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S U M M A R Y 

The epidemic-type aftershock sequence (ETAS) model is the state-of-the-art approach for mod- 
elling shor t-ter m ear thquake clustering and is preferable for shor t-ter m aftershock forecasting. 
Ho wever , due to the large variability of different earthquake sequences, the model parameters 
must be adjusted to the local seismicity for accurate forecasting. Such an adjustment based on 

the first aftershocks is hampered by the incompleteness of earthquake catalogues after a main- 
shock, which can be explained by a blind period of the seismic networks after each earthquake, 
during which smaller events with lower magnitudes cannot be detected. Assuming a constant 
blind time, direct relationships based only on this additional parameter can be established 

between the actual seismicity rate and magnitude distributions and those that can be detected. 
The ET AS-incomplete (ET ASI) model uses these relationships to estimate the true ETAS pa- 
rameters and the catalogue incompleteness jointly. In this study, we apply the ETASI model to 

the SE T ürkiye earthquake sequence, consisting of a doublet of M 7.7 and M 7.6 earthquakes 
that occurred within less than half a day of each other on 6 Febr uar y 2023. We show that 
the ETASI model can explain the catalogue incompleteness and fits the observed earthquake 
numbers and magnitudes well. A pseudo-prospective forecasting experiment shows that the 
daily number of detectable m ≥ 2 can be well predicted based on minimal and incomplete 
information from early aftershocks. Ho wever , the maximum magnitude ( M max ) of the next 
day’s aftershocks would have been overestimated due to the highl y v ariable b v alue within 

the sequence. Instead, using the regional b value estimated for 2000–2022 would have well 
predicted the observed M max values. 

Ke y words: Earthquak e hazards; Earthquake interaction, forecasting, and prediction; Statis- 
tical seismology; Seismicity parameters; b Value. 

1

A  

a  

a  

l  

m  

o  

a  

d  

a  

d  

K  

e  

b  

2  

v  

t  

c  

s  

a  

w  

fi  

2
 

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/236/3/1609/7512212 by Bibliothek des W

issenschaftsparks Albert Einstein user on 10 April 2024
 I N T RO D U C T I O N  

s observed for the M 7.7 mainshock that occurred on 6 Febru-
ry 2023 in SE T ürkiye, thousands of aftershocks usually follow
 large earthquake (mainshock) closely in space and time. The
argest of these aftershocks can be as destructive or deadly as the

ainshock or even worse. Therefore, in the immediate aftermath
f a mainshock, accurate predictions of the expected frequency
nd magnitude of aftershocks are essential for planning emergency
ecisions and risk mitigation in the affected area. In general, the
ftershock occurrence is well described by the Omori–Utsu (OU)
ecay for the earthquake rate, R = K 0 /( c + t ) −p , with parameters
 0 , c and p , and the Gutenberg–Richter (GR) distribution for the
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
arthquake magnitudes (Utsu et al. 1995 ). Generic parameters can
e used to get a first estimate of the expected activity (Page et al.
016 ), but the decay parameters are not universal and are known to
 ary widel y between dif ferent mainshocks. Therefore, the estima-
ion of sequence-specific parameters is preferable, but this task is
omplicated by (i) large aftershocks triggering their own aftershock
equences and by (ii) the incompleteness of earthquake catalogues
fter mainshocks when only the largest aftershocks are detected,
hich is statistically observed (Kagan 2004 ; Omi et al. 2013 ) and
rmly proven by detailed analysis of waveform data (Peng et al.
006 , 2007 ; Enescu et al. 2007 , 2009 ). 

The first problem can be addressed by the well-known epidemic-
ype aftershock sequence (ETAS) model which considers secondary
oyal Astronomical Society. This is an Open Access 
 https://creati vecommons.org/licenses/b y/4.0/ ), which 
 the original work is properly cited. 1609 
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aftershock triggering and describes the actual earthquake rate as 
the sum of a background rate ( r ) and the rates of ongoing OU- 
type aftershock sequences from past earthquakes (Ogata 1988 ). The 
ETAS model assumes that the catalogue is complete for earthquakes 
of magnitude m ≥ M c and gives the earthquake rate of m ≥ M c events 
by 

R 0 ( t) = r + 

∑ 

i : t i <t 

K 10 α( m i −M c ) ( c + t − t i ) 
−p , (1) 

where the index i refers to past events at times t i with magnitudes 
m i ≥ M c (Ogata 1988 ). Here, the proportionality factor of the OU 

decay function scales exponentially with the trigger magnitude (pa- 
rameters K and α), in agreement with observations (Utsu et al. 
1995 ; Hainzl & Marsan 2008 ). For a given earthquake sequence, 
the five ETAS parameters ( r , K , α, c , p ) are generally estimated by 
the maximum likelihood method. 

Ho wever , the ETAS estimates can be strongly biased by short- 
time aftershock incompleteness (STAI). For example, the empirical 
relation of Helmstetter et al. ( 2006 ) predicts that m = 4 aftershocks 
are not fully recorded within the first 2 hours after a M = 7.7 
earthquake, such as the 2023 T ürkiye event, while m = 3 events 
are only partially recorded, if at all, within the first 2 d. In contrast, 
the regional completeness magnitude before the mainshock was 
less than 2. This strong increase in completeness magnitude can be 
explained by the increased seismic noise due to the coda waves of the 
mainshock and its high number of aftershocks (Kagan 2004 ; Hainzl 
2016a , b ; de Arcangelis et al. 2018 ). To estimate sequence-specific 
parameters from early aftershocks with eq. ( 1 ), M c must be set to a 
high value, resulting in a small sample size and therefore uncertain 
parameters, or by trying to replenish the missing data (Zhuang et al. 
2017 ; Zheng et al. 2021 ). An alternative approach is to explicitly 
model the time-dependent incompleteness of the catalogue and use 
the incomplete magnitude range as well. 

The frequency–magnitude distribution of recorded earthquakes 
can usually be well described by the model of Ogata & Katsura 
( 1993 ), hereafter referred to as OK93. It is given by the GR dis- 
tribution, N ( m ) = 10 a − bm , multiplied by the detection probability, 
which is expressed by a cumulative normal distribution with mean 
μ and standard deviation σ . The time evolution of both model pa- 
rameters can be first estimated from the observational data using 
smoothness constraints (see details in Sec. 3 ). Then the detection 
probability can be used to estimate unbiased OU and ETAS pa- 
rameters. Omi et al. ( 2013 , 2014 , 2015 ) have shown in a series of 
papers that this approach works mostly w ell. How ever, it does not 
provide point information because it involves smoothing μ and σ in 
time. Fur ther more, it cannot estimate the inherent incompleteness 
of future catalogue data, which may be important for prospective 
forecasts that are tested with recorded data. 

A direct dependence of the detection probability on the earth- 
quake rate has recently been proposed by Hainzl ( 2016a ), based on 
the simple assumption that the local seismic network cannot detect 
smaller-magnitude events within a certain period after an earth- 
quake, the so-called blind time T b . Taking this additional parameter 
into account, Hainzl ( 2016b ) showed that STAI explains the ap- 
parent dependence of the OU-parameter c value on the mainshock 
magnitude. Mizrahi et al. ( 2021 ) first implemented a slightly differ- 
ent rate-dependent detection probability function in ETAS, while 
Hainzl ( 2021 ) extended ETAS with the pre viousl y deri ved detec- 
tion probability function, hereafter called ETASI model, where the 
parameter T b and thus the detection probability is estimated simul- 
taneously with the other ETAS parameters, without smoothing. The 
ETASI approach is thus much simpler and straightforward, but it 
relies on the validity of the blind-time approach (see description in 
Section 2 ). 

In this paper, we explore the potential of the method for short- 
term aftershock forecasting using the exemplary data of the 2023 
T ürkiye sequence, described in Section 4 . We focus only on the fore- 
casts of the number of earthquakes and their magnitudes, ignoring 
their spatial distribution in order to simplify the presentation and to 
av oid unresolved prob lems of the space-time ETAS model related 
to the use of isotropic kernels (Hainzl et al. 2008 ). The results are 
presented and discussed in Sections 5 and 6 . 

2  E TA S I  M O D E L  

In the standard ETAS approach, the earthquake catalogue is assumed 
to be complete for m ≥ M c at any time, and R 0 (eq. 1 ) is fitted directly 
to the observed data. In contrast, ETASI considers the STAI of 
earthquake catalogues in the model fit. Assuming (i) a blind time 
T b which follows each earthquake during which events smaller than 
that of the earthquake cannot be detected and (ii) a GR distribution 
for the earthquake magnitudes, the detection probability p d for an 
earthquake with magnitude m at time t is given by 

p d ( m, t) = exp 
[−T b R 0 ( t) 10 −b( m −M c ) 

]
, (2) 

where R 0 ( t ) is the true earthquake rate of m ≥ M c events (Hainzl 
2016b ). With this detection probability, both the detectable (ap- 
parent) rate R and the probability density function of detectable 
magnitudes f ( m , t ) can be determined anal yticall y; in particular, the 
detectable rate is given by 

R( t) = 

1 

T b 

(
1 − e −T b R 0 ( t) 

)
(3) 

(Hainzl 2016b , 2021 ). 
The parameters of the underlying ETAS model can be estimated 

by the log-likelihood function LL , which is given by 

LL = 

N ∑ 

i= 1 
ln [ f ( m i , R 0 ( t i )) ] + 

N ∑ 

i= 1 
ln [ R( t i ) ] −

T 2 ∫ 
T 1 

R( t ) dt (4) 

with 

f ( m, R 0 ) = ln (10) b T b R 0 
10 −b( m −M c ) e −T b R 0 10 −b( m −M c ) 

1 − e −T b R 0 
(5) 

(Hainzl 2021 ). Unlike the log-likelihood function of the standard 
ETAS model, the LL optimization of the b value and the ETAS 

parameters cannot be separated in the ETASI model, because f de- 
pends not only on the magnitude but also on R 0 ( t ) and consequently 
on the ETAS parameters. In addition to the standard parameters ( b , 
μ, K , α, c , p ), the LL -value depends on the blind time T b . Therefore, 
the maximum likelihood search involves seven instead of six free 
parameters. Note that ETASI can be easily extended to a space–time 
ETAS model as described in Grimm et al. ( 2022 ). 

Based on the estimated ETASI parameters, the catalogue com- 
pleteness can be e v aluated b y inverting eq. ( 2 ) for the magnitude 
which is detectable with a given probability p d at time t , namely 

M p d ( t) = M c − 1 

b 
log 

(
− ln ( p d ) 

T b R 0 ( t) 

)
. (6) 

In practice, one may be interested in the completeness level defined 
by the magnitudes detectable at 50 per cent or 90 per cent; thus one 
uses eq. ( 6 ) with p d = 0.5 or 0.9, respecti vel y. 
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 E S T I M AT I O N  O F  T H E  C ATA L O G U E  

O M P L E T E N E S S  B Y  O K 9 3  

o assess the ability of ETASI to correctly model catalogue com-
leteness, we use the independent OK93 model (Ogata & Katsura
993 ). Similar to ETASI, a GR distribution of earthquakes is as-
umed in OK93, but the detection function is not related to the
arthquake rate and is characterized by independent parameters. In
articular, the detection probability is modelled by a cumulative
ormal (Gaussian) distribution with mean value μ and standard
eviation σ (Ringdal 1975 ), 

p d ( m | μ, σ ) = 

1 √ 

2 πσ

m ∫ 
−∞ 

e −
( x−μ) 2 

2 σ2 dx (7) 

nd the probability density distribution for the magnitudes becomes 

f ( m | μ, σ ) = C p d ( m | μ, σ ) 10 −bm (8) 

here C is a normalization constant. Here, μ is the magnitude value
t which 50 per cent of earthquakes are detected, and σ refers to
he range of magnitudes in which earthquakes are only partially
etected. 

To characterize the non-stationarity of the magnitude distribu-
ion, we assume time-dependent parameters b ( t ), μ( t ) and σ ( t ). In
articular, we use β = ln (10) b and assume that the parameters
n ( β), ln ( μ) and ln ( σ ) are expressed by flexible functions of time
 using cubic B-spline functions. For a given data set ( t i , m i with i
 1, . . . N ), we consider the log-likelihood function given by 

L = 

N ∑ 

i= 1 

[
ln ( βi ) − βi m i + ln ( f ( m i | μi , σi )) + βi μi − 1 

2 
β2 

i μ
2 
i 

]

(9) 

sing the shortcuts β i ≡ β( t i ), μi ≡ μ( t i ), σ i ≡ σ ( t i ). To account
or smoothness in time, we consider a penalized function for the
moothness constraints with 

 ( β( t) | w β1 , w β2 ) = 

∫ T 

0 
w β1 

(
∂ β( t) 

∂t 

)2 

+ w β2 

(
∂ 2 β( t) 

∂ t 2 

)2 

dt

nd similar terms � ( μ( t) | w μ1 , w μ2 ) and � ( σ ( t) | w σ1 , w σ2 ) . Then 

L − � ( β( t) | w β1 , w β2 ) − � ( μ( t) | w μ1 , w μ2 ) − � ( σ ( t) | w σ1 , w σ2 ) 

(10) 

orresponds to the logarithm of a posterior function, where the
moothness constraints correspond to the logarithm of a Gaussian
rior function since the functions β( t ), μ( t ) and σ ( t ) have linear
oefficients of cubic B-spline functions (Ogata & Katsura 1993 ). In
rder to optimize the strengths of the constraints, we maximize the
ntegration of the posterior function with respect to the six weights
 β1 , w β2 , w μ1 , w μ2 , w σ1 and w σ2 , which is equi v alent to minimiz-

ng the ABIC (Akaike 1980 ). Finall y, b y fixing the optimal weights,
e calculate the maximum a posterior solution of the coefficient
arameters of the penalized log-likelihood function in eq. ( 10 ). See
gata & Katsura ( 1993 ) for a more detailed calculation procedure.
ere, the penalty applied to the so-called natural time (event in-
ex), which advances by one between two successive events, may
ork better than the penalty applied to real time in cases where the
ccurrence times are highly clustered. 
 DATA  

he earthquake catalogue is provided by the Disaster and Emer-
ency Management Organization of T ürkiye (AFAD). The cata-
ogue is based on automatic processing, partially manually revised,
f waveform data from a permanent network. An in-depth anal-
sis of the AFAD catalogue characteristics is provided by C ¸ ıvgın
 Scordilis ( 2019 ). For this study, earthquakes were selected in

he box defined by longitude 33.5–41.0 ◦ and latitude 34.0–40.0 ◦,
entred on the 2023 sequence. The region was chosen to be broad
nough to include most of the aftershock activity, but to exclude
arger clusters of independent events at the edges of the region. For
he ETASI and OK93 fits, we used data recorded between 1 Jan-
ary and 8 March 2023. For visual comparison and analysis of the
ackground b value, we also used the earthquake catalogue from
he same region recorded between the beginning of 2000 and the
nd of 2022. 

Fig. 1 shows the temporal and spatial distribution of the data. In
ig. 1 (a), the magnitudes are plotted against the occurrence times
f the recorded earthquakes. The chosen cut-off magnitude M c =
.95 for the ETASI model application is indicated by the horizontal
otted line, which corresponds to m ≥ 2 events due to the mag-
itude binning of 0.1. Although the catalogue is complete for m

2 events according to the OK93 model before the mainshock,
t is incomplete for the first few days after the mainshock. Ignor-
ng this incompleteness may lead to a significant underestimation
f the aftershock productivity of the largest earthquakes due to an
nrealistically small α value (Kagan 2004 ; Hainzl et al. 2013 ). In
ig. 1 (b), the spatial distribution of the fitted m ≥ 2 earthquakes is
hown by blue symbols, indicating that the activity is well separated
n space from other activity. 

 R E S U LT S  

he study addresses two questions, namely (i) how well ETASI
an fit the complete sequence and (ii) how good 1-d forecasts are
ased on parameter estimates from incomplete data of preceding
arly aftershocks. To answer both questions, we fitted the m ≥ 2
arthquakes from 1/1/2023, that is T 1 = −35.8 d relative to the
ainshock, where we ignored potential aftershock-triggering by

receding events in 2022, as there is no apparent clustering at the
eginning of the sequence (see Fig. 1 a). 

.1 Fit to the whole sequence 

he maximum likelihood estimates (MLE) for the recorded m ≥ 2
arthquakes in 2023 ( T 1 = −35.8 d and T 2 = 30 d) using the ETAS
nd ETASI models are given in Table 1 . The ETASI model provides a
ignificantly better fit in terms of the corrected information gain per
arthquake (IGPEc), which considers the additional free parameter
f the ETASI model. The ETAS model naturally provides biased
stimates with a poor fit because, as discussed in Section 2 , it uses
ncomplete aftershock data immediately following the mainshock.
he estimated parameters are also significantl y dif ferent between
T AS and ET ASI; in particular, the α value increases strongly when

he ETASI model is applied. While the ETAS model obtains a
ow value of 0.30, the ETASI model obtains a value of 1.24. A
imilar trend is observed for the b value, which increases from
.56 to 0.87. Both observations are consistent with those observed
or mainshock–aftershock sequences in California (Hainzl 2021 ).
imilarly, the estimated blind time of T b = 162 s is in the range of
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Figure 1. Observed seismicity: (a) Magnitudes versus time of earthquakes recorded in 2023 in the region defined by the boundaries of the map (b). The 
solid and dashed curves refer to the detection probability of the OK93 model (eq. 7 ) using μ and μ + 2 σ , and the horizontal dotted line refers to the applied 
magnitude cut-off of M c = 1.95 for ETASI. In (b), m ≥ M c earthquakes are plotted, with events occurring between 2000 and 2022 shown in grey and 2023 
events are shown in blue. In both plots, the symbol size is scaled by the earthquake magnitude. The yellow circle marks the epicentre of the M L 6.8 Elazi ̆g 
earthquake in 2020. 
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The model fits are shown in Fig. 2 as a function of logarithmic 
time after the mainshock. In particular, the model rates are com- 
pared with the event rates of the recorded m ≥ 2 earthquakes in 
Fig. 2 (a). The plot shows a surprising result from the ETAS model. 
Ignoring STAI, it expects an increasing aftershock rate immediately 
after the mainshock despite the Omori–Utsu decay of direct after- 
shocks triggered by the mainshock. This is due to the low value 
of α, which gives significant weight to the triggering of secondary 
aftershocks (aftershocks triggered by aftershocks); α = 0.3 means 
that eight magnitude 4.7 aftershocks together trigger, on average, 
the same number of aftershocks as the magnitude 7.7 mainshock, 
but they are typically 1000 times more frequent (assuming b = 

1). Thus, the cumulative triggering of the first aftershocks exceeds 
those of the mainshock leading to an increasing rate. In contrast, 

art/ggae006_f1.eps
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Table 1. Parameters that maximize the log-likelihood value ( LL ) for the 9438 m ≥ 2.0 earthquakes in 2023, that is between T 1 = −35.8 and T 2 = 30 d 
relative to the mainshock. The column IGPEc refers to the corrected information gain per earthquake relative to the ETAS model, which is determined by the 
difference of the corrected Akaike information criterion (AICc) between the ETASI and the ETAS model, normalized by twice the event number N , where 
AICc = −2 LL + 2 N p + ( N p + 1) / ( N − N p − 1) with N p being the number of fit parameters (Rhoades et al. 2014 ). 

Model r [1/d] K α c [min] p b T b [min] LL AICc IGPEc 

ETAS 0.80 0.091 0.30 98.9 1.12 0.56 37902.8 −75794 0 
ETASI 2.14 0.002 1.24 12.2 0.99 0.87 2.7 39636.4 −79259 0.18 

Figure 2. Model fits as a function of logarithmic time after the mainshock: (a) Earthquake rate of m ≥ 2 earthquakes, where the crosses refer to the observed 
rates and the lines indicate the mean rates for the optimized models: standard ETAS (solid grey), detectable ETASI ( R , solid red) and actual ETASI ( R 0 , dashed 
red). (b) The detected event magnitudes along with the completeness levels estimated by OK93 and ETASI, where the solid curves (green: OK93 and red: 
ETASI) refer to the magnitudes detected with a probability of 50 per cent, while the dashed red curve refers to a detection probability of 90 per cent according 
to ETASI. Also shown is the empirical completeness-relation of Helmstetter et al. ( 2006 ) (black dashed line). (c) Mean earthquake magnitudes: Observations 
computed in non-overlapping bins of 25 events are shown by error bars, where the horizontal bar refers to the time period of the events used, and the vertical 
bar refers to ±1 standard deviation assuming an exponential function with the observed mean value. The OK93 estimate is shown by the green curve (using 
eq. 8 ), while the solid red curve shows the mean value related to eq. ( 5 ). 
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he ETASI model assumes a much higher α value. The true rate
f m ≥ 2 earthquakes is estimated as the dashed line, which is
bout a factor of 500 higher than the observed rate immediately af-
er the mainshock. Ho wever , considering the detection probability
unction (eq. 2 ) related to the detection limits, the detectable (ap-
arent) ETASI rate R ( t ) agrees very well with the observed event

ate. t  
The magnitude versus time plot of the recorded events (Fig. 2 b)
hows that many small magnitude aftershocks immediately after
he largest earthquakes were missed. This deficiency is compared
ith ETASI and OK93 estimates. The red and magenta curves

how the magnitude value that can be detected at a given time
ith a probability of 50 and 90 per cent, respecti vel y, according

o eq. ( 6 ). The 50 per cent cur ve ag rees well with the independent

art/ggae006_f2.eps


1614 S. Hainzl, T. Kumazawa and Y. Ogata 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/236/3/1609/7512212 by Bibliothek des W

issenschaftsparks Albert Einstein user on 10 April 2024
OK93 estimate of the μ value (green curve), which also refers to a 
detection probability of 50 per cent. Both results agree within the 
uncertainties of μ with two exceptions: (i) For a short period after 
the largest aftershock, OK93 gives a higher completeness magnitude 
than ETASI and (ii) at the time of the fourth largest event in the 
sequence, the m = 6.4 earthquake that occurred about 14.7 d after 
the mainshock, ETASI expects a significant jump in incompleteness, 
while OK93 gives only a moderate increase. 

The estimated catalogue completeness is also compared with the 
empirical completeness relation, M c ( m , t ) = m − 4.5 − 0.75log ( t ), 
using the mainshock magnitude m = 7.7 (dashed line). Although 
this relation has only been calibrated to mainshocks in California 
(Helmstetter et al. 2006 ), the 50 per cent curve approximately fol- 
lows it until the occurrence of the largest aftershock. Ho wever , with 
the occurrence of the largest aftershock, the completeness magni- 
tude jumps up and then decays faster than expected from the em- 
pirical relationship. Fur ther more, the 90 per cent probability cur ve 
is al wa ys about one magnitude larger than the 50 per cent curve, 
indicating that many earthquakes are still missed between the two 
curves. Thus, it is crucial to use a time-dependent detection proba- 
bility function instead of a time-dependent threshold value such as 
the empirical function of Helmstetter et al. ( 2006 ). 

The ETASI model also predicts a time-dependence of the 
frequency-magnitude distribution of the catalo gue e vents accord- 
ing to eq. ( 5 ). In contrast, the standard ETAS approach implicitly 
assumes a complete catalogue with a constant b value, where the 
mean magnitude is constant over time. Fig. 2 c shows the compari- 
son of the predicted mean magnitude of the ETASI model (curve) 
with the observed value for non-ov erlapping consecutiv e bins of 25 
m ≥ 2 earthquakes (crosses). The mean magnitude of the observed 
aftershocks is strongly time-dependent, with the highest values im- 
mediately after the mainshock and the largest aftershock, as visually 
expected from panel (b). A further jump in the mean magnitude is 
observed at the time of the M 6.4, which occurred about 14.7 d after 
the mainshock. The ETASI model well fits the observed trend. The 
OK93 model also follows the observed data very closel y, onl y miss- 
ing the peak after the M 6.4 e vent, probabl y due to the smoothness 
constraints. 

We compared the log-likelihood values for the observed magni- 
tudes using (i) a constant GR distribution with b = 0.56 (Table 1 ), 
(ii) eq. ( 5 ) for ETASI with constant parameters (Table 1 ) but time- 
varying rate R 0 ( t ), and (iii) eq. ( 8 ) for OK93 with time-varying b , 
μ and σ . The results in Table 2 show that both OK93 and ETASI 
clearly outperform GR with an Information Gain Per Event (IGPE) 
of 0.17. Note that the applied IGPE value is not corrected for the 
number of model parameters. The OK93 model, which has many 
free parameters and flexibility in fitting the time e volution, gi ves 
the best result, but only with a small IGPE of 0.002 with respect to 
ET ASI. The ET ASI has much less freedom to model the evolving in- 
completeness with time because only one additional parameter ( T b ) 
is introduced to model the time evolution of the recorded earthquake 
rate and magnitude distribution simultaneously. Thus, the simulta- 
neous good fit of the earthquake rates and magnitudes demonstrates 
the consistency of the model with the data. 

A more detailed analysis of the time-dependent frequency–
magnitude distribution is shown in Fig. 3 , where the histograms of 
the observed magnitudes are compared with the ETASI and OK93 
results in non-overlapping successive time windows, each contain- 
ing 500 m ≥ 2 aftershocks, except for the first interval containing 
the less numerous foreshocks. Here, the ETASI curves are calcu- 
lated by summing eq. ( 5 ) evaluated at the occurrence times of the 
obser ved ear thquakes, and the shaded area refers to the correspond- 
ing 90 per cent confidence interval. The OK93 curves are computed 
similarly using eq. ( 8 ). Overall, the model results are in good agree- 
ment with the observ ations. Howe ver, for earl y aftershocks, the 
ETASI slope at high magnitudes tends to underestimate the slope 
of the large-magnitude tail, which is related to an underestimation 
of the b value, as shown next. 

Fig. 4 (a) shows the b value for the preceding activity that occurred 
in the same region between 2000 and 2022 as a function of the cut-off 
magnitude using MLE (Aki 1965 ). The b estimate becomes stable 
within its uncertainties for M c > 3.5 and scatters around 1.07. 
Ho wever , the OK93 model indicates that the b value is strongly 
time-dependent. In 2023, OK93 gives b = 0.76 ± 0.07 for the 
earthquakes that occurred before the mainshock and b values of 
about 1.2 for the early aftershocks, decaying to about 0.85 for the 
later aftershocks (see Fig. 4 b). The b value estimated by OK93 for 
aftershocks occurring 10 d or later after the mainshock agrees with 
the constant value estimated by ETASI. 

Using OK93, we observe a 50 per cent increase in the b value 
coinciding with the mainshock event. This coseismic rise in b value 
generally aligns with findings by Gulia et al. ( 2018 ), who, in study- 
ing 58 aftershock sequences, noted a 20–30 per cent increase in b 
value following mainshocks. Changes in b values are commonly 
interpreted as indicators of stress variations, as rock experiments 
have demonstrated a decrease in b values of acoustic emissions dur- 
ing rock fracturing with heightened differential stress (Scholz 1968 , 
2015 ). Assuming a consistent mechanism for both mainshocks and 
aftershocks, the average shear stress in the aftershock zone decreases 
due to the mainshock (Gulia et al. 2018 ; Sharma et al. 2023 ). When 
combined with the laboratory-deriv ed inv erse relationship between 
stress change and b value, this might be mistakenly used to ex- 
plain the increased b value in aftershocks. Ho wever , despite the 
decrease in average shear stress, aftershocks occur in areas where 
stress increases locally, necessitating a positive correlation between 
b values and stress changes to explain the observation. Such a posi- 
tive relation was observed by Sharma et al. ( 2023 ), who conducted a 
comprehensi ve anal ysis of the b -v alue dependence on stress changes 
induced by mainshock events across 127 mainshock–aftershock se- 
quences, suggesting a crucial role of structural heterogeneity and 
strength v ariations. Ne vertheless, the rapid decay of the b value in 
our case remains puzzling. Although previous studies have reported 
decays on a timescale of years (Tormann et al. 215 ; Gulia et al. 
2018 ), the b value, in our case, returned almost to its pre-mainshock 
value ( b ≈ 0.8) within 10 d. 

The time dependence of the b value is not considered by the 
ETASI model, which assumes a constant b for simplicity. The sig- 
nificantly larger b value for early aftershocks (according to OK93) 
explains the ETASI misfit of the magnitude tail of these events 
shown in Fig. 3 . However, the simultaneous estimation of the time- 
dependent b value and the catalogue completeness is challenging 
and may only be reliable with sufficient data. 

For forecasts based on limited input data, assuming a constant 
value of b may be the only way to obtain a robust estimate. For this 
reason, we tested estimates assuming constant b from the beginning 
of 2023 until the time t indicated on the x -axis of Fig. 4 (b). The 
ET ASI estimate (ET ASI( t )) is very close to the value estimated for 
the whole period (dashed red line). We also applied the b -positive 
method, which w as pre viousl y shown to be a robust b -value esti- 
mator for catalogues with time-varying completeness (van der Elst 
2021 ). In this case, only the difference � m between the magnitudes 
of subsequent events is considered, and the b value is estimated 
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Ta ble 2. Log-lik elihood values ( LL ) and information gains per event, here defined as IGPE = ( LL 2 − LL 1 ) /N , for the m ≥ 2 
earthquakes in 2023. 

Model Equation b LL IGPE (relative to GR) IGPE (relative to ETASI) 

GR ln (10) b 10 −b( m −M c ) 0.56 −6897.9 0 − 0 .17 
OK93 eq. ( 8 ) b ( t ) −5295.0 0.17 0 .002 
ETASI eq. ( 5 ) 0.87 −5311.9 0.17 0 

Figure 3. Comparison of the observed (bars) and expected (lines) frequency–magnitude distributions in the subsequent periods indicated in the upper right of 
each panel, each containing 500 m ≥ 2 aftershocks (except for the foreshock window). The green curves refer to the OK93 model, while the red curves show 

the ETASI results with the 90 per cent confidence interval indicated by the grey shaded area. 

Figure 4. b Value: (a) MLE of b as a function of the cut-off for the regional earthquakes between 2000 and 2022. The grey horizontal line refers to b = 1.07, 
and the blue and grey error bars refer to the traditional and b -positive methods, respectively; both are slightly offset for better visibility and lead to similar 
results. (b) MLE of ETASI for b using the recorded m ≥ 2 earthquakes up to the time t indicated on the x -axis (ETASI( t ), red dashed line) or the entire sequence 
(ETASI, red dotted line). The results for b -positive for m ≥ 2 aftershocks up to time t are also shown for three different thresholds � m c . Unlike the other 
results, the OK93 model estimates are localized in time and shown by the green curve with its 2 σ confidence interval. The OK93 result indicates that the value 
of b was close to the background level in the first few days and then decayed to the value estimated by the ETASI model. 
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nly for those that are positi ve. Theoreticall y, this estimator is un-
iased for � m ≥ 0 even for large variations in the completeness
agnitudes if (i) the completeness magnitude does not increase be-

ween earthquakes and (ii) no earthquakes are recorded below the
ompleteness magnitude. Ho wever , since a large fraction of events
n earthquake catalogues have magnitudes below the completeness
agnitude, b -positive must also introduce a threshold � m c > 0. The

esult for � m > 0.2 for the aftershocks up to the time indicated on
he x -axis is very similar to the ETASI estimate (blue curve). How-
 ver, this cut-of f turns out to be too small because the b -positive
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Table 3. ETASI parameters used for the daily forecasts start at time T s relative to the mainshock, where the MLEs have been 
performed for the period [ T 1 , T 2 ] consisting of N recorded m ≥ 2 events. 

T s [d] T 1 [d] T 2 [d] N r 10 4 K α c [min] p T b [s] b 

0 −1138 −1078 1149 1.49 15.6 1.05 9 .8 1.11 156.2 0.88 
0.38 −35.8 0.38 321 2.22 1.0 1.30 2 .7 0.87 142.0 0.85 
0.5 −35.8 0.5 384 2.21 1.0 1.30 1 .4 0.84 146.9 0.84 
1 −35.8 1 665 2.14 1.4 1.28 0 .4 0.74 150.4 0.82 
2 −35.8 2 1238 2.17 1.5 1.26 5 .3 0.89 150.5 0.82 
3 −35.8 3 1789 2.17 1.7 1.25 13 .7 0.96 151.4 0.83 
4 −35.8 4 2283 2.18 1.5 1.26 8 .2 0.93 154.6 0.83 
5 −35.8 5 2754 2.18 1.6 1.26 10 .3 0.95 156.2 0.84 
6 −35.8 6 3230 2.18 1.5 1.26 8 .8 0.95 155.9 0.84 
7 −35.8 7 3671 2.19 1.4 1.26 6 .8 0.93 156.5 0.85 
8 −35.8 8 4016 2.18 1.5 1.26 9 .7 0.95 158.6 0.85 
9 −35.8 9 4370 2.18 1.6 1.26 10 .3 0.96 159.6 0.85 
10 −35.8 10 4686 2.18 1.5 1.26 11 .5 0.95 160.8 0.84 
11 −35.8 11 5017 2.20 1.4 1.26 12 .2 0.95 161.1 0.84 
12 −35.8 12 5314 2.20 1.4 1.27 14 .3 0.97 161.2 0.84 
13 −35.8 13 5630 2.20 1.3 1.27 14 .8 0.97 160.7 0.85 
14 −35.8 14 5934 2.19 1.4 1.26 13 .5 0.96 160.7 0.85 
15 −35.8 15 6242 2.11 2.6 1.22 6 .5 0.96 162.4 0.85 
16 −35.8 16 6566 2.12 2.5 1.22 6 .3 0.96 162.5 0.85 
17 −35.8 17 6831 2.13 2.3 1.22 6 .6 0.96 162.5 0.86 
18 −35.8 18 7095 2.13 2.3 1.22 7 .0 0.96 162.5 0.86 
19 −35.8 19 7353 2.12 2.4 1.22 6 .9 0.97 162.6 0.86 
20 −35.8 20 7592 2.14 2.1 1.23 7 .6 0.97 162.6 0.86 
21 −35.8 21 7809 2.13 2.2 1.23 8 .1 0.97 162.6 0.87 
22 −35.8 22 8020 2.16 1.8 1.25 9 .3 0.98 162.6 0.87 
23 −35.8 23 8235 2.16 1.8 1.25 9 .5 0.98 162.5 0.87 
24 −35.8 24 8396 2.16 1.8 1.25 11 .2 0.99 162.2 0.87 
25 −35.8 25 8557 2.15 1.9 1.24 12 .7 0.99 162.0 0.87 
26 −35.8 26 8749 2.14 2.0 1.24 12 .4 0.99 162.1 0.87 
27 −35.8 27 8932 2.14 1.9 1.24 12 .2 0.99 162.2 0.87 
28 −35.8 28 9079 2.13 2.1 1.24 13 .7 1.00 162.0 0.87 
29 −35.8 29 9273 2.14 2.0 1.24 12 .3 0.99 162.4 0.87 
30 −35.8 30 9437 2.15 1.9 1.24 12 .2 0.99 162.3 0.87 
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systematically increases with increasing � m c . For � m > 0.7, the 
estimates are slightly below 1.07, while for � m > 1.0, they are 
slightly above 1.07. The strong dependence of the b -positive results 
on � m c indicates that a stable estimation of b is difficult for this 
data set. 

The results show that the true b value was time-dependent and 
w as, for earl y aftershocks, similar to the b v alue of the background 
activity in the period 2000–2022, and thus significantly larger than 
the value estimated by ETASI assuming a constant b for the pre- 
shocks and aftershocks. 

5.2 Pseudo-pr ospectiv e forecast experiment 

To analyse the possibility of forecasting the number of aftershocks 
and their maximum magnitude based on limited and incomplete 
catalogue infor mation, we perfor med a retrospective forecasting 
test. Specifically, we computed forecasts for the next day starting 
at different start times T s , using earthquakes up to T s as input for 
parameter estimation. The first forecast started immediately after 
the mainshock, using parameters estimated for m ≥ 2 earthquakes 
that occurred between one month before and after the M L 6.8 Elazi ̆g 
earthquake occurred on 24 January 2020, in the same spatial region 
(see the yellow point in Fig. 1 ). All subsequent forecasts use only 
activity within 2023 as input for the parameter calibration to al- 
low for more localized and sequence-specific parameter estimates. 
The second forecast starts immediately after the largest aftershock 
(0.38 d after the mainshock) and the third after 0.5 d. Subsequent 
forecasts start at one to 30 d after the mainshock, in 1-d increments. 

Table 3 and Fig. 5 show the parameters resulting from the MLE 

of the ETASI model for the different starting times. In Fig. 5 , the 
result for the initial estimation is shown in grey, while the results 
for the data fit after the 2023 mainshock are colour-coded according 
to T s . The latter parameter estimates are found to be quite stable 
from the start, despite the high level of incompleteness of the input 
data. The coefficient of variation (the ratio between the standard 
deviation and the mean) is less than 6 per cent for r , α, p , T b and b ,
and larger only for K (21 per cent) and c (39 per cent). Ho wever , due 
to the positive correlation between c and p and the anticorrelation 
between K and α, the temporal decay (normalized to the first 100 d, 
Fig. 5 b) and especially the aftershock productivity as a function of 
the earthquake magnitude (Fig. 5 c) are very stable. The estimate for 
the 2020 Elazi ̆g sequence differs mainly in its lower scaling of the 
aftershock productivity with earthquake magnitude, corresponding 
to a lower α value of 1.05 compared to the values ranging between 
1.2 and 1.3 for the 2023 data. 

Our results show that the blind time T b is rather stable and esti- 
mated in the range 142–163 s. Thereb y, T b slightl y increases with 
T s with the smallest T b for the smallest data sets, which include 
the largest events ( T s = 0.38 and 0.5 d). Therefore, the result does 
not indicate an increase of T b with the event magnitude, which 
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Figure 5. (a) ETASI parameters as a function of the forecast start time T s , where the estimates are based on MLE using the input catalogue up to T s . (b) 
Normalized Omori–Utsu function and (c) the productivity relationship associated with these parameters, where colours refer to time as defined in (a). 
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ight be explained by the fact that detection algorithms usually
nvolve a fixed time window; such as in the case of the classical
hor t-ter m-average to long-term-average ratio (ST A/LT A) picker,
hich typically uses LTA windows around 30 s (Earle & Shearer
994 ). During this period, the arri v al of seismic waves related to a
receding e vent pre vents the picking of a smaller magnitude event
ithin the STA window. The distance-dependent delayed arri v al of
ifferent phases of the preceding events and path effects (scattering
f the wave field) can further extend the ef fecti ve blind time. These
spects do not directly depend on the magnitude and will set the
ower limit of the blind time for small events. A magnitude depen-
ence of the blind time might be related to the source duration.
onsidering the scaling of the rupture length L with magnitude and

ypical rupture velocities, L = 10 −2.44 + 0.59 M (Wells & Coppersmith
994 ), subsurface rupture length, all mechanisms) and assuming a
upture propagation of 2–3 km s −1 , this leads to a source duration
f 40–60 s for M = 7.7, about 5 s for M = 6, and about 1 s for an
 = 5 event. Thus, the effectiv e e xtension of the blind time due to

he magnitude effect may only be rele v ant for M > 7 events, and a
onstant blind time is a good overall approximation. 

Each 1-d forecast is made b y e v aluating 1000 Monte Carlo sim-
lations using the estimated ETASI parameters and the preceding
ctivity in 2023 as inputs. Specifically, we use the inverse transform
ethod for our Monte Carlo simulations of the ETAS model, where

nterevent times and magnitudes are randomly chosen from inhomo-
eneous Poisson and GR distributions (see, e.g. Felzer et al. 2002 ).
ere, the magnitude of each sampled earthquake in the forecast pe-
iod is randomly selected from the doubly truncated GR distribution
n the range [1.95, 8.0] with given b . Because the simulations are
ompared with incomplete observ ations, onl y the detectable events
re filtered in the output catalogues. Events following any larger
vent within the estimated value of T b are removed according to the
TASI assumption. In particular, for each simulated event ( t i , m i ),
ll subsequent events with m j < m i and t i < t j < t i + T b are marked
s unobservable and finally removed. The filtered output catalogues
re then e v aluated regarding the number of m ≥ 2 events and the
aximum magnitude in the forecast period. 
Due to the aforementioned problems in estimating b , alternative

orecasts are performed. The first one uses the b value estimated
y ETASI for each input data set. In contrast, the preferred second
pproach assumes a constant b = 1.07 for all forecasts, that is the b
alue estimated for the background activity between 2000 and 2022.
e also analysed the forecasts using the b -positive estimates of early

ftershocks within [0, T s ] for T s > 0 or the background b value for
 s = 0. For each forecast, the mean value and the 90 per cent
onfidence interval of the simulations are then compared with the
bser vations concer ning the number of m ≥ 2 earthquakes and their
aximum magnitude. To account for parameter uncertainties of

he ETAS model, we used Bayesian inference employing Markov
hain Monte Carlo (MCMC) for sampling the posterior parameter
istribution (see e.g. Shcherbakov et al. 2019 ). Here, we applied
he Metropolis-Hastings algorithm with flat priors and Gaussian
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Figure 6. Results of the pseudo-prospective forecast experiment: (a) number and (b) maximum magnitude of m ≥ 2 earthquakes within the next day as a 
function of the forecast starting time T s . In both panels, the black points refer to the observations and the curves with their 90 per cent-confidence intervals 
refer to the forecasts. Grey results refer to simulations based on the b value estimated by ETASI, while simulation results with the b value estimated from 

background events are shown in red. Dashed lines refer to the mean forecasts using b -positive estimates of early aftershocks within [0, T s ] for T s > 0 and the 
background b value for T s = 0. 
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proposals with a standard deviation of 0.05 of the maximum log- 
likelihood value. For each forward simulation, a set of parameters 
is randomly selected from the full posterior distribution. Ho wever , 
the results indicate that the uncertainties are mainly driven by the 
aleatoric uncertainties (intrinsic randomness of the magnitudes and 
trigger times), and the epistemic uncertainties are rather small; that 
is, Monte Carlo simulations with MLE lead to confidence intervals, 
which are only slightly smaller. 

Fig. 6 shows the results of the forecasting experiment. The pre- 
dicted numbers of detectable m ≥ 2 aftershocks are found to be 
al wa ys close to the real ones, even for the first forecasts where 
ETASI parameters are only estimated based on background events 
or pre-shocks with no or very limited and incomplete aftershock 
information. The forecasts with the different b value approaches 
yield similar results, and the forecasts with the background b value 
or b -positive estimates seem to be only slightly better. Ho wever , this 
changes significantly for the maximum magnitude ( M max ) forecast. 
Here, the forecasts based on the underestimated b values generally 
yield significantly overestimated M max values. In contrast, the fore- 
casts with fixed b = 1.07 and the similar forecasts with b -positive 
estimates agree with the observation in 29 out of 32 cases within 
the 90 per cent confidence interval. Note that three outliers are, on 
av erage, statistically e xpected in the case of the chosen confidence 
interv al. Howe ver, the mismatch of M max forecast for the first day 
may also be related to a sampling bias since the occurrence of the 
largest aftershock with a magnitude difference of only 0.1 is known 
to be rare. For the first day (and two other days), the forecast with 
underestimated b values fits better. 

6  D I S C U S S I O N  A N D  C O N C LU S I O N  

Early aftershock forecasting can be critical for risk reduction and 
response efforts. Due to the stochastic nature of the earthquake 
nucleation and propagation, statistical forecasts that provide prob- 
abilities and expectation values for earthquake occurrences are the 
best we can do so far. The standard ETAS model accounts for OU- 
type aftershock decay and secondary aftershock triggering, where 
the model parameters must be adjusted by data fits. Ho wever , earth- 
quake catalogues are highly incomplete in the first hours to days 
after a large event. Therefore, it is important to address the issue of 
catalogue incompleteness when fitting model parameters. 

Using a time-dependent threshold value, such as the empirical 
relationship derived for California (Helmstetter et al. 2006 ), is not 
recommended due to the influence of STAI even for larger events. 
Earthquakes are also missed in the upper magnitude range as in- 
dicated by the high level of the μ + 2 σ curve (OK93, Fig. 1 a) 
and the M c, 90% 

curve (ETASI, Fig. 2 b). Thus, parameter estima- 
tions must take into account the detection probability as a function 
of the earthquake magnitudes. The most sophisticated approach 
commonly used is first to estimate the time dependence of the de- 
tection probability using OK93 and then fit the OU or ETAS model 
(Omi et al. 2013 , 2016 ; Page et al. 2016 ). Ho wever , ETASI pro- 
vides a simpler, straightforward and closed-form formulation that 
ef fecti vel y accounts for catalogue incompleteness. ETASI assumes 
a blind time, denoted by T b . While this assumption may not be 
appropriate for semi-manual earthquake catalogues that lack con- 
sistent processing over time, it may be appropriate for automatically 
processed catalogues, such as those available in near-real time after 
a mainshock. 

Application of ETASI to the 2023 earthquake sequence in T ürkiye 
demonstrates its ability to accurately fit the data in terms of the num- 
ber and mean magnitudes of the aftershocks (Fig. 2 ). The temporal 
evolution of the full magnitude distribution is also generally well 
reproduced, indicating that the rate-dependent detection probabil- 
ity is appropriate. Only small deviations in the large magnitude 
tail indicate an underestimation of the b value for the early af- 
tershocks. Our analysis with the OK93 model confirms that the b 
v alue w as strongl y time-dependent, with v alues less than 0.8 be- 
fore the pre-shocks, then jumping to values of about 1.0 and 1.2 
after the mainshock and the largest aftershock, respecti vel y. Then, 
within the first 10 d of the aftershock sequence, the b value returned 
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lmost to the pre-mainshock level, with values scattering around
.85 after that. The latter value is consistent with the ETASI esti-
ate, assuming a constant b value. 
Our retrospective forecast experiment shows that the daily num-

er of m ≥ 2 earthquakes can be well predicted based on the limited
nd highly incomplete information from early aftershocks. How-
ver, the maximum magnitude of the earthquakes within the next
4 hr would have been overestimated using the ETASI-estimated b
alue. This overestimation is probably related to the time-dependent
nd significantly increased b values for early aftershocks. The M max -
orecasts are significantly improved when using the b value esti-
ated for the regional earthquake that occurred in the preceding

000–2022 period or, similarly, using b -positive estimates with
igh � m c for early aftershocks. Thus, it is crucial to use an ap-
ropriate estimation of the b value to accurately predict M max , and a
romising future approach would be to combine ETASI with a time-
ependent estimation of b to improve the forecasting capabilities
urther. 
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ATA  AVA I L A B I L I T Y  S TAT E M E N T  

he earthquake data can be downloaded from https://deprem.afad.
ov.tr/event-catalogue . We downloaded the 2023 data on 8 March
023 and the 2000–2022 catalogue on 21 April 2023 in csv format.
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