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Abstract. The empirical Båth’s law states that the average magnitude difference (∆M ) between a mainshock and its
strongest aftershock is roughly 1.2, independently of the size of the mainshock. While this observation can generally be
explained by a scaling of aftershock productivity with mainshock magnitude in combination with a Gutenberg-Richter
frequency-magnitude distribution, estimates of ∆M may be preferable because they are directly related to the most
interesting information, namely the magnitudes of the main events, without relying on assumptions. However, a major
challenge in calculating this value is the bias introduced by missing data points when the strongest aftershock is below
the observed cut-off magnitude. Ignoring missing values leads to a systematic error, because the data points removed
are those with particularly large magnitude differences ∆M . The error can be minimized by restricting the statistics
to mainshocks that are at least two magnitude units above the cut-off, but then the sample size is strongly reduced.
This work provides an innovative approach for modeling ∆M by adapting methods for time-to-event data, which
often suffer from incomplete observations (censoring). In doing so, we adequately account for unobserved values
and estimate a fully parametric distribution of the magnitude differences ∆M for M ą 6 mainshocks in a global
earthquake catalog. Our results suggest that magnitude differences are best modeled by the Gompertz distribution,
and that larger ∆M are expected at increasing depths and higher heat flows.
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1 Introduction

As energy is released in the event of a strong earthquake, tectonic stress redistributes in the sur-
roundings of the initial rupture, usually resulting in further earthquakes, so-called aftershocks (Utsu
et al., 1995). The cascade of aftershocks is commonly referred to as an earthquake sequence, and
the strongest event in the sequence is retrospectively defined as the mainshock (Taroni, 2023). Typ-
ically, events that occurred shortly before the mainshock, so-called foreshocks, are included in the
sequence since they are believed to be physically related to the upcoming major earthquake (e.g.
Helmstetter and Sornette, 2003).
Extensive research has been carried out to analyze and model the spatio-temporal properties of
earthquake sequences, e.g. through the Epidemic Type Aftershock Sequence (ETAS) model (Ogata,
1988, 1998; Zhuang et al., 2002). Well-established empirical relationships are the Gutenberg-
Richter (GR) law for the frequency-magnitude distribution and the Omori-Utsu law for the tem-
poral aftershock decay (Omori, 1895; Utsu et al., 1995). Furthermore, the aftershock productivity
is found to scale exponentially with the mainshock magnitude and the aftershock density decays
with distance to the mainshock rupture, where the spatial cluster is typically elongated rather than
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isotropic around the mainshock’s rupture plane (e.g. Grimm et al., 2022, 2021; Hainzl et al., 2008;
Ogata, 2011; Ogata and Zhuang, 2006; Zhang et al., 2018).
Aftershocks are a relevant risk driver since even moderate events can substantially increase dam-
age in buildings and infrastructure destabilized by a prior mainshock. Similarly, foreshocks can
set the stage for more severe mainshock damage (Abdelnaby, 2012; Kagermanov and Gee, 2019;
Papadopoulos et al., 2020). Therefore, one of the central questions for insurance and risk manage-
ment purposes is: What is the expected magnitude difference between the two largest earthquakes
in a sequence?
To date, the literature only provides a starting point for answering this question. The often cited
Båth’s law states that the average magnitude difference ∆M between a mainshock and its strongest
aftershock is roughly 1.2, independently of the size of the mainshock (Bath, 1965). Several studies
have shown that this empirical observation can be derived from the two observations mentioned
above, namely the GR law combined with the aftershock productivity scaling (Console et al., 2003;
Felzer et al., 2002; Lombardi, 2002). Thus, ∆M does not appear to be an independent quantity
(Taroni, 2023). In particular, to derive regional aftershock forecasts, Page et al. (2016) performed
a sophisticated estimation of the regional frequency-magnitude and Omori-Utsu parameters and
found generally a good agreement with Båth’s ∆M value. However, such an analysis requires a
detailed consideration of the short-time aftershock incompleteness (STAI) of earthquake catalogs
and involves several fitting parameters for rather small data sets. Thus, the extrapolation to the
largest magnitudes contain several assumptions and large uncertainties.

In contrast, ∆M is not affected by STAI and describes the most interesting quantity (the largest
magnitudes) without assuming any specific form of the frequency-magnitude distribution and the
temporal aftershock decay. In principle, it can be directly estimated from the data. However, a main
challenge in calculating this value remains the bias introduced by missing data, if no aftershock was
observed above the cut-off magnitude Mc of the catalog and therefore ∆M cannot be computed.
We cannot simply ignore missing values, as these are the ones with particularly large magnitude
differences ∆M . Therefore, leaving them out leads to a systematic bias. Several authors found that
the statistic is robust, if we restrict the sample to mainshocks at least two magnitude units above
Mc, but then the sample size is strongly reduced (e.g. Tahir et al., 2012; Zakharova et al., 2013).
Another workaround was suggested by Zakharova et al. (2013), who modeled the seismic moment
ratio between aftershocks and the mainshock, rather than ∆M , approximating the ratio by zero if
no aftershocks were recorded. In any case, Båth’s law only makes a statement about the average
value of the ∆M , but not about their distribution (and its parameters) or any important quantiles
in the lower tail of the distribution.
Another term that appears occasionally in the literature is that of an earthquake doublet. Doublets
are generally defined as a pair of two similarly strong earthquakes, occurring temporally and spa-
tially close to each other (e.g. Felzer et al., 2004; Grimm et al., 2021; Kagan and Jackson, 1999). A
recent example of a destructive doublet is the M7.8 and M7.5 mainshocks that occurred in south-
east Turkey and Syria on February 6, 2023. Kagan and Jackson (1999) found that approximately
22% of the M ą 7.5 earthquakes worldwide occurred accompanied by another M ą 7.5 event
within a distance of one rupture length and with an inter-event time of considerably less than their
recurrence time estimated from plate motion. Grimm et al. (2021) showed that roughly 17% of
the global M ě 6 mainshocks and more than 20% of the mainshocks in Japan were part of an
earthquake doublet, defining them as a pair of earthquakes with no more than 0.4 magnitude units
difference, occurring within 365 days and a radius of 2.5 rupture lengths.
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In this paper, we propose an innovative approach that models the full, parametric distribution
of ∆M by adapting so-called survival models, originally developed for medical applications. Sur-
vival models are a class of regression models that account for data with a censored (or truncated)
response variable (see e.g. Klein and Moeschberger (2003) for a comprehensive overview). As
the term ”survival” suggests, these models were originally developed in applications where the
response represents the non-negative lifetime of a patient in medical studies or the lifetime of a
device in engineering contexts (so-called reliability or failure time analysis). The above applica-
tions have in common that the exact value of the response is unknown, if the event (e.g. death or
device failure) has not occurred until the end of the study period. Replacing lifetimes by mag-
nitude differences, we can therefore use survival models to account for the missing ∆M values
where we did not observe the largest aftershock and, therefore, only have the partial information
that ∆M ą M ´ Mc, given mainshock magnitude M .
For this analysis, we select earthquake sequences related to M ą 6 mainshocks in a global catalog
using a window method, and compute the (partially right-censored) ∆M between the mainshock
and the second strongest event of each cluster. Note that the latter may be a foreshock or an after-
shock, as both are relevant in a risk management context. Then, we enrich the cluster set by a plate
boundary classification, relative plate velocities, sea floor age and heat flow data, to investigate the
regression effects of these large-scale geophysical conditions on the distribution of ∆M .

The focus of this work is on the innovate approach to estimate a fully parametric distribution of
∆M , using survival models that take into account right-censored data rather than avoid it. To our
knowledge, no similar approach has been pursued in the literature so far. In the ∆M -regression,
covariates represent rather large-scale regional effects. Attempts to consider small-scale variations
of these covariates or to include further event specific data are out of the scope of this paper.
Section 2 introduces the utilized datasets, the cluster selection approach and the compilation of the
covariate datasets for the regression study. Next, Section 3 rigorously explains the methodological
approach of survival models. Then, the results of the regression study are shown and discussed in
Section 4. Finally, conclusions are drawn and related future research topics are recommended.

2 Data

This section summarizes the compilation of the regression dataset for the analysis of magnitude
differences between the mainshock and the second strongest event in the cluster. First, we justify
the choice of the underlying global earthquake catalog. Then, we outline the window method for
cluster selection, followed by the definition of the response variable. Finally, the enrichment of
further geophysical variables as regression covariates is explained.

2.1 Global Earthquake Catalog

The choice of an appropriate global earthquake catalog for the regression of magnitude differences
raises two requirements which, however, are not fully met by any currently available catalog, and
therefore necessitate a trade-off. On the one hand, the catalog should be complete down to the
smallest possible cut-off magnitude Mc in order to increase the chance that the strongest after-
shock of a given mainshock is included in the sample and, therefore, ∆M is known. This is
particularly important since we need to account for a sufficient observable magnitude range of
roughly one unit below the smallest mainshock magnitude of interest, in order to achieve enough
observed ∆M samples to assure statistical robustness in the survival model fit. On the other hand,
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the catalog should ideally have homogeneous magnitude scales and be reliably complete in any
part of the world, including remote off-shore regions and aftershocks occurring shortly after the
mainshock, in order to minimize potential biases.
For magnitude completeness reasons, we chose the U.S. Geological Survey National Earthquake
Information Center (USGS-NEIC) catalog, despite not providing homogenized magnitude scales.
We extracted all events from 1973 until 2021 with depths smaller than 70 km that occurred at a
maximum of 300 km distance to a tectonic plate boundary according to the digital model by Bird
(2003). The completeness magnitude of this dataset is Mc “ 5.0 according to Kagan and Jackson
(2010) and Tahir et al. (2012), which allows us to apply the regression model to sequences with a
mainshock magnitude larger than 6.0.
To test the influence of inhomogeneous magnitude scales, we performed sensitivity analyses using
the International Seismological Centre – Global Earthquake Model (ISC-GEM) instrumental cata-
log, which is a relocated global event set with homogenized magnitude scales (Bondár et al., 2015;
Di Giacomo et al., 2015a,b, 2018; Storchak et al., 2015). Due to its higher level of magnitude com-
pleteness, Mc “ 5.6 according to Di Giacomo et al. (2015b) and Mc “ 6.0 according to Michael
(2014) since 1964, we had to limit our statistical analysis to mainshocks with M ą 6.5 in order
to assure sufficient observed data for ∆M . The corresponding results are presented in the Sup-
plementary Material, confirming the results presented in the following based on the USGS-NEIC
catalog.

2.2 Cluster Selection

In order to obtain a set of independent clusters, including the information about the magnitude
difference ∆M between the mainshock and the largest aftershock (or foreshock), we chose a rather
simple window method (see e.g. Gardner and Knopoff, 1974; Uhrhammer, 1986; van Stiphout
et al., 2012). To do so, we first sorted the catalog in descending magnitude order. Then, we
consecutively searched aftershocks occurring within a time window of T “ 100 days and a spatial
radius of RpMq “ 2.5LpMq, where LpMq “ 10´2.44`0.59M is the expected rupture length of
the mainshock, depending on its magnitude m, according to the empirical relation of Wells and
Coppersmith (1994) for the subsurface rupture length and all mechanisms. Similar to Reasenberg
(1985), we linked clusters if an event B is found to trigger the potential aftershock A, but A is the
mainshock of an already identified cluster. In this case, due to prior re-ordering of the catalog,
mA ě mB, and event B is called a foreshock of A.
We conducted sensitivity studies that showed that the regression results are insensitive to varying
definitions such as T “ 365 days and RpMq varying between 1.0LpMq and 2.5LpMq.

2.3 Response Variable

For each cluster, the magnitude difference ∆M is computed between the mainshock (i.e., the
strongest event of the cluster) and the second-strongest event, be it a foreshock or aftershock. In
total, we obtain 2,933 clusters with mainshock magnitudes M ą 6.0.
Note that 1,180 of these are single-event clusters, i.e., no associated foreshock or aftershock was
found in the corresponding time-space window. Based on seismological reasoning, we can assume
that these mainshocks actually triggered aftershocks that were too weak to be recorded in the
dataset, given its cut-off magnitude Mc. Therefore, if for a mainshock i with magnitude Mi ě Mc

no second event is listed, we have the partial information that the magnitude difference is ∆Mi ą
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Mi ´ Mc. The single clusters are the reason why we need advanced regression models that can
deal with censored data.

2.4 Covariates

We enriched the selected sequences with additional geophysical site information interpolated to
the mainshock locations by a nearest-neighbor approach.
Using the digital plate boundary model of Bird (2003), we categorized each event into one of
seven plate boundary classes continental convergence boundary (CCB), continental transform fault
(CTF), continental rift boundary (CRB), oceanic spreading ridge (OSR), oceanic transform fault
(OTF), oceanic convergent boundary (OCB), and subduction zone (SUB). Figure 1 shows the main-
shock locations, color-coded by the corresponding plate boundary class assigned to them. Table 1
lists the number of clusters with censored ∆M out of the observed values per boundary class,
respectively. Nearly half of the clusters are assigned to a subduction zone, and oceanic spreading
ridges and transform faults host more censored than non-censored data points.
From the same digital model, we assigned estimates of the relative plate velocity and sea floor age
from the next boundary segment point to the mainshock locations. The value of the sea floor age
for continental sites is thus related to the age of the nearest oceanic crust. The resulting depen-
dence on sea floor age, if continental regions are ignored, is found to be almost indistinguishable
and is shown in the Supplementary Material. Likewise, using a nearest-neighbor approach, we
interpolated values from the scattered heat flow dataset of Bird et al. (2008), provided to us by
the author. Figure 2 illustrates the distributions of the interpolated covariate data at the mainshock
locations, grouped by the assigned plate boundary class. Subduction zones show the largest rela-
tive plate velocities ranging between 0.4 and 262 mm/a (Fig. 2a), while oceanic spreading ridges
and transform faults provide the youngest sea floor ages between 0 and 262 Ma (Fig. 2b) and the
largest heat flows between 0.025 and 0.3 Wm´2 (Fig. 2c).

3 Survival Models

In this section, we introduce survival regression models that we then use in our regression study in
order to account for the censored ∆M response data due to unobserved aftershocks. All statistical
analyses were performed with the open source software R (R Core Team, 2021).

3.1 Why Using a Survival Model for Earthquakes?

The magnitude difference ∆M between the mainshock and the second-largest earthquake of a se-
quence is only known, if at least one foreshock or aftershock was observed and assigned to the
mainshock. Indeed, roughly 40% of the global clusters consist of a stand-alone mainshock. For
these clusters, we can conclude that the second strongest event must be smaller than the cut-off
magnitude Mc, i.e., that ∆Mi ą Mi ´ Mc, where Mi is the magnitude of mainshock i. In statis-
tics, data points which are capped by such an upper observable threshold are called right-censored
(Klein and Moeschberger, 2003, section 3.2). Classical statistical models would substantially un-
derestimate ∆M due to the relevant proportion of censored observations.
Replacing lifetimes by magnitude differences, our data meets the necessary requirements of a sur-
vival model,

• non-negative responses (∆M ě 0)
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• independent responses (mainshocks result from declustered catalog)

• non-informative censoring (i.e., conditional on covariates, censored clusters are not sus-
pected to deviate structurally in their ∆M -distribution from non-censored clusters).

3.2 Model Formulation and Software

In order to estimate both covariate effects and the entire distribution of magnitude differences ∆M ,
we need a fully parametric survival model approach. As will be shown in the results section, the
best model fits were achieved assuming a Gompertz distribution for the magnitude differences,
rather than other candidates such as Weibull or Generalized Gamma. The Gompertz distribution is
defined on p0,8q. Therefore data points with ∆M “ 0 were substituted by the value 0.01. In the
R package flexsurv (Jackson, 2016), the Gompertz distribution is parameterized by its probability
density function

fpx|a, bq “ beax exp

ˆ

´
b

a
peax ´ 1q

˙

with shape parameter a P R and scale parameter b ą 0. Besides the categorical plate boundary
class, we modeled the effects of the mainshock magnitude xmag and depth xdepth, as well as the
locally interpolated relative plate velocity xveloc, heat flow xheat and sea floor age xage. In the
resulting full Gompertz survival model, we regressed the scale parameter b through all covariates
for observation i by

logpbpxiqq “β0 ` β1 xclass“CCB,i ` ... ` β6 xclass“OTF,i `

fmagpxmag,iq ` fdepthpxdepth,iq ` fvelocpxveloc,iq ` fheatpxheat,iq ` fagepxage,iq,

where β0, β1, ..., β6 are the coefficients related to categorical variables, where boundary class
”SUB” is the reference category, represented by the intercept β0, and the f terms denote coef-
ficients related to categorical variables. Similarly, we modeled the shape parameter a depending
on the linear effects of the plate boundary class, i.e.

logpapxqq “α0 ` α1 xclass“CCB ` ... ` α6 xclass“OTF .

In this work, we fitted models using the function flexsurvreg from the flexsurv package, which
estimates parameters by optimizing a parametric likelihood adapted for censored data (Jackson,
2016). To allow for flexible non-linear effects, all metric variables are modeled by the penalized
spline function pspline from the R package survival (Therneau, 2016), consistenly using df “ 2
degrees of freedom and n “ 2.5ˆdf basis functions (Eilers and Marx, 1996; Hurvich et al., 1998).

4 Results

In this section, we show and discuss the results of a parametric survival model fitted to the global
data in order to describe the magnitude difference ∆M between the mainshock and the second
strongest event in the cluster. First, we justify and validate the distribution assumption for the
response variable. Then we show and interpret the effects of the modeled covariates. Finally, we
assess the explanatory power of the model using a response residual plot.
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4.1 Choice of Distribution Family

To justify the choice of the distribution family, we perform a simple synthetic experiment. We as-
sume a mainshock of magnitude M which triggers aftershocks with magnitudes randomly chosen
from the Gutenberg-Richter distribution, i.e., a probability density function (pdf)

fpmq “ lnp10q b 10´bpm´Mcq, b ą 0, m ě Mc, (1)

with b being the Gutenberg-Richter b-value (Gutenberg and Richter, 1944). The mean number xNy

of triggered earthquakes is set that, on average, one earthquake exceeds the value of M ´ 1.2, i.e.,
xNy “ 10bpM´1.2´Mcq. Using b “ 1,Mc “ 5.0, and M “ 8, we randomly selected (i) the number
N of triggered events from a Poisson distribution with mean xNy, (ii) N magnitude values from
Eq. (1), and (iii) determined the magnitude difference ∆M between the two largest magnitudes
of the simulated sequence consisting of M and the N randomly chosen magnitude values. We
repeated this procedure 1,000,000 times to analyze the ∆M distribution.

We fitted a Weibull, a Gompertz, and a Generalized Gamma distribution to the simulated mag-
nitude differences ∆M . Fig. 3(a) shows the fits of the three distributions to the kernel density
estimator of the sampled data. The Gompertz distribution clearly provides the best fit for the mod-
erately negatively-skewed data.
In order to confirm this assumption based on the actual dataset, we fitted a Gompertz survival model
with only the scale parameter depending on the categorical plate boundary class and compared the
predicted survival curves to those provided by the non-parametric Kaplan-Meier estimator, which
does not require a specific distribution assumption (Klein and Moeschberger, 2003, ch. 4). In
Fig. 3(b), the step functions, colored according to the seven boundary classes, refer to the Kaplan-
Meier estimates. The Gompertz survival model survival curves are plotted on top by black lines,
generally showing good agreement.

4.2 Synthetic Test

To quantify the benefit of accounting for censored data in the estimation, we performed a simple
test with synthetic simulations, consistent with those in the previous section. Specifically, we set
the mean number of the aftershocks to xNy “ 10bpM´δM´Mcq for the three δM values (δM = 1.1,
1.3, 1.5) and mainshock magnitudes ranging from 6.0 to 7.5. For each case, we calculated 1000
aftershock sequences, where we randomly selected the number of aftershocks from a Poisson dis-
tribution and the magnitudes from a Gutenberg-Richter distribution with b “ 1 and Mc “ 5. We
then determine the classical estimate (mean ∆M value for those sequences with at least one trig-
gered event) and the estimate from our method, which takes into account the censored data. Both
results are compared with the true value computed for 100,000 sequences with Mc “ 3.0, where
virtually all sequences have at least one triggered event. Note that the expectation value of the
maximum of xNy events is not equal to the magnitude (M ´ δM ), which is exceeded on average
once. The results are visualized in Fig. 4 and summarized in the Supplementary Table S1. They
show that our method leads to nearly unbiased results, where the true value lies within the error
bars, which are related to plus/minus one standard deviation of the estimated Gompertz parame-
ters. In contrast, the classical approach leads to a strong underestimation of ∆M for mainshock
magnitudes smaller than 7.0.
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4.3 Covariate Effects

Figure 5 shows the covariate effects for the full parametric Gompertz survival model in the case
of the global earthquake catalog. The categorical effects in Fig. 5(a) represent predictions of the
response ∆M given the various boundary classes, if the other covariates are held fixed at their me-
dian values (magnitude=6.4, depth=23 km, velocity=66.5 mm/a, sea floor age=220 Ma, heat flow
« 0.07 Wm´2). The effects of the metric covariates in Fig. 5(b-f) are similarly predicted for a
fine grid of values of the considered variable, holding the other covariates fixed and assuming a
subducting environment (i.e., boundary class ”SUB”). Gray shades represent the 95% confidence
interval.

4.3.1 Effect of Boundary Class

Figure 5(a) reveals no structural effects of specific boundary classes. If we were fitting the same
model, but leaving out sea floor age and heat flow, the boundary classes OSR and OTF would show
a substantial and OCB a moderate increase in magnitude differences. This is demonstrated in the
Supplementary Fig. S3, which shows the ∆M dependence on the boundary class, when the other
covariates are ignored. In other words, mainshocks at oceanic, especially transform and divergent
type boundaries, produce weaker second strongest events than those in continental zones, which
fits with the generally limited magnitude sizes in these two boundary classes (Bird et al., 2002;
Boettcher and Jordan, 2004). However, this effect seems to be sufficiently represented by the
added metric covariates.

We also repeated the same analysis for simplified plate boundary classes, using only the cate-
gories (i) continental (combining CCB, CTF, CRB), (ii) oceanic (combining OSR, OTF, OCB), and
(iii) subduction. Again, we observe no significant differences between the plate boundary types
when the covariates are taken into account (see Supplementary Fig. S4).

4.3.2 Effect of Mainshock Magnitude

For values smaller than M “ 7.8, the mainshock magnitude effect depicted in Fig. 5(b) confirms
the well-established Båth’s law hypothesis that the average magnitude difference ∆M is roughly
1.2, independently of the mainshock magnitude. For larger magnitudes there seems to be a ten-
dency towards smaller ∆M , but the uncertainties are large. When all other covariates are ignored,
∆M remains constant within the uncertainty range over the whole magnitude range (see Supple-
mentary Fig. S5), as proposed by the Båth law.
A decrease of ∆M for the largest mainshock is very uncertain for two reasons. First, the sample
size of M ą 7.8 events (41 data points) is very small compared to the lower magnitude ranges,
leading to large standard errors. Second, the mainshock magnitude controls the radius of the spatial
window in the declustering approach. Thus, larger mainshocks span an exponentially increasing
area, in which potential aftershocks are searched. However, the larger the area, the more indepen-
dent background events are included in the analysis, increasing the likelihood of a larger maximum
magnitude. To test, whether the observed effect of strong mainshocks may be an artifact of a too
generous choice of the spatial window radius, we repeated the study for an event set declustered
with radius RpMq “ KpMqLpMq, where the factor KpMq gradually decreases from 2.5 to 1.0
for magnitudes between 6.0 and 9.0. This sensitivity study confirmed the shape of the effect curve,
indicating that the second strongest event usually occurred relatively close to the mainshock.
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4.3.3 Effect of Mainshock Depth

Figure 5(c) shows that the effect of the mainshock depth is almost constant for depths smaller than
40 km. Between 40 km und 50 km, ∆M increases from roughly 1.2 to a new level of approx-
imately 1.5. This effect is consistent with the observation of Hainzl et al. (2019), who showed
that aftershock productivity decreases at higher depths due to reduced seismic coupling, i.e. the
energy discharges increasingly through seismic creep rather than through aftershocks. Given a
constant magnitude size distribution, this would immediately translate into higher average magni-
tude differences ∆M . Another explanation could be that the observed increase of ∆M with depth
is related to a decreasing completeness of our catalog data with depth. However, the analysis of
the frequency-magnitude distribution for the deeper events shows no signs of incompleteness (see
Supplementary Fig. S6), ruling out this possibility. We find that the events in the depth interval
between 40 and 70 km have a larger b value of 1.18 compared to 1.04 of the shallower earthquakes.
Thus, the larger b value could be another reason for the observed larger ∆M value at depth.

4.3.4 Effect of Relative Plate Velocity

Plate velocities play an important role for the duration of stress re-accumulation at a fault after
the occurrence of a large earthquake. However, recurrence intervals of so-called characteristic
earthquakes are typically in the range of multiple decades or even centuries. For the short-term
recurrence of strong aftershocks, Fig. 5(d) reveals no clear effect of the relative plate velocity. As
an alternative covariate representing the velocity of deformation in the tectonic system, we tested
global strain rate data (Kreemer et al., 2014), which similarly showed no structural effect.

4.3.5 Effect of Heat Flow

According to Fig. 5(e), regions with heat flow larger than 0.23 W {m´2 show a substantial increase
of magnitude differences. Warmer rock is known to be more viscous, which discharges stress
through seismic creep rather than abrupt fractures, leading to the same aftershock productivity
argument as for higher depths. As Fig. 2 shows, high heat flow values are typically prevalent in
oceanic ridges and transform faults, which explains why the model predicts larger ∆M for the
plate boundary classes OSR and OTF if heat flow is left out as a covariate.

4.3.6 Effect of Sea Floor Age

Figure 5(f) shows that magnitude differences are substantially larger in young compared to old
oceanic crusts. The same result is obtained when the continental regions are ignored (Supplemen-
tary Fig. S7). A potential causal reason for the effect of the plate age cannot be ruled out, but is
unknown to the authors. Note that young sea floor typically comes with large heat flows. Therefore,
the effects of the two variables are consistent. As new oceanic crust is formed at oceanic ridges,
the effect also coincides with the increased magnitude differences in the nested model without sea
floor age.
If we fit the full model to the subset of subduction zone mainshocks only, both heat flow and sea
floor age show no clear signal. Thus, it is likely that their effect is mainly driven by their tails at
oceanic ridges.
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4.4 Response Residuals

Fig. 6 shows the response residuals (i.e., observed minus predicted values) plotted against the
mainshock magnitude of each cluster. Note that, as observations are censored, residuals are cen-
sored as well. Therefore, we can show only residuals for non-censored observations here. This
explains the superiority of negative residuals, especially in the range of lower mainshock mag-
nitudes. If a mainshock with magnitude M slightly above 6 has an observed largest aftershock,
this aftershock must be above cut-off magnitude Mc by experimental design and, consequently,
the observed, non-censored ∆M ď M ´ Mc must be relatively small. The chance that the ∆M
observation is smaller than the prediction is accordingly high. In contrast, mainshocks with, in
reality, large ∆M and positive residuals are much more likely to be censored and absent in the
residual statistic. In the larger mainshock magnitude ranges, this effect gradually disappears, and
the scatter of the residuals become symmetrical around 0 for mainshocks greater than magnitude
7.0.
The overall large variation of the residuals suggests a weak predictive power of the model. Resid-
uals of more than one magnitude unit are not rare, and can even reach up to almost two units.
Small observations are typically substantially overestimated, and vice versa. The root mean square
error for predictions by the full model, 0.62, is only minimally better than by a Gompertz intercept
model, 0.63. However, these values only account for predictions of non-censored observations.
The majority of substantial covariate effects identified above explain increases of the expected
magnitude difference, which means that related observations (e.g. events with larger depth or heat
flow, or at younger sea floors) are considerably more likely to be censored and therefore left out of
the residuals statistics.
The censoring of observations and residuals hinder a rigorous diagnosis of the model. Despite
the covariates showing some relevant signals, it is evident that the model misses additional high-
resolution geophysical variables for local site effects or event-specific properties that can help
explain a larger proportion of the variance in the data.

4.5 Sensitivity Studies

As partly mentioned above, we tested the influence of varying time windows (e.g. T “ 365 days)
and spatial windows (e.g. RpMq “ LpMq or RpMq “ KpMqLpMq with gradually decreasing
KpMq as described above) in the cluster selection approach on the regression results. The covariate
effects are very insensitive, indicating that the second strongest event typically occurs close to and
shortly after (or before) the mainshock. In other words, the contamination of the response variable
through background seismicity is negligible.

5 Conclusions

We adapted a survival regression model approach from medical studies to estimate the parametric
distribution of the magnitude difference ∆M between the mainshock and its strongest foreshock or
aftershock. The highlight of this regression class is that it accounts for right-censored observations.
In our case, these are mainshocks for which no aftershock or foreshock is recorded above cut-off
magnitude Mc, and for which we therefore have only the partial information that ∆M ą M ´Mc,
where M is the mainshock magnitude.
We selected earthquakes clusters within a global earthquake catalog using a window method and
computed ∆M for each of the independent clusters. Then, we enriched the cluster dataset with a
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plate boundary classification, relative plate velocities and sea floor ages obtained from the digital
plate boundary model of Bird (2003) and with heat flow from Bird et al. (2008). Using a simple
simulation experiment where the magnitudes are drawn from the Gutenberg-Richter distribution,
we conclude that the Gompertz distribution describes ∆M better than Weibull or Generalized
Gamma, and that the approach yields nearly unbiased ∆M estimates even for small magnitude
mainshocks.
The regression results show that larger ∆M values are expected at larger heat flows and depths,
and in younger ocean crust. However, the residuals of ∆M are still high and an extension of the
∆M -regression model using small-scale covariate data could contribute to a better understanding
of magnitude differences in different geophysical settings.

Data and Resources

The U.S. Geological Survey National Earthquake Information Center (USGS-NEIC) catalog
has been downloaded from https://earthquake.usgs.gov/earthquakes/search/
(last accessed on March 30, 2022). Global covariate data has been downloaded from http://
peterbird.name/publications/2003_pb2002/2003_pb2002.htm (Bird, 2003,
last accessed on March 30, 2022) or has been made available by Peter Bird after personal con-
tact (heat flow data, Bird et al., 2008). All statistical analyses were performed with the open source
software R. Supplementary Material for this article includes the results of a sensitivity study using
the homogenized ISC-GEM global earthquake catalog and other supplementary material.
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Table 1: Number of all, censored, and observed ∆M data points, grouped by plate boundary
classes according to the digital plate model of Bird (2003).

Plate Boundary Number of Clusters

Class #total #censored #observed

CCB (continental convergence boundary) 219 71 148
CTF (continental transform fault) 238 81 157
CRB (continental rift boundary) 183 69 114
OSR (oceanic spreading ridge) 181 108 73
OTF (oceanic transform fault) 513 319 194
OCB (oceanic convergent boundary) 142 59 83
SUB (subduction zone) 1457 473 984
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Fig 1: Locations of 2,933 global M ą 6 mainshocks between 1973 and 2020, selected from
the USGS-NEIC catalog. Mainshocks are color-coded according to their assignment to the plate
boundary classes, listed in Tab. 1, which are introduced in the digital plate model of Bird (2003).
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Fig 2: Boxplots of (a) relative plate velocity, (b) sea floor age, and (c) heat flow values assigned
to cluster mainshocks by a nearest-neighbor approach from original scatter data (Bird, 2003; Bird
et al., 2008), grouped by the plate boundary class which are listed in Tab. 1.
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Fig 3: (a) Fits of the Gompertz, Weibull and Generalized Gamma distribution to simulated magni-
tude differences ∆M , represented by the kernel density estimator (black curve). (b) Comparison
of survival curves estimated from a Gompertz model (continuous black lines) and a non-parametric
Kaplan-Meier estimator (colored step functions), stratified for plate boundary classes (c, see leg-
end).
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Fig 4: ∆M estimates for synthetic aftershock sequences as a function of the mainshock magni-
tude M and the parameter δM , determining the mean aftershock number xNy (see title lines) with
b “ 1,Mc “ 5. Each ∆M value was estimated by 1000 synthetic sequences, where ∆M is esti-
mated in the case of the classical method by the average of the observed value for those sequences
with at least one aftershock, while our method takes into account the censored sequences where no
aftershock occurred. In the latter case, the error bars refer to plus/minus one standard deviation of
the estimated Gompertz parameters. The true value was estimated from the mean of 105 simula-
tions with Mc “ 3.
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Fig 5: Covariate effects of the ∆M -Regression, by (a) plate boundary type (categorical), (b) main-
shock magnitude, (c) mainshock depth, (d) relative plate velocity, (e) heat flow and (f) sea floor
age on the magnitude difference between a mainshock and the second largest event of the cluster.
For linear effects (a), 95% confidence intervals are represented by bars. For smooth effects (b-f),
95% confidence intervals are depicted by gray shades. The effects are computed as predictions of
the response variable, fixing the other variables at their median values. Rug lines on the x axis
visualize the marginal distributions of the corresponding metric covariate.
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Fig 6: Response Residuals of the ∆M -regression for non-censored observations only, plotted
against the mainshock magnitudes. The row arrangement of the points is due to the rounding of
the observed data to one decimal place.
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