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ABSTRACT
Although many collisional orogens form after subduction of oceanic lithosphere between 

two continents, some orogens result from strain localization within a continent via inver-
sion of structures inherited from continental rifting. Intracontinental rift-inversion orogens 
exhibit a range of structural styles, but the underlying causes of such variability have not 
been extensively explored. We use numerical models of intracontinental rift inversion to in-
vestigate the impact of parameters including rift structure, rift duration, post-rift cooling, 
and convergence velocity on orogen structure. Our models reproduce the natural variability 
of rift-inversion orogens and can be categorized using three endmember styles: asymmetric 
underthrusting (AU), distributed thickening (DT), and localized polarity flip (PF). Inversion 
of narrow rifts tends to produce orogens with more localized deformation (styles AU and 
PF) than those resulting from wide rifts. However, multiple combinations of the parameters 
we investigated can produce the same structural style. Thus, our models indicate no unique 
relationship between orogenic structure and the conditions prior to and during inversion. 
Because the style of rift-inversion orogenesis is highly contingent upon the rift history prior 
to inversion, knowing the geologic history that preceded rift inversion is essential for trans-
lating orogenic structure into the processes that produced that structure.

INTRODUCTION
Plate-boundary collisional orogens form 

along boundaries between tectonic plates when 
two continental blocks collide following sub-
duction of intervening oceanic lithosphere (e.g., 
Dewey and Bird, 1970). In contrast, intraplate 
orogens form within a continental plate by local-
ization of strain along preexisting weaknesses 
(e.g., Vilotte et al., 1982; Ziegler et al., 1995; 
Raimondo et al., 2014). Some intraplate orogens 
reactivate weaknesses inherited from past colli-
sions (e.g., the Tien Shan [Central Asia]; Jour-
don et al., 2018), whereas others exploit weak-
nesses developed during continental rifting and 
thus are considered the result of rift inversion 

(Fig. 1; e.g., Cooper et al., 1989; Beauchamp 
et al., 1996; Marshak et al., 2000). A common 
presumption seems to be that the structural 
style of intracontinental rift-inversion orogens 
should be distinct from that of plate-boundary 
orogens, because during rift inversion, conver-
gence is expected to occur by reactivation of 
extensional structures, resulting in distributed 
lithospheric thickening (e.g., Buiter et al., 2009; 
Vincent et al., 2016, 2018). However, many rift-
inversion orogens feature asymmetric under-
thrusting along lithosphere-scale shear zones 
and development of major fold-thrust systems 
(Fig. 1; e.g., Jammes et al., 2009), comparable 
to plate-boundary orogens (e.g., Willett et al., 
1993; Beaumont et al., 1996).

Geodynamic numerical modeling of rift-
inversion orogenesis typically focuses on the 
High Atlas (Morocco) and the Pyrenees (Spain 

and France) (e.g., Buiter et al., 2009; Jammes 
et al., 2014; Dielforder et al., 2019; Jourdon 
et  al., 2019; Wolf et  al., 2021), though the 
structural styles of these orogens are distinct 
(Fig. 1). The High Atlas is broadly symmet-
ric, flanked on both sides by fold-thrust belts 
of opposing vergence, and exhibits no under-
thrusting of one block of lithosphere beneath 
another (e.g., Beauchamp et al., 1999; Gomez 
et al., 2000). In contrast, the Pyrenees show 
asymmetric lithospheric underthrusting and 
fold-thrust belt development concentrated on 
one side of the orogen (e.g., Muñoz, 1992; 
Dielforder et al., 2019). The structure of these 
orogens varies considerably along-strike, and 
other rift-inversion orogens exhibit a range of 
symmetry and thrust-belt vergence (Fig. 1; e.g., 
the Greater Caucasus, Alice Springs [Austra-
lia], Araçuaí-West Congo [Brazil and Africa], 
Rocas Verdes [South America]; Philip et al., 
1989; Fosdick et al., 2011; Raimondo et al., 
2014; Fossen et al., 2020), but the controls on 
this variability are poorly understood.

We present two-dimensional (2-D) geody-
namic numerical models designed to explore 
connections between the initial conditions of 
a rift prior to inversion and the structure of the 
resulting rift-inversion orogen. We find that 
changes in rift structure, rift duration, post-rift 
cooling, and convergence velocity dramatically 
change the large-scale structure of the result-
ing orogen, producing models that exhibit the 
distributed lithospheric thickening of the High 
Atlas, the asymmetric lithospheric underthrust-
ing of the Pyrenees, and additional variabil-
ity reminiscent of other natural rift-inversion 
orogens.
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GEODYNAMIC MODELING OF RIFT-
INVERSION OROGENESIS

We modeled 2-D intracontinental rift inver-
sion using the open-source, finite-element 
code ASPECT (Kronbichler et al., 2012; Heis-
ter et al., 2017; Naliboff et al., 2020; Bangerth 
et al., 2021; see the Supplemental Material1 
for detailed methods). To systematically com-
pare the competing effects of rift structure, rift 
duration, post-rift cooling, and convergence 
rate, we performed 16 model simulations in 
a 1000 × 600 km model domain (Fig.  2A; 
Table 1). Each model began by using differ-
ent combinations of lithospheric thickness and 
extension velocity to develop either a narrow 
or wide rift structure from an initial block of 
continental lithosphere (Fig. 2B, Table 1; e.g., 
Tetreault and Buiter, 2018). We stopped exten-
sion either at lithospheric breakup or at half 
the model time required to reach breakup. We 
inverted each of these four rifts with either no 
post-rift cooling phase or after a cooling period 
of 20 m.y. to get an initial sense of the effects 
of a post-rift cooling phase on orogenic style. 
For each of these eight models, we imposed two 
different convergence velocities during inver-
sion (1 cm/yr, 5 cm/yr), with duration scaled 

(20 m.y., 4 m.y.) so that each orogen underwent 
the same amount of total convergence (200 km).

RESULTING STYLES OF RIFT-
INVERSION OROGENESIS
Style AU: Asymmetric Underthrusting

Several of our model rift-inversion orogens 
are characterized by asymmetric underthrust-
ing of one block of lithosphere beneath another 
along a lithosphere-scale shear zone (style AU, 
Fig. 2C). This behavior is exemplified by model 
1, formed from immediate inversion at 1 cm/yr 
of a narrow rift halfway to lithospheric breakup 
(Fig. 2A; Table 1). In this model, initial sym-
metric uplift of both sides of the rift gives way 
to localization of most strain along a left-dipping 
shear zone to the right of the former rift axis 
(Fig. 2C). Near the end of the model run, defor-
mation propagates both along a synthetic shear 
zone to the right of the main structure and along 
an antithetic backthrust to the left.

Style DT: Distributed Thickening
By contrast, a second group of models does 

not localize deformation along lithosphere-
scale thrust shear zones but instead undergoes 
distributed thickening of the lithosphere due to 
inversion along former normal faults (style DT). 
Model 5 (Fig. 2C) demonstrates this deforma-
tional style and tracks the immediate inversion 
at 1 cm/yr of a wide rift that has extended half-
way to lithospheric breakup (Fig. 2A; Table 1). 
Distributed deformation during rifting leaves an 

∼400-km-wide zone of primarily upper-crustal 
normal faults with no distinct rift axis. Com-
pression during inversion leads to reactivation 
of these structures as reverse faults as the lower 
crust and mantle lithosphere buckle and fold.

Style PF: Localized Polarity Flip
In a third set of models, deformation is local-

ized asymmetrically along lithosphere-scale 
shear zones, but the individual shear zones 
are short-lived and are crosscut as new shear 
zones of opposite polarity take over (style PF). 
An endmember case of this orogenic style is 
model 3 (Fig. 2C), which results from immedi-
ate inversion at 1 cm/yr of a narrow rift at full 
lithospheric breakup (Fig. 2A; Table 1). In this 
case, initial symmetric asthenospheric upwelling 
at the rift axis gives way to localized deforma-
tion along two right-dipping, lithosphere-scale 
shear zones that are then subsequently crosscut 
by left-dipping shear zones. The resulting oro-
gen is largely symmetric with only a hint of 
right-directed vergence (Fig. 2C).

Intermediate Modes of Orogenic Style
Half of the model results can be classified 

as distinctly style AU, DT, or PF rift-inversion 
orogens, while the other half exhibit orogen-
esis that is intermediate in character (Fig. 3). 
Intermediate behavior generally results from 
increasing localization of deformation as inver-
sion proceeds, with style DT leading to style 
PF (model 15) or style AU (models 6, 7, 8, and 
14), and style PF leading to style AU (models 2 
and 10). The exception to this trend is model 4, 
in which initial localization along a pair of left- 
and right-dipping shear zones (style PF) gives 
way to more distributed deformation (style DT).

CORRELATIONS BETWEEN INITIAL 
CONDITIONS AND STRUCTURAL 
STYLE

To visualize the relationship between the 
model parameters explored here and the result-
ing structural styles, we assign each model 
a place on a schematic ternary diagram with 
vertices representing styles AU, DT, and PF 
(Fig. 3). We additionally place each of the nat-
ural orogens presented in Figure 1 on this dia-
gram based on the overall vergence of major 
structures in the final orogen. The configuration 
of each individual orogen is contingent on the 
specific ensemble of parameters that produced 
it. However, there are general patterns between 
individual parameters and our three endmember 
orogenic styles.

The greatest influence on orogenic style is 
exerted by the structure of the rift (Fig. 3). Rift-
inversion orogens that start with a narrow rift 
tend to have more localized deformation along 
lithosphere-scale shear zones, resulting in pro-
nounced asymmetric underthrusting (style AU) 
or flipping polarity (style PF). By contrast, inver-

1Supplemental Material. Methods, additional 
tables and figures, and videos of model runs. Please 
visit https://doi .org /10 .1130 /GEOL .S.25263154 to 
access the supplemental material; contact editing@
geosociety .org with any questions.

Figure 1. Schematic cross sections of Cenozoic and pre-Cenozoic rift-inversion orogens 
ordered by degree of symmetry (adapted from Philip et al., 1989; Beauchamp et al., 1999; Fos-
dick et al., 2011; Raimondo et al., 2014; Dielforder et al., 2019; Fossen et al., 2020). All orogens 
are shown in present-day configuration, except for Araçuaí-West Congo, which is shown at 
ca. 600–570 Ma.
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Figure 2. (A) Graphical overview of parameter space explored by the 16 models in this study. An initial narrow or wide rift is taken either half-
way or all the way to lithospheric breakup. The resulting four rift structures (color-coded, see panel B) are inverted immediately (saturated 
colors) or after 20 m.y. of post-rift cooling (faded colors) at either a slower (1 cm/yr; no underline) or faster (5 cm/yr; underlined) convergence 
rate. (B) Initial conditions for the model orogens prior to inversion. (C) Rift inversion results exemplifying structural styles AU (asymmetric 
underthrusting), DT (distributed thickening), and PF (localized polarity flip), shown prior to inversion, after 100 km of convergence, and after 
200 km of convergence.
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sion of a wide rift tends to result in orogens 
with more distributed thickening (style DT). 
However, this pattern does not hold across the 
full range of parameter space, with one orogen 
formed from a narrow rift (model 4) exhibit-
ing elements of style DT and several orogens 
formed from wide rifts (models 6, 7, 8, 14, 15, 
and 16) displaying at least some element of 
styles AU or PF.

The influence of post-rift cooling and rift 
duration is less systematic. Rifting to full litho-
spheric breakup rather than halfway to breakup 
promotes localized deformation (styles AU and 
PF), though this is highly contingent on the rift 
structure (Fig. 3). Full breakup in a narrow rift 
tends to promote style PF over style AU (e.g., 
models 3 and 12), whereas inversion of a wide 
rift after full breakup promotes style AU over 
style DT (e.g., models 7, 8, and 16). Post-rift 
cooling promotes increasing localization of 
deformation (styles AU and PF). For inversion of 
narrow rifts (e.g., models 2, 10, and 12), the post-
rift cooling phase tends to result in shear zones of 
alternating polarity (style PF) rather than asym-
metric underthrusting (style AU), whereas for 
inversion of wide rifts (e.g., models 6, 14, and 
16), post-rift cooling tends to result in more dis-
tinctly asymmetric (style AU) behavior (Fig. 3).

The convergence velocity has less of an 
impact on the structure of the resulting orogen, 
but, in general, faster convergence velocities 
appear to promote asymmetric underthrusting 
(style AU). The most striking influence is seen 
by comparing models 3 (1 cm/yr) and 11 (5 cm/
yr), which are equivalent in setup apart from 
convergence velocity. Model 3 is our exemplar 
orogen for style PF (Fig. 2C), whereas model 11 
exhibits asymmetric underthrusting representa-
tive of style AU (Fig. 3).

COMPARISONS WITH PRIOR 
MODELING AND NATURAL 
EXAMPLES

Our study differs from prior work by 
exploring the range of structural variability in 
rift-inversion orogenesis as a general process 

(see the Supplemental Material for additional 
details). Studies focused on the Pyrenees tend 
to feature narrow rift structures taken close to 
lithospheric breakup with no post-rift cooling, 
resulting in orogens that resemble style AU 
(Jammes et al., 2014; Dielforder et al., 2019; 
Jourdon et al., 2019). Some modeling studies of 
continental collision include one or more rift-
inversion orogens for comparison with models 
with no pre-collisional extension, using param-
eters similar to the Pyrenees models that also 
yield style AU orogens (Jammes and Huismans, 
2012; Wolf et al., 2021). One study that empha-
sizes the High Atlas includes wide rifts extended 
part way to lithospheric breakup with significant 
post-rift cooling, with resulting orogens exhibit-
ing style DT (Buiter et al., 2009). By exploring 
a wider range of first-order variations in initial 
rift conditions, we capture both the AU orogenic 
style seen in models of the Pyrenees and the DT 
style seen in the Atlas-inspired model within a 
single suite of model results, in addition to other 
modes of deformation (style PF and intermedi-
ate modes) that do not resemble the High Atlas 
or Pyrenees (Fig. 3).

This initial exploration suggests that the 
path to developing a particular structural style 
is non-unique; different combinations of rift 
structure, rift duration, post-rift cooling, and/
or convergence velocity can result in the same 
first-order style (Fig. 3). Thus, in natural intra-
continental rift-inversion orogens, the observed 
structural style may provide some indication of 
initial conditions but cannot uniquely pinpoint a 
single set of conditions. For example, the asym-
metric underthrusting (style AU) observed in the 
Pyrenees or western Greater Caucasus (Fig. 1) 
could potentially be produced either by slower 
closure of a narrow rift immediately after partial 
lithospheric breakup (model 1) or by faster clo-
sure of a narrow rift extended to full lithospheric 
breakup (model 11).

Because the present-day structure of these 
orogens alone is insufficient to uniquely identify 
these parameters, using additional observations 
to constrain their geologic histories is critical. 

Our study highlights the need to collect data that 
can differentiate between incremental tectonic 
histories in natural orogens. In particular, we 
note the importance of low-temperature ther-
mochronology, which can provide constraints on 
both the timing and magnitude of deformation 
across major structures within collisional oro-
gens (e.g., McQuarrie and Ehlers, 2017), as well 
as sedimentary records, which track changes in 
deposition and erosion as rifting and collision 
proceed (e.g., Tye et al., 2020). Future model-
ing studies that connect these first-order struc-
tural styles and their rift histories with patterns 
in thermochronology and/or sedimentary basin 
evolution will be essential for unraveling the 
complete history of intracontinental rift-inver-
sion orogens.

CONCLUSIONS
Two-dimensional geodynamic numerical 

modeling of intracontinental rift inversion indi-
cates that the structural style of rift-inversion 
orogens is highly dependent on initial condi-
tions, including rift structure, rift duration, post-
rift cooling, and convergence velocity. Model 
orogens resulting from variations in these 
parameters can be classified using three struc-
tural styles: asymmetric underthrusting (AU), 
distributed thickening (DT), and localized polar-
ity flip (PF). No systematic relationship exists 
between structural style and individual parame-
ters, though narrow rifts, rifts that do not achieve 
lithospheric breakup, and rifts that cool prior to 
inversion tend to promote localized deformation 
(AU and PF) over distributed deformation (DT). 
These model results reconcile the range of struc-
tural styles seen in natural rift-inversion orogens 
but also indicate that a single structural style can 
be produced from multiple rift histories.
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TABLE 1. SUMMARY OF RIFT INVERSION MODEL PARAMETERS

Model 
number

Model ID Extension 
velocity 
(cm/yr)

Lithosphere 
thickness

(km)

Rift duration Post-rift 
cooling 
(m.y.)

Inversion 
velocity
(cm/yr)

Inversion 
duration 

(m.y.)

Total model 
duration 

(m.y.)

1 063022_rip_c 0.5 120 Halfway (16 m.y.) 0 1 20 36
2 071822_rip_b 0.5 120 Halfway (16 m.y.) 20 1 20 56
3 070422_rip_e 0.5 120 Full breakup (32 m.y.) 0 1 20 52
4 072022_rip_a 0.5 120 Full breakup (32 m.y.) 20 1 20 72
5 070422_rip_c 2 80 Halfway (7.3 m.y.) 0 1 20 27.3
6 071322_rip 2 80 Halfway (7.3 m.y.) 20 1 20 47.3
7 070622_rip_a 2 80 Full breakup (14.5 m.y.) 0 1 20 34.5
8 072022_rip_b 2 80 Full breakup (14.5 m.y.) 20 1 20 54.5
9 080122_rip_a 0.5 120 Halfway (16 m.y.) 0 5 3.4* 19.4
10 080122_rip_e 0.5 120 Halfway (16 m.y.) 20 5 3.5* 39.5
11 080122_rip_b 0.5 120 Full breakup (32 m.y.) 0 5 4 36
12 080122_rip_f 0.5 120 Full breakup (32 m.y.) 20 5 4 56
13 080122_rip_c 2 80 Halfway (7.3 m.y.) 0 5 4 11.3
14 080122_rip_g 2 80 Halfway (7.3 m.y.) 20 5 4 31.3
15 080122_rip_d 2 80 Full breakup (14.5 m.y.) 0 5 4 18.5
16 080122_rip_h 2 80 Full breakup (14.5 m.y.) 20 5 4 38.5

*Models 9 and 10 failed to numerically converge prior to completion of the inversion stage and did not experience the full 200 km of inversion.
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