
icks is marked with green crosses at ±7 s around the synthetic
nset (blue crosses). A linear regression is fit through the picks
rom 0 to 100 km and then extrapolated. All picks within the blue
orridor at � ≥ 150 km within 4 σ of this fit are labelled as overcrit-
cal Sg phases (cyan) and discarded. Later phases with � ≥ 150 km
re discarded as SmS -arri v als (purple). A second weighted linear
egression is fit through arri v als from 250–700 km and extrapolated
ntil its interjection point with the first fit. Arri v als within 2 σ of the
ts plotted in red are selected, while the remaining picks marked in
rey are discarded. In the case of more than one arri v al on the same
race, only the first arrival within 2 σ of the fit is considered. First
nd later arri v als on the same trace are marked with black and lime
dgecolours, respecti vel y. 

Figure S6 Event section plots of the same event as in Figure 4 (a)
ith manually determined P - and S -phase arri v als marked in red

nd green, respecti vel y. (a) Z -component reduced b y the approx-
mate velocity of the direct Pg wave v red = 6 . 0 km s −1 . (b) T -
omponent reduced by the approximate velocity of the Sn wave
 red = 4 . 6 km s −1 . 

Figure S7 Comparison of the the 20 best-fitting v p (left-hand
anel) and v s (right-hand panel) VELEST models based on picks
atalogues excluding (red) and including (blue) the cross-over range
rom 130 to 300 km. 

Figure S8 Remaining P -phase residuals of observations from the
ntire epicentral range corresponding to the VELEST model which
as been computed excluding picks from the cross-over distance
ange from 130 to 300 km. 

Figure S9 P - and S -phase station correction terms corresponding
o the GAR1D PS McMC model based on observations from all
istances. 

Figure S10 Differences in longitude and latitude (left-hand
anel) and depth (right-hand panel) when comparing VELEST and
cMC final event locations derived in this study. 
Figure S11 Comparison of event locations from Bagagli et al.

 2022 ) and Jozi Najafabadi et al. ( 2021 ). Horizontal and vertical
iscrepancies of epicentres are shown in the left- and right-hand
anel, respecti vel y. 

Please note: Oxford University Press is not responsible for the
ontent or functionality of any supporting materials supplied by
he authors. Any queries (other than missing material) should be
irected to the corresponding author for the paper. 
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ZAMG - Zentralanstalt f ür Meterologie und Geodynamik , 1987. Austrian 
seismic network. International Federation of Digital Seismograph Net- 
works. DOI: 10.7914/SN/OE. 

Zuffetti , C. & Bersezio, R., 2021. Space-time geological model of the qua- 
ter nar y syntectonic fill of a foreland basin (Po Basin, Nor ther n Italy), 
Sediment. Geol., 421, DOI:10.1016/j.sedgeo.2021.105945. 
ress on behalf of The Royal Astronomical Society. This is an Open Access 
s Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/ ), which 
 any medium, provided the original work is properly cited. 

http://dx.doi.org/10.1029/2021JB023160
http://dx.doi.org/10.1029/93JB03138
http://dx.doi.org/10.1088/1749-4699/8/1/014003
http://dx.doi.org/10.1002/2017JB014698
http://dx.doi.org/10.1038/s41467-021-21670-x
http://dx.doi.org/10.1029/2021JB021910
http://dx.doi.org/10.5194/essd-15-2117-2023
http://dx.doi.org/10.5194/essd-13-5509-2021
http://dx.doi.org/10.1093/gji/ggab139
http://dx.doi.org/10.1029/2021JB023499
http://dx.doi.org/10.1109/ACCESS.2019.2947848
http://dx.doi.org/10.1038/s41467-020-17591-w
http://dx.doi.org/10.1093/gji/ggab065
http://dx.doi.org/10.1785/0120180080
http://dx.doi.org/10.1093/gji/ggz177
http://dx.doi.org/10.3389/feart.2021.641113
http://dx.doi.org/10.1007/s00015-004-1113-x
http://dx.doi.org/10.1093/gji/ggt148
http://dx.doi.org/10.1093/gji/ggy423
http://dx.doi.org/10.1002/2013EO450001
http://dx.doi.org/10.1785/0220180312
http://dx.doi.org/10.1785/0220210324
http://dx.doi.org/10.1016/j.sedgeo.2021.105945
https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 DATA
	3 METHODS
	4 RESULTS
	5 DISCUSSION
	6 CONCLUSION
	ACKNOWLEDGMENTS
	DATA AVAILABILITY
	SUPPORTING INFORMATION
	REFERENCES

