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Abstract: The rapid and accurate detection of forest disturbances in temperate forests has become in-
creasingly crucial as policy demands and climate pressure on these forests rise. The cloud-penetrating
Sentinel-1 radar constellation provides frequent and high-resolution observations with global cov-
erage, but few studies have assessed its potential for mapping disturbances in temperate forests.
This study investigated the sensitivity of temporally dense C-band backscatter data from Sentinel-1
to varying management-related disturbance intensities in temperate forests, and the influence of
confounding factors such as radar backscatter signal seasonality, shadow, and layover on the radar
backscatter signal at a pixel level. A unique network of 14 experimental sites in the Netherlands was
used in which trees were removed to simulate different levels of management-related forest distur-
bances across a range of representative temperate forest species. Results from six years (2016–2022)
of Sentinel-1 observations indicated that backscatter seasonality is dependent on species phenology
and degree of canopy cover. The backscatter change magnitude was sensitive to medium- and
high-severity disturbances, with radar layover having a stronger impact on the backscatter distur-
bance signal than radar shadow. Combining ascending and descending orbits and complementing
polarizations compared to a single orbit or polarization was found to result in a 34% mean increase in
disturbance detection sensitivity across all disturbance severities. This study underlines the impor-
tance of linking high-quality experimental ground-based data to dense satellite time series to improve
future forest disturbance mapping. It suggests a key role for C-band backscatter time series in the
rapid and accurate large-area monitoring of temperate forests and, in particular, the disturbances
imposed by logging practices or tree mortality driven by climate change factors.

Keywords: Sentinel-1; C-band; forest disturbance; low-intensity; temperate; monitoring

1. Introduction

Temperate forests are important to society for wood provision, CO2 sequestration,
and biodiversity conservation [1]. New policies, such as those outlined in the 2030 Forest
Strategy [2] and the Renewed Forest Bioeconomy Framework for Canada [3], impose
steadily growing demands from forests in the future, for example, by promoting timber
as a sustainable building material. Such demands are challenged by climate change and
associated extreme events such as droughts, storms, and fires, which are increasing the
frequency of forest disturbances [4–8] and threaten multiple services that forests provide
to society, such as wood and bioenergy [9–11]. Traditional large-scale national forest
monitoring methods such as national forest inventories (NFIs) are highly accurate, but their
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5–10-year measurement intervals hinder the monitoring of forest disturbances at annual
or smaller time scales. Remote sensing has the potential to monitor forest disturbance
dynamics at such finer temporal scales but still involves large uncertainties because the
sensitivity of many remote sensing methods to small-scale temperate forest disturbances
remains understudied [12,13]. Recently, optical satellite platforms (e.g., Landsat and
Sentinel-2) have been used to monitor temperate forest disturbances [9,14–18], but these are
greatly affected by cloud cover [19]. In the case of radar-based systems, forest disturbance
detection using the L-band has been well-studied, as the ~23 cm wavelength partially
penetrates canopy foliage [20–23] and can be used to detect changes in the spatial density
of branches and stems [24]. However, the low availability of temporally dense L-band
data has hindered operational implementation. The use of C-band radar is limited by
its predominant sensitivity to changes in the top layer of forest canopy due to its shorter
wavelength of ~5 cm [24]. Nevertheless, it has been successfully used for disturbance
detection by exploiting frequent observations and high spatial resolutions [21,25,26].

The current abundance of freely accessible C-band radar data from the Sentinel-1
platform has facilitated its extensive application for large-area detection of forest distur-
bances since 2015, particularly in tropical regions [21,26–28]. A high temporal resolution at
temperate latitudes (~2–3 day revisit interval with two operational satellites), combined
with an existing archive of ~8 years of data, provides an opportunity for radar-based forest
monitoring to be studied and implemented in temperate forests as well. Several studies
have shown promising applications for Sentinel-1 in temperate forests, such as the detection
of windthrow [29], clearcutting [30], thinning [31], and fires [32,33]. However, these studies
do not fully address pixel-level sources of uncertainty related to disturbance detection
in temperate forests, such as partial canopy cover removal, species-specific backscatter
seasonality, and radar shadow and layover effects. Several challenges remain unexplored
and hamper wide-area monitoring.

First, temperate forests are often intensely managed and highly fragmented [34]. Radar-
based disturbance detection methods in the tropics focus mainly on detecting clear binary
removal of trees from otherwise continuous canopy cover [26,28,35–37]. In temperate
forests such as those in Europe and North America, canopy cover and structure vary
greatly due to differing forest ages and management regimes, despite the existence of large
areas dominated by a single species [34,38,39]. Yet, the sensitivity of temporally dense
Sentinel-1 C-band backscatter to the fragmented canopy cover of temperate forests remains
largely unexplored.

Second, daily and seasonal variability in environmental conditions and associated
leaf habit-related phenological patterns in the canopy play a large role in temperate forest
disturbance monitoring. The radar signal is inherently sensitive to changes in the moisture
content of soil and vegetation, which can affect the scattering and attenuation properties
of the forest canopy, leading to a large degree of inter-observational variability [31,40,41].
The variation can be mitigated by, for example, averaging subsequent observations [42,43].
Seasonal variability is also a major obstacle [44] since C-band radar is sensitive to changes
in canopy foliage density and moisture content [42,45–47]. Species-specific phenological
patterns could, therefore, complicate disturbance detection. This has been studied over
large areas of homogenous cover [42,46,47] and mixed forests [48,49]. However, it is not
understood how species-specific backscatter seasonality and canopy cover at a pixel level
could influence radar signal sensitivity to disturbances.

The effectiveness of radar data can also be limited by the side-facing viewing geometry
of the satellite platform in combination with the spatial arrangement of objects on the
ground, leading to geometric distortions. In the case of completely opaque targets, geomet-
ric distortions present themselves as a complete elimination (shadow) or overlap (layover)
of the backscattered signal [50]. Radar shadow and layover can reduce the number of
usable observations over mountainous terrain or in areas with high coverage of opaque
targets. In the context of non-opaque targets such as forest canopies such as in our study,
these distortions are not as severe and are known to only result in a partial diminishing
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(shadow) or amplification (layover) of the backscattered signal [51]. The detection of forest
degradation over large areas was hypothesized to be linked to radar shadowing in small
canopy gaps [28]. Further studies have aimed to use the presence of radar shadow to detect
both small- and large-scale disturbances in tropical forests [37]. It has been theorized that
layover is not of great interest or that the effects of shadow and layover cancel each other
out in small gaps [24,36,37]. Studies often do not account for shadow or layover [29,31],
sometimes even making no distinction between ascending and descending orbits [30].
Overall, it is unknown to what degree radar shadow and layover effects hinder the accurate
detection of small-scale forest disturbances.

This study aims to explore the potential of C-band backscatter from Sentinel-1 for
monitoring management-related forest disturbances in temperate forests. The emphasis
lies on the characterization of the signal sensitivity to varying forest disturbance severities
and the effect of confounding factors, including species- and canopy cover-specific radar
signal seasonality and shadow/layover at a pixel level, rather than the timely detection
of these events. This was done by utilizing a network of 14 experimental forest sites in
the Netherlands, in which trees were removed (treatments) in February–March 2019 to
simulate different management-related forest disturbances [52,53] for forests dominated by
a broadleaved deciduous tree species (European beech) or coniferous tree species (Scots
pine, Douglas fir). We define disturbance as loss of fractional canopy cover over a defined
area at the minimum unit of measurement [5,13], in this case, the footprint of one 10 × 10 m
Sentinel-1 pixel. We use intensity when describing the magnitude of the treatments at the
site level and, therefore, consider a low-intensity disturbance as a discrete event in time in
which tree mortality occurs but without being completely stand-replacing. We translate the
intensity of the treatment at the site level to disturbance severity at a pixel level in the form
of canopy cover loss [54].

Our forest experimental set-up was combined with high-quality LiDAR- and structure-
from-motion-based datasets, revealing the precise location of disturbances at the site level.
By overlaying these canopy cover layers with the Sentinel-1 10 × 10 m pixel grid, analyses
could be performed based on canopy cover and canopy cover loss at Sentinel-1 pixel level
at an unprecedented level of detail, allowing for a local-level scientific underpinning for the
future development of large-area monitoring approaches. We aim to assess the sensitivity
of temporally dense Sentinel-1 C-band backscatter to management-related disturbances
by studying:

1. The sensitivity of C-band backscatter to species-specific seasonality and canopy cover;
2. The effect of radar shadow and radar layover on canopy cover loss-related C-band

backscatter change;
3. The sensitivity of C-band backscatter to disturbance severity for different monitoring

scenarios (ascending/descending orbits and VV/VH polarization).

2. Study Area and Data
2.1. Study Area and Experimental Sites

The forest study sites are located in the Netherlands, which is characterized by a
temperate oceanic climate with an equally distributed yearly average precipitation of
850 mm. Temperatures are mild, with the highest average temperatures occurring in July
(18 ◦C) and the lowest average temperature in February (0.7 ◦C). Approximately 11% of the
total land area of the Netherlands is covered by forest [55]. The forest is highly fragmented
on a local and landscape level, managed in some form, and consists of mainly broadleaved
deciduous- and coniferous-dominant forest types [55]. The forest in the Netherlands is
transitioning from even-aged, monocultural stands toward a higher proportion of mixed
forests [55]. Dutch forests are, therefore, relatively diverse in age, composition, management
strategies, and spatial configuration.

This study makes use of a forest experiment initiated in 2019, in which fifteen ~1 ha
experimental sites were established in even-aged monoculture stands on poor sandy
soils within the Netherlands [52,53]. Three dominant tree species are included in the
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experiment, with each species accounting for five of the fifteen sites: European beech (Fagus
sylvatica), Scots pine (Pinus sylvestris), and Douglas fir (Pseudotsuga menziesii). Fourteen of
the fifteen sites were used; one of the sites (Beech) could not be used due to insufficient
drone imagery quality. The sites vary in stem density, height, biomass distribution, and
crown size/shape, depending on the site species, the tree age, and the management history
(Table 1). Each site is comprised of four 50 × 50 m sub-sites, in which four different stand
density treatments were carried out, which simulate common forest management practices:
clearcut, shelterwood, high-thinning, and control. These represent removal of basal area
of approximately 100%, 80%, 20%, and 0%, respectively (Figure 1), resulting in a varying
pixel-level disturbance severity, even within the same sub-site. The ~0.25 ha sub-sites are
not always arranged in a similar fashion but are located as close as possible to one another
(Figure 1). The treatments were carried out between 18 February and 15 March 2019, with
each treatment implementation lasting between one and three days. During the treatment
implementation, the stems were immediately removed from the sites. Further details on the
experimental set-up can be found in Vos, de Boer, et al. [52] and Vos, den Ouden, et al. [53].
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Figure 1. Distribution of the 14 ~1 ha experimental sites throughout the forested land cover in the
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Table 1. Species-specific site characteristics pre-treatment [52,53]. Stand density includes trees with
diameter at breast height (DBH) > 10 cm. The median stand density was calculated rather than
the mean as the density distribution of the Beech sites was heavily skewed. Modeled tree biomass
distribution represented as mean percentage ± mean relative standard error, as these were originally
split into sub-categories of ‘stem’ and ‘branch’. No information is available for the mean biomass
proportion of Beech foliage, as measurements were carried out in the leaf-off season.

Species
Sites

Median Stand
Density

Mean
Height Mean Age

Tree Biomass Distribution [%]

Tree CharacteristicsStem Branches Foliage

n n/ha m Years % % %

Beech 4 240 22.9 73 71.2 ± 3.9 29.1 ± 3.8 -

Broadleaved deciduous,
6–10 cm long oblong
leaves, 5–15 m crown

diameter, round/oblong
crown shape.

Douglas fir 5 150 35.8 68 89.3 ± 4.3 10.5 ± 1.5 1.8 ± 0.2

Coniferous, 1.5–3.5 cm
long needles arranged in

two rows along each
twig, 5–10 m crown

diameter, conical
crown shape.

Scots pine 5 450 18.5 57 78.4 ± 5.2 21.0 ± 2.4 3.6 ± 0.4

Coniferous, 3–7 cm long
needles in bundles of 2,
2–5 m crown diameter,

conical/ovoid
crown shape.

2.2. Data
2.2.1. Digital Surface Model

In order to estimate the level of canopy cover at high resolution over each site, reference
canopy cover maps were necessary for each of the 14 experimental sites for both the pre-
and post-treatment periods. The pre-treatment canopy cover map was based on the Digital
Surface Model (DSM) product from the third Algemeen Hoogtebestand Nederland (AHN),
the Dutch Current Elevation Map. The AHN is a LiDAR-based aerial survey carried out
over the Netherlands approximately every five years, with a native resolution of 0.5 m.
The data from the third AHN (AHN3) used were acquired between November 2016 and
March 2018. The post-treatment map was based on a drone-based photogrammetric nDSM
(normalized Digital Surface Model), which had been acquired together with multispectral
imagery over the sites in the months following the treatments (May–September 2019) and
provided relative heights. This imagery had a native resolution of approximately 0.05 m.

2.2.2. Sentinel-1 Radar

Sentinel-1 A/B Synthetic Aperture Radar (SAR) Ground Range Detected (GRD) data
were acquired for the period between January 2016 and April 2022 via the Google Earth
Engine (GEE) platform [56]. These data were acquired in Interferometric Wide swath mode
in VV and VH polarizations at a resolution of ~20 m (multilook factor of 5 in range direction)
with a pixel spacing of 10 m. The incidence angles varied between 31◦ and 45◦. An in-depth
description of the pre-processing of the radar data can be found in Appendix A.

For the analyses related to the first objective (Sections 3.2 and 3.3), the full radar time
series was further divided into two sub-time series based on the timing of the treatment
implementation in the experimental sites (Figure 2). A pre-treatment time series was defined
as all observations between January 2016 and January 2019. No further observations were
used in 2019 in order to ensure a roughly equal number of monthly observations across
all pre-treatment years and no overlap with the occurrence of the treatments. Similarly, a
post-treatment time series was defined as the three-year period between April 2019 and
April 2022.
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Figure 2. Workflow schematic. Section 3.1: overview of the processing of reference data and
parameters used. Sections 3.2 and 3.3: assessment of occurrence of species-specific seasonality and
sensitivity of backscatter to canopy cover (objective i). Section 3.4: testing for a significant effect of
canopy cover loss on the entire time series and the additional impacts of shadow and layover on the
backscatter change magnitude (objective ii). Section 3.5: Implementing simple monitoring scenarios
to highlight implications for future monitoring efforts (objective iii).

3. Methods

This study focused on assessing the sensitivity of Sentinel-1 backscatter to canopy
cover loss severity while taking the effects of radar seasonality, shadow, and layover into
account. Figure 2 provides an overview of the pre-processing and analyses performed.

3.1. Preparation of Reference Data

Canopy cover layers were derived from the AHN3 DSM and drone-based nDSM for
pre- and post-treatment periods. Shadow and layover coverage were estimated using the
post-treatment canopy cover and observation-specific Sentinel-1 incidence and look angles
(Figure 2). A full description of the methods used to generate these layers can be found
in Appendix A. The Sentinel-1 pixel grid was overlaid with the pre- and post-treatment
canopy cover, shadow, and layover layers, providing an estimate of fractional cover for
every Sentinel-1 pixel. All parameters derived at a pixel-level can be found in Table 2.
Only pixels were selected which were either located entirely within a sub-site or located
on the border between two sub-sites. This was done to ensure each pixel represented the
tree species of the site in which it was located. In addition, each pixel was assigned a
canopy cover class per time period used for further statistical analysis (Table 3). We used
classes of canopy cover for two reasons: First, the resampling of each Sentinel-1 image to a
common grid introduces a degree of uncertainty in the exact location of each pixel. Each
original image could theoretically exhibit an offset of ~5 m from the resampled common
grid, introducing minor variations in canopy cover between image acquisitions. Secondly,
there was an unbalanced distribution of canopy cover due to the design of the experiment.
Pixels with very high (>90%) and very low (<10%) degrees of canopy cover were more
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prevalent than pixels with partial cover (10–50% and 50–90%). Therefore, it was chosen
to use broad classes of canopy cover when performing statistical analysis to determine
significant differences between high and low-cover pixels (Table 3).

Table 2. All parameters derived at Sentinel-1 pixel level. * Note: these are the absolute maximum and
minimum values; the noise equivalent sigma zero is ~−22 dB [57].

Parameter Symbol Description Range

R
ad

ar

VV Backscatter
coefficient γ0VV Ground range detected radiometrically

terrain-corrected backscatter coefficient in
vertical–vertical (VV) and vertical–horizontal

polarizations (VH), respectively.

~−50 to 1 [dB] *
VH Backscatter

coefficient γ0VH

C
an

op
y

Canopy cover
pre-treatment CCPre Tree canopy cover as a percentage of total

Sentinel-1 pixel area before and after date of
treatment, respectively.

0 to 100 [%]
Canopy cover
post-treatment CCPost

Canopy cover loss ∆CC

Difference in pre- vs post-treatment canopy
cover as a percentage of total Sentinel-1

pixel area:
∆CC =CCPost − CCPre

0 to 100 [%]

G
eo

m
et

ri
c

ef
fe

ct
s

Layover coverage L Layover cover as a percentage of total
Sentinel-1 pixel area. 0 to 100 [%]

Shadow coverage S Shadow cover as a percentage of total
Sentinel-1 pixel area. 0 to 100 [%]

Relative layover
fraction LRel

Layover normalized by post-treatment
non-canopy cover:
LRel =

L
100 − CCPost

0 to 1

Relative shadow
fraction SRel

Shadow normalized by post-treatment
non-canopy cover:
SRel =

S
100 − CCPost

0 to 1

Relative
layover-shadow

fraction
LS

Relative layover fraction minus relative
shadow fraction:
LS = LRel − SRel

−1 to 1

Table 3. Overview of periods by which the time series were split. Pre- and post-treatment time
periods were chosen so that each calendar month was included an equal number of times. ‘Combined
orbits’ refers to the aggregation of observations at a data level regardless of orbit direction.

Period Canopy Parameters Canopy Cover Classes Orbit-Polarization
Combinations

Pre-treatment:
1 January 2016–1 January 2019 CCPre >90% VV-combined orbits

VH-combined orbits

Post-treatment:
1 April 2019–1 April 2022 CCPost <10%, 10–50%, 50–90%, >90%

VV-ascending
VV-descending
VH-ascending

VH-descending

Entire:
1 January 2016–1 April 2022 ∆CC

<10%, 10–20%, 30–40%,
40–50%, 50–60%, 60–70%,

70–80%, 80–90%, >90%

VV-ascending
VV-descending
VH-ascending

VH-descending
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3.2. Assessing Species-Specific Backscatter Seasonality

The pre-treatment backscatter time series per tree species was analyzed to determine if
seasonal C-band Sentinel-1 backscatter patterns differed over closed forests for tree species
varying in seasonal phenological patterns. It was hypothesized that monthly backscatter
values would differ significantly per species while inter-yearly monthly backscatter values
within the same species would not.

Only pixels with a CCPre > 90% in the pre-treatment time series were used (Table 3).
The mean backscatter per month was calculated and aggregated over ascending and
descending orbits for the entire pre-treatment period. This resulted in 36 mean backscatter
values for each pixel. A linear mixed model (LMM) that predicts mean backscatter levels
was fit using the lmerTest package (v3.1.3) in R (v4.2.1) [58]. This method is used for
longitudinal, non-independent data and allows for their correction by introducing random
effects [59,60]. Tree species, month, and year were used as fixed effects, and pixel ID and
Site ID as random effects, where pixel ID was implicitly nested within the sites. The local
conditions of each site were assumed to introduce random variation which needed to
be controlled for, while the pixel ID needed to be identified for repeated measurements.
An analysis of variance was then performed, followed by the calculation of relative effect
magnitudes of the fixed effects (partial eta squared) using the effectsize package (v0.8.6) [61].
This was done to establish if intra-yearly variation in mean backscatter was significant when
considering inter-yearly fluctuations. Multiple comparisons of yearly means between tree
species using the Tukey method were performed using the multcomp package (v1.4.17) [62].
Finally, the significance of differences in estimated marginal means between tree species
per month was calculated using the emmeans package (v1.6.2.1) [63,64].

3.3. Assessing Backscatter Sensitivity to Canopy Cover

In order to determine the effect of canopy cover on seasonal backscatter, the post-
treatment time series was analyzed. This was used instead of the pre-treatment period,
as the sites exhibited virtually full coverage before the occurrence of the treatments
(Appendix B). It was hypothesized that the radar backscatter would differ throughout the
year based on the post-treatment remaining canopy cover (CCPost) and on tree species.
Each pixel was considered to have four separate time series observations, keeping both
the polarizations and orbits separate since shadow and layover caused by the absence of
surrounding canopy cover could be of influence. The backscatter time series of the pixels
were filtered to include only the post-treatment time period, aggregated on a monthly basis,
and divided into four classes based on CCPost (Table 3). An LMM was fit per species, using
the mean backscatter as a dependent variable, month, CCPost class, and orbit as fixed effects,
and pixel ID and Site ID as (nested) random effects. Multiple comparisons of means were
performed on the CCPost classes, followed by a comparison of estimated marginal means
on a monthly basis.

3.4. Assessing Backscatter Sensitivity to Canopy Cover Loss and the Effects of Shadow and Layover
3.4.1. Backscatter Sensitivity to Canopy Cover Loss

The significance of the treatment at a pixel-level (canopy cover loss) was estimated
using a causal inference approach, mimicking an operational monitoring set-up under ideal
conditions in which the exact date, location, and severity of a disturbance were known. This
was done by modeling the temporal trajectory of the backscatter for each pixel, polarization,
and orbit direction using the entire time period (2016–2022). In total, this resulted in four
polarization- and orbit direction-specific time series per pixel (Table 3).

The causal inference with Bayesian structural time series was carried out using the
CausalImpact package (v1.2.7) [65]. The main output of this method is an estimation of the
significance of a treatment at a known point in time. This differs from methods focused
on detection, in which the probability of occurrence of an event at an unknown point in
time is predicted. The treatment significance is obtained by modeling the post-treatment
time series for many iterations based on the pre-treatment time series [65]. In addition, a
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set of correlated synthetic control time series that were unaffected by the treatment can
be added to the model [65]. The model then compares the modeled range of probable
post-treatment time series with the observed post-treatment time series, producing an
estimate of significance. The advantage of causal inference, in which a synthetic control is
constructed for each pixel, over simply using the mean of the undisturbed control pixels to
estimate treatment significance is that the analysis can be focused on the temporal trajectory
of the pixel of interest only. This means the significance can be determined for each pixel
separately rather than in relative terms to others, which is the framework used by many
operational disturbance monitoring algorithms [17,26]. In turn, the undisturbed control
pixels can be used to validate that the model assumptions have been met [65].

Each time series was averaged by month in order to reduce variability introduced
by potential Sentinel-1 geolocation errors, resampling artifacts, or environmental influ-
ences. Each pixel was assigned a canopy cover loss (∆CC) class (Table 3). The treatment
date per pixel was set to the month following the occurrence of the treatment. Three
correlated synthetic control time series per pixel were acquired from the ERA5-Land
hourly climate reanalysis dataset, aggregated on a monthly basis, and used as confounding
variables: skin reservoir content, daily minimum temperatures, and snow depth (where
snow depth > 0.01) [66]. These values were found to be correlated to fluctuations in the
radar signal since radar is sensitive to changes in moisture content and temperatures
in soil and vegetation [31,40,67,68]. Each value was calculated using only dates corre-
sponding with co-occurring radar observations. The causal inference was applied to each
time series separately, using the following parameters: nseasons = 2, season.duration = 6,
prior.level.sd = 0.2, alpha = 0.05, and n_it = 1000. The seasonal parameters were chosen
based on the expectation that the non-affected backscatter time series would follow a
seasonal pattern with distinct summer and winter periods based on the results of the
methodology presented in Section 3.2. The prior.level.sd parameter was chosen conserva-
tively so that a maximum of ~10% of pixels with ∆CC of <10% were classified as having
exhibited a significant change as a result of the treatment.

3.4.2. Effects of Shadow and Layover

We assessed the effects of shadow and layover on backscatter change magnitude (the
difference between pre- and post-treatment mean backscatter values per pixel, ∆γ0). It was
hypothesized that besides canopy cover loss, shadow, and layover potentially influence
mean post-treatment backscatter levels, thereby affecting the significance of a treatment.
Weighted linear regressions were performed predicting ∆γ0 using different combinations
of ∆CC, Srel, and Lrel using observation variances as weights and combined with the causal
inference modeling estimates of treatment significance at a pixel level. Four models per
species and polarization were fit, with each model employing a different set of independent
variables. A base model was fit using only ∆CC as the independent variable. Two models
were fit using Srel and Lrel separately, and a full model was fit utilizing both variables
and their interaction effects. Adjusted R2 values were derived per model. In addition,
adjusted partial R2 values were calculated for Srel and Lrel separately, as well as for both
combined [69]. This was done by fitting full and reduced versions of the regression models
using the rsq package (v2.5) [70]. The adjusted partial R2 represents the fraction of variance
in the full models not explained by the reduced model.

3.5. Monitoring Scenarios

Monitoring scenarios were established in order to explore the potential benefits to
detection sensitivity of combining polarization and orbit information over relying on
one polarization or orbit direction only. Combining orbit and polarization information
is often used in the detection of forest disturbances [26,28]. In addition to increasing the
number of available observations, it also allows for the mitigation of the effects of shadow
and layover [36,37]. Nine scenarios were established with all combinations of orbit and
polarization. No differentiation was made between species since relatively few observations
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were available at 30–70% ∆CC levels. The 4 baseline scenarios (A1, A2, B1, B2) represent
each pixel by single orbit and polarization. The 5 additional combined scenarios (A3, B3, C1,
C2, C3) incorporate information from multiple orbits and/or polarizations. In the baseline
scenarios, each significant treatment occurrence was thus acknowledged independently.
In the combined scenarios, the treatment was regarded as significant if one or more of the
input time series was identified as having been significantly affected by the treatment.

The mean fraction of pixels that were identified as affected by the treatment (p < 0.05)
was derived per ∆CC class for each scenario. Bootstrap sampling was applied with 1000 it-
erations per class to obtain 95% confidence intervals. In order to determine which classes
experienced significant changes in fractions, pairwise McNemer chi-squared tests were
applied per ∆CC class between combined and non-combined scenarios using the rstatix
package (v0.7.0) [71].

4. Results
4.1. Backscatter Sensitivity to Species-Specific Seasonality

A seasonal backscatter pattern was visible for each of the three studied tree species.
Beech pixels in VH polarization displayed a clear seasonal response, with relatively high
values in winter (November–April) compared to the summer months (May–October)
(Figure 3). This resulted in a maximum mean difference of ~1.4 dB between the summer
and winter months in VH polarization. In VV polarization, the seasonal differences were
smaller for Beech, at only ~0.6 dB. In contrast, the Douglas fir and Scots pine exhibited
an opposite seasonal response, with higher backscatter values in the summer months and
lower values in the winter. These seasonal differences were more pronounced for Douglas
fir (VH = ~1.6 dB, VV = ~1.2 dB) than Scots pine (VH = ~0.8 dB, VV = ~0.6 dB), which
showed relatively little seasonal variation throughout the year.
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Figure 3. The calendar month mean backscatter values per tree species for the period 1 January
2016–1 January 2019 in vertical–vertical (VV) and vertical–horizontal (VH) polarizations. γ0 denotes
the backscatter coefficient. The gray bars depict the 95% confidence intervals. N pixels = 192, 179, 229
for Beech, Douglas fir, and Scots pine, respectively.
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There was a significant difference overall between Scots pine and the other species
(p < 0.05) in VV and between Douglas fir and Beech in VH polarization (p = 0.02). On a
monthly basis, the significance varied, with marginal differences occurring, especially in
summer months in both polarizations (Appendix C). The effect sizes of year and its interac-
tion terms were smaller than the effect sizes of other fixed effects and their interaction terms,
indicating that species- and month-dependent variations in backscatter were significant
despite inter-yearly fluctuations in backscatter (Appendix D).

4.2. Backscatter Sensitivity to Canopy Cover

The mean backscatter of all classes of post-treatment canopy cover (Table 3) differed
significantly with the exception of the >90% and 50–90% categories. These differences were
marginal for all species and both polarizations. Seasonal patterns in the post-treatment
period varied according to the level of canopy cover represented by each pixel (Figure 4).
For Beech pixels, lower CCPost was related to an amplification of the seasonal (summer:
low, winter: high) backscatter pattern occurring at full canopy cover. The maximum
summer–winter difference in mean VH backscatter levels at CCPost > 90% in Beech pixels
was ~−1.7 dB, compared to ~−2.5 dB at CCPost < 10%. The seasonal backscatter patterns
of Douglas fir and Scots pine (summer: high, winter: low) tended to diminish or even
invert at higher CCPost levels. The maximum summer–winter difference in Scots pine in
VH at CCPost > 90% was ~ 0.8 dB, compared to ~−2.0 dB at CCPost < 10%. As a result, the
seasonal patterns of all species tended toward a ‘summer: low, winter: high’ pattern at
lower CCPost levels, regardless of their initial states. The differences between estimated
marginal means on a monthly basis could not always be established significantly, especially
in winter months for Beech and Scots pine in VV, where differences across the two levels
were not significant (Figure 4).
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Figure 4. The calendar month median backscatter values for differing levels of post-treatment canopy
cover (CCPost). These were calculated over the period 1 April 2019–1 April 2022 for all species
in vertical–vertical (VV) and vertical–horizontal (VH) polarizations. γ0 denotes the backscatter
coefficient. The gray bars depict the 95% confidence intervals. N pixels = 259, 357, 343 for Beech,
Douglas fir, and Scots pine, respectively.
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4.3. Backscatter Sensitivity to Canopy Cover Loss and the Effects of Shadow and Layover

The sensitivity to canopy cover loss and the effects of shadow and layover effect are
interwoven to a great degree in the case of small-scale, low-intensity disturbances. As
such, these factors cannot be assessed on an individual basis. Figure 5 illustrates this
interwovenness using an example from a Scots pine site (Appendix B, Figure A9) in which
three 10 × 10 m Sentinel-1 pixels are selected. Pixel A did not experience canopy cover
loss (∆CC = 0%, CCPost = 100%), while pixel B (∆CC = 67.8%, CCPost = 0%) and pixel
C (∆CC = 94%, CCPost = 0%) experienced complete canopy cover loss. The backscatter
change magnitude (∆γ0) was low for pixel A, and it was therefore not deemed significantly
affected. Pixel B experienced a drop in ∆γ0 in both orbits and was significantly affected,
as it was likely not influenced by layover and shadow in the middle of the clearing. In
contrast, pixel C was located at the edge of the clearing and, therefore, likely affected by
layover in the ascending orbit and by shadow in the descending orbit. As a result, it was
deemed significantly affected by the treatment (canopy cover loss) in the descending orbit
but not in the ascending orbit.
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Figure 5. Causal inference results for three Scots pine pixels located at the same site, where (A) expe-
rienced no canopy cover loss, (B) experienced canopy cover loss with no shadow or layover effects,
and (C) experienced canopy cover loss and orbit-dependent shadow and layover effects. Only VH
polarization is shown. The dotted red line represents the treatment date at this site (March 2019).
The black dashed line represents the backscatter coefficient (γ0) as modeled by the CausalImpact
package. The solid line represents the observed monthly averaged γ0. The gray area delineates the
95% CI. LS denotes the relative layover-shadow fraction. LS > 0 represents layover effect-dominated
pixels, while LS < 0 represents shadow-dominated pixels. The viewing geometry of the radar system
is displayed in the top left corner of each inset map. Azimuth is the along-path viewing angle, while
range is the cross-path viewing angle.

Across all pixels, a negative relationship was found between ∆CC and ∆γ0 (Figure 6).
The mean ∆γ0 at 100% ∆CC was estimated to range from −2.5 dB (±0.3 dB) to −3.1 dB
(±0.4 dB) in VH and −1.7 dB (±0.4 dB) to −2.3 dB (±0.4 dB) in VV using the baseline
models (without the inclusion of shadow and layover variables). At 50% ∆CC, mean ∆γ0
ranged from −1.2 dB (±0.2 dB) to −1.8 dB (±0.2 dB) in VH and −0.7 dB (±0.2 dB) to
−1.1 dB (±0.2 dB) in VV. Across both polarizations, Scots pine exhibited the smallest drop
in mean ∆γ0. Beech and Douglas fir did not significantly differ from one another.
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Figure 6. Scatterplots depicting the relationship between canopy cover loss (∆CC) and mean backscat-
ter magnitude difference between pre- and post-treatment periods (∆γ0). Each pixel is represented
by two points, one for each orbit direction. Each point is thus the result of one CausalImpact model
run. No significant effect of canopy cover loss was found for the ‘hollow’ points. The colors represent
the relative fraction of shadow and layover (Srel and Lrel). The black line represents the fit of the base
linear models using only ∆CC as the independent variable. Values in the bottom left of each plot
represent the adjusted R2 of the base model and the full model.

The greatest base model R2 values were found for Scots pine and Beech pixels in VH
polarization (Figure 6). In general, a greater proportion of variance was explained in VH
than in VV polarization. However, the unexplained variance in both polarizations was
relatively high (VV: 66–65%, VH: 62–50%), especially at greater (>75%) ∆CC levels. Fitting
full models, including both shadow and layover effects (Srel, Lrel), and their interaction
with ∆CC (Figure 6) increased R2 values. It was observed that Srel tended to be related
to greater magnitudes of ∆γ0, while Lrel tended to be related to smaller magnitudes of
∆γ0 (Figure 6). The increased ∆γ0 related to high Lrel values resulted in canopy cover loss
failing to be recognized as significant by the causal inference methodology.

Adjusted partial R2 values were greater for Lrel than for Srel (Table 4). However, Srel
was not found to be significant on its own when added to the base model, while Lrel was
only insignificant in the case of Beech. Still, the interaction effects between Srel and Lrel
and ∆CC were significant in many cases, while the main effect was not, indicating some
explanatory power. Both Srel and Lrel were found to be significant when added in tandem,
with the exception of Srel for Douglas fir in VH. The additional explained variance was
greater in VV than in VH polarization in all cases except for Lrel Scots pine in VH.
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Table 4. Overview of adjusted partial R2 values and coefficient significance per full model. The
adjusted partial R2 represents the fraction of variance in the full models not explained by the base
model (using only ∆CC). Significant (p < 0.05) coefficients within each full model are indicated by
an *. All models were significant overall.

Model Species Polarization
Coefficient Significance Adjusted

Partial R2Srel Srel × ∆CC Lrel Lrel × ∆CC

Combined (Srel, Lrel)

Beech

VV

* - * * 0.33

Douglas fir * - * * 0.21

Scots pine * - * * 0.39

Beech

VH

* * * * 0.24

Douglas fir - - * * 0.15

Scots pine * * * * 0.37

Shadow only (Srel)

Beech

VV

- * 0.05

Douglas fir - * 0.07

Scots pine - * 0.06

Beech

VH

- - 0.00

Douglas fir - * 0.05

Scots pine - - 0.01

Layover only (Lrel)

Beech

VV

- * 0.27

Douglas fir * * 0.17

Scots pine * * 0.34

Beech

VH

- * 0.22

Douglas fir - * 0.13

Scots pine * * 0.35

4.4. Monitoring Scenarios

The results for the nine monitoring scenarios (Figure 7) indicated that combining
polarization and orbit information at a monitoring level could improve the significance
fractions (hereafter referred to as ‘sensitivity’) compared to the sensitivity of each polariza-
tion or orbit individually. The combination of polarizations (scenarios A3 and B3) increased
the sensitivity by 0.08 (ascending) and 0.07 (descending) on average, corresponding to
mean relative increases of ~22% and ~18%. The largest increases of 0.14 (~21%) and 0.13
(~16%) were observed in the 50–60% (ascending) and 60–70% (descending) ∆CC categories,
respectively. However, the results of the McNemer chi-square tests showed these increases
were mostly insignificant. Combining orbit information further improved the sensitivities,
exceeding the increases achieved by combining polarizations. The combination of orbit
directions increased the sensitivity in VV (scenario C1) on average by 0.23 (~40%), with
the greatest increase observed in the 50–60% ∆CC category (0.34, ~45%). In VH (scenario
C2), the average sensitivity was increased by 0.19 (~37%), with the greatest increase in the
50–60% ∆CC category (0.27, ~36%). When both orbit and polarization information were
combined (scenario C3), the sensitivity further improved compared to using only combined
polarization information. On average, the sensitivities increased by 0.20 (~34%), and a
maximum increase of 0.29 (~42%) in the 40–50% ∆CC pixels was found. The largest change
in sensitivity from one ∆CC category to the next in the orbit-combined scenarios (C1–3)
was found between the 30–40% and the 40–50% ∆CC category, with a sensitivity difference
of 0.26.
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Figure 7. Overview of the baseline (A1,B1,A2,B2) and combined monitoring scenarios (A3,B3,C1–C3),
where each sub-plot represents a scenario in which a specific combination of orbit (columns) and polariza-
tion (rows) was used. The fraction of pixels for which a significant effect of canopy cover loss was found
are depicted per-pixel-wise canopy cover loss (∆CC) class. The error bars represent the 0.025–0.975
quantile range of the within-class bootstrapping. The red lines represent the column-wise means of
the single-polarization significance fractions, while the blue lines represent the row-wise means of the
single-orbit significance fractions. The * denote which combined-scenario ∆CC classes were signifi-
cantly different (p < 0.05) from both corresponding baseline scenarios. The dark gray bars represent
the mean increase of significance fraction in the corresponding combined monitoring scenario.

5. Discussion
5.1. Backscatter Seasonality Is Species-Dependent

The mean backscatter at full canopy cover differed seasonally, with significant dif-
ferences between species on a monthly basis. Beech exhibited lower backscatter in VH in
summer months than in winter months, while Douglas fir and Scots pine exhibited the
opposite pattern, with higher values in summer than in winter. These seasonal differences
varied between 0.6 and 1.6 dB, depending on species and polarization.

Other studies demonstrated qualitatively similar but quantitatively different results.
Broadleaved deciduous forests have been reported to exhibit no seasonal differences in VV
and between 0.5 and 2.3 dB in VH, while coniferous forests showed differences between
1.5 and 3.0 in both polarizations [42,72]. Differences in seasonal magnitudes relative to our
study might have been related to the relatively short time spans used, as these contained a
maximum of 1.5 years of Sentinel-1 observations. A later study using 5 years of Sentinel-1
data [73] reported seasonal differences of 1.8 dB in VH and 0.15 dB in VV for mixed oak
and hornbeam stands, similar to our study.
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The observed seasonal differences in backscatter have been attributed to various
factors. For instance, it has been suggested that the shedding of leaves in the winter of
broadleaved deciduous trees reduces the volume scattering component when twigs and
branches are masked, leading to lower backscatter [42,45]. In contrast, the higher values
of backscatter in summer than winter observed with coniferous trees are suggested to be
related to higher leaf area index and higher needle moisture content, while the gradual
seasonal removal of moisture from needles to prevent freezing damage, the freezing of
understory growth, and snow cover on trees in winter months is related with lower
backscatter levels [43,45–47,74,75]. Overall, the results demonstrate that the seasonal
characteristics of different tree species should be taken into account when developing
disturbance detection methods, for instance, by developing pixel- or species-specific stable
forest reference periods [26,76,77].

5.2. Canopy Cover Affects Backscatter Mean and Seasonality

The results indicate that canopy cover can affect the yearly mean backscatter, as well
as backscatter seasonality, depending on species and its morphological characteristics.
All broad classes of canopy cover (Table 3) in the post-treatment period differed signifi-
cantly from each other, except for high (>90%) and medium-high (50–90%) classes, which
demonstrated only marginal differences. This could be due to the co-occurrence of these
canopy cover classes with small canopy openings. Since the incidence angles of the short
wavelength Sentinel-1 observations over the experimental sites were relatively shallow
(31◦–45◦), the radar signal was likely not able to penetrate to the understory layer through
these small openings [28]. In contrast, the significant difference between other canopy cover
classes is likely due to the higher contribution of the ground component, which results in
lower backscattering than that of the closed canopy. This is in line with a study by Magagi
et al. [78] in which C-band backscatter was found to be positively correlated with canopy
density and, therefore, to ground and understory backscatter contributions.

The seasonal backscatter patterns at low canopy cover exhibited low backscatter in
summer and higher backscatter in winter months, regardless of the tree species. This is
likely due to the seasonal differences in moisture levels of the forest floor and understory,
which have been shown to have a higher correlation with precipitation than the canopy,
resulting in higher ground contributions and higher backscatter levels after precipitation
events [79]. An early study with C-band performed in Canada found an opposite seasonal
pattern, which could be explained by heavy, persistent snow cover and frost [45,74].

A marginal difference in backscatter was found between canopy cover classes in
the winter months in VV polarization compared to VH for Beech and Scots pine, but
not for Douglas fir. Relatively high co-polarized backscatter is related to higher canopy
penetration, in which of the ground or understory represents a larger contribution to the
overall backscatter signal, while VH is related to volume scattering from needles, twigs
and branches, which is masked when deciduous foliage is present [46,73,80]. In the case
of Douglas fir, the significant differences between canopy cover classes during winter in
VV could be related to more needles and branches remaining visible to the sensor when
neighboring trees are removed due to its conical canopy shape, with canopy biomass
concentrated at a lower stem height compared to the concentration of biomass at the top of
the stem of the round Scots pine and Beech canopies [48,81]. This indicates the value of
VH over VV for monitoring purposes in (non-frozen) winter conditions, as VH has a more
direct relation to canopy cover and is less seasonally dependent across all species studied.

Many management regimes in temperate forests employ silvicultural treatments such
as tree harvest, which, depending on the intensity, can result in relatively low canopy
densities [13]. Radar backscatter from sparse canopies is, therefore, characterized by
highly mixed ground and canopy backscatter contributions [78]. C-band can be useful
to detect intensive tree harvest or final felling, but longer wavelengths such as L-band
would be advantageous for the characterization of low-intensity management strategies
(differentiation between >90% and 50–90% canopy cover classes). L-band has a higher
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sensitivity to differences in the underlying woody biomass [24] while simultaneously being
less influenced by seasonal shifts in foliage.

Methods in time series analysis that attempt to fit seasonal models on a pixel-by-pixel
basis have attempted to increase the number of data points with which to fit seasonal
models by using spatial context [44,77]. While methods using spatial context are suited for
forests in which the seasonality is relatively homogeneous as observed by an (optical) sensor,
they are likely not suitable for radar-based detection over mixed-species and sparse canopy
cover, such as is the case for temperate forests. Averaging backscatter values from pixels
with distinct seasonal patterns as a result of fragmented canopy cover and differing tree
species could result in a canceling-out effect. Seasonal patterns of individual pixels would,
therefore, be misrepresented, potentially resulting in the confusion of seasonal backscatter
behavior with true removal of canopy cover. The pre-disturbance degree of canopy cover
is, therefore, an important factor to consider when developing monitoring methodologies.

5.3. Backscatter Sensitivity to Canopy Cover Loss Is Affected by Shadow and Layover

Results suggest that the treatment significance related to canopy cover loss (∆CC) is
affected by radar shadow and layover due to their confounding impact on backscatter
change magnitude (∆γ0). A significant ∆γ0 at 100% ∆CC, approximately 2–3 dB, was
observed across all species. VH polarization was found to be marginally more sensitive to
∆CC than VV, accounting for more variation in pixel-wise mean backscatter magnitude.
For partial ∆CC (~50%), ∆γ0 approached the absolute radiometric accuracy figure of the
Sentinel-1 system, which is 1 dB [82]. Literature on backscatter change magnitude pre-
versus post-disturbance is sparse. Olesk et al. reported an average of 2 dB difference for
clearcutting and 1.6 dB for thinning across multiple coniferous stands [31]. The mean ∆γ0
of our study are similar for Douglas and Scots pine at full and partial canopy cover, but
the ∆γ0 of individual pixels vary greatly, indicating that pixel-based monitoring requires
pixel-scale assessment of canopy cover loss-related ∆γ0.

As observed in Section 4.3, Srel tended to be related to greater magnitudes of ∆γ0,
while Lrel was associated with smaller magnitudes of ∆γ0. A high dominance of the
layover effect was found to ‘lift’ ∆γ0 of observations, causing the canopy cover loss to go
unrecognized as significant by the causal inference methodology. There was a large degree
of uncertainty in the relationship between both shadow and layover coverage and ∆γ0.
This could be due to the use of overlapping orbit paths with varying local incidence angles
when deriving the shadow and layover layers per pixel. This could especially have an
effect on pixels located far away from forest edges, where the coverage varied depending
on the orbit path. However, the effects remained significant despite these uncertainties
(Table 4).

Adjusted partial R2 values were greater for Lrel than for Srel. This indicates that the
shadowing effect might not be as strong as found in previous studies [36], while the layover
effect can explain more variance. This could be due to several reasons. First, due to
relatively low canopy densities, the radar signal was able to penetrate the canopies of the
trees responsible for the shadowing effect, resulting in a non-significant decrease in the
signal compared to the removal of the canopy in the pixel of interest. Second, the calculated
radar shadow areas were relatively short in length, often not exceeding the resolution of
~20 m, while the layover areas were significantly longer (Figure 5). Backscatter attributed
to pixels covered by shadow is, therefore, more likely to be correlated to a higher degree
with the nearby forest edge, thereby reducing the explanatory power of shadow [83]. Third,
the effect of layover was likely compounded with increased direct scattering, as well as
trunk-ground and canopy-ground interactions, which further strengthened the backscatter
response [51]. While partial R2 values of Lrel for Scots pine and Beech were relatively
equal, they were comparatively low for Douglas fir. The trees in the Douglas fir sites were
relatively tall and conically shaped (Table 1). However, the shadow and layover layers
assumed the trees were rectangular ‘blocks’. As a result, there is likely a larger degree of
overestimation in these layers for Douglas fir, especially at the edges furthest away from
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the trees responsible for the shadow and layover effects, compared to those in Scots pine
and Beech sites. Due to the highly local and small-scale nature of the disturbances and the
size of the trees, almost all pixels were affected by shadow or layover in at least one orbit.
This implies that if backscatter values from both orbit directions are averaged, the increased
backscatter resulting from the layover effect could average out the backscatter drop due to
shadowing or canopy removal, leading to the causal inference method failing to identify
a true disturbance as significant. The lower canopy density of temperate forests might
be a reason why shadow effects might not be as influential as those in the dense, closed
canopies of tropical forests. Higher and denser forest canopy would result in a greater
degree of attenuation in the case of shadowing [28,35].

Previous studies, such as those by Carstairs et al. and Aquino et al. have made
valuable progress in understanding the application of Sentinel-1 radar data for detecting
forest disturbances in tropical environments [37,84]. However, their conclusions are not
directly applicable to temperate forests. For instance, in Europe, Ruiz-Ramos et al. [77]
encountered difficulties in accurately detecting disturbances at the edges of clearcut areas in
their study on pixel-based Sentinel-1 detection of forest clearcutting, likely due to shadow
and/or layover effects. Overall, the findings of this study underscore the importance of
understanding and accounting for these effects when developing methods for the detection
of low-intensity disturbances in temperate forests.

5.4. Combining Orbit Directions and Polarizations Increases Detection Sensitivity across
Disturbances Severities

The results of the monitoring scenarios highlight the importance of combining both
polarizations (VV and VH) and both orbit directions (ascending and descending) when
analyzing the loss of canopy cover using Sentinel-1 data. C-band backscatter showed
sensitivity to different disturbance severities. However, in the majority of cases, pixels
with disturbance severities below 50% were not considered significantly affected by the
treatment (Figure 7). A key observation is the increased sensitivity when ascending and
descending orbits are combined, as opposed to simply combining VV and VH polarizations
(~34% mean relative increase). This outcome implies that the spatial and temporal dynamics
of layover and shadow effects play a significant role in determining the overall sensitivity of
the Sentinel-1 system to canopy cover loss, confirming results of tropical forest monitoring
in which combining polarization and orbit information also improves detection results [26].

It was found that the improvements in sensitivity are not uniform across all canopy
cover loss classes. This suggests that certain forest types or conditions might benefit more
from the combination of orbit information than others. For instance, pixels with medium- to
high- degrees of canopy cover loss exhibited more pronounced improvements in sensitivity
when orbits were combined. These pixels were also affected to a greater degree by shadow
and layover, as well as additional variance introduced by incidence angles and resulting
differences in canopy penetration by the signal [78].

While the benefits of combining polarizations and orbit directions have been demon-
strated, further research could investigate the potential synergies and trade-offs between
them. Additionally, future studies using L-band radar data should pay special attention to
the characterization of shadow and layover effects to aid in the adoption of forthcoming
L-band missions such as NISAR, given the uncertainty in applying C-band radar findings
to longer wavelengths.

5.5. Limitations

Despite the availability of highly detailed reference data, several limitations are present
in the set-up of the experimental plots and the applicability of the findings, as well as in the
processing of the radar data. First, the small size and limited number of test sites require
careful consideration when applying our findings to research in areas with strongly differ-
ing topographical, ecological, and climatic conditions. The sites used in this study were
located exclusively on flat terrain and in managed temperate forests dominated by a single
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species without significant influence of sub-zero temperatures. Understanding the effect
of canopy cover change and the influence of seasonality on the signal over forests located
on steep terrain, under freezing conditions, and in combination with non-management-
related disturbances will require additional experimental research in representative areas.
In particular, the occurrence of freezing temperatures and snow cover have been shown to
greatly affect C-band backscatter [68,74]. In addition, the effect on the signal of tree species
mixtures in forest stands, particularly those including deciduous and evergreen species,
could be an important factor to consider, as this complicates the establishment of clear,
undisturbed historical periods as is often done in disturbance detection methods [21,76,77].
Shadow and layover effects could also display greater variability in mixed stands than in
monospecific stands, as these are dependent on surrounding canopy density and shape,
which are more uncertain in the case of mixed stands. Second, inter-observational fluctu-
ations in backscatter on a pixel level due to radar speckle and weather effects were not
taken into account but could be of concern in operational monitoring if near-real-time
detections are required using individual images [21,67]. Third, the geolocation accuracy
and resampling artifacts introduced during the pre-processing of Sentinel imagery add an
element of uncertainty to the analysis, as mentioned in Section 3.1. These are especially
crucial when performing analyses on small study sites or when developing applications for
high-resolution monitoring. However, these uncertainties related to instrument detection
capabilities and target size are inherent to the monitoring of subtle changes in the envi-
ronment. Consequently, additional studies should be done to explore the extent of such
uncertainties, for example, when introduced by the fixed pre-processing of data available
for cloud-based analysis (e.g., Google Earth Engine). Overall, further highly detailed and
site-level experimental studies are required across a range of climatic and topographic
gradients examining disturbances from a variety of sources in order to develop accurate
disturbance detection methodologies in temperate forests worldwide.

6. Conclusions

The unprecedented detail of the reference data from a network of forest sites with
experimentally set disturbance levels allowed us to study the sensitivity of temporally
dense C-band radar from Sentinel-1 to management-related temperate forest disturbances.
Despite shorter wavelengths and lower canopy-penetrating capabilities than L-band radar,
we showed that C-band radar is sensitive to medium- to high-severity pixel-level distur-
bances. We demonstrated that yearly backscatter patterns are species-specific and that
species-specific seasonal patterns depend on per-pixel canopy cover. In addition, it was
found that significant differences in post-treatment backscatter levels could be explained
not only by canopy cover loss but also by layover and, to a lesser extent, shadow effects. By
extension, the implementation of simple monitoring scenarios revealed significant increases
in the sensitivity of Sentinel-1 across per-pixel disturbance severities when taking both
ascending and descending orbits and VV and VH polarizations into account (~34%). The
findings of this study can provide the underpinning for the improvement of operational
Sentinel-1-based disturbance monitoring in temperate forests. Combined with dense time
series of L-band data from the upcoming NISAR mission and in tandem with optical
satellite data, Sentinel-1 C-band radar will prove invaluable to satisfy the increasing re-
quirements imposed by new forest policies for consistent, frequent, and high-resolution
forest disturbance monitoring.
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Appendix A

Appendix A.1. Radar Data Pre-Processing

The GRD data in the GEE archive had already undergone orbit file application, border
noise removal, thermal noise removal, radiometric calibration, and orthorectification [85].
Additional pre-processing of the GRD data was performed in GEE prior to export following
the methodology developed in [86], including additional border noise correction and
volumetric radiometric terrain correction using the best available Digital Elevation Model
(DEM) in the GEE archive (0.5 m resolution AHN2). No additional speckle filtering was
applied in order to reduce spatial averaging effects. No additional corrections for incidence
angle backscatter-dependency were carried out, as this effect has been shown to be minor
over vegetation [87]. In addition, since monthly-aggregated values of backscatter were
used, variation in backscatter due to the use of overlapping orbits over individual pixels
was smoothed out. The data in both orbit directions were resampled to a common grid with
10 m pixel spacing using the nearest neighbor method and exported for further analysis in
R (v4.2.1).

It is well known that C-band radar can be affected by freezing temperatures and snow
cover [31,40,67,68]. Using climate data from the ERA5-Land dataset [66], it was found that
over all the sites, on average, only ~5 observations per year were obtained where the daily
temperature was below −5 ◦C, and only ~3 observations where snow cover was greater
than 5 cm. Assuming minimal influence of these factors in the experimental sites, no extra
corrections were carried out.

Appendix A.2. Canopy Cover Layer Generation

The drone-based nDSM (post-treatment) was aggregated, resampled, and reprojected
to the same resolution and projection as the AHN3 DSM (pre-treatment). Then, the drone-
based nDSM was co-registered with the AHN3 DSM to limit any spatial offset between
the datasets.

Since these were not directly comparable, it was chosen to develop a binary mask
representing canopy and non-canopy areas from each DSM using an adaptive filter [88].
The filter used a 151 × 151-pixel window size. It was assumed that a pixel representing
the forest floor would occur somewhere within the window, which could be represented
by the minimum value, and that there was a degree of non-canopy understory vegetation
represented by the standard deviation. The canopy cover was assigned to the central pixel
if it exceeded a threshold calculated as the minimum value, plus 0.75 times the standard
deviation of values within the window.
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In order to determine where the canopy cover was removed, the difference between the
pre- and post-treatment canopy cover maps was determined. Maps of all sites can be found
in Appendix B, in which also the pre- and post- treatment canopy cover are represented.

Appendix A.3. Shadow and Layover Layers Generation

Shadow and layover layers were derived spatially for the post-treatment period. Note
that while this study refers to these geometric distortions as shadow and layover, these are
partial effects, in which the signal is only partially diminished or amplified as a result of
interaction with the canopy [28,51,89].

Approximate shadow and layover layers could be derived for each orbit direction and
relative orbit path. These were calculated by converting the canopy cover mask for each
site to vector format and assigning the corresponding site-specific mean tree height to each
vector. The shadow package (v0.7.1) [90] was employed to simulate the theoretical spatial
distribution of shadow and layover using the mean tree height, satellite azimuth angle,
and look angle as inputs. The layover and shadow layers were calculated as a raster for
each observation at 0.5 m resolution, after which the modal value, representing the most
occurring shadow/layover coverage (or absence), was assigned to each 0.5 m pixel. In
addition, the shadow- and layover layers were masked by the canopy cover layer to avoid
overlapping shadow- and layover with the canopy cover itself.

It was assumed that within-site tree height variation and the 3D crown shape at the
tree level would not significantly impact the outcomes. This is because all sites were
even-aged, resulting in minor within-site tree height fluctuation and because differences
in incidence angles between acquisitions smooth out shadow and layover spatially when
averaged over time.
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Figure A1. Pre-versus post-treatment canopy cover. Species: Beech. Site ID: 1_BE. Figure A1. Pre-versus post-treatment canopy cover. Species: Beech. Site ID: 1_BE.
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Figure A2. Pre-versus post-treatment canopy cover. Species: Douglas Fir. Site ID: 1_DG. Figure A2. Pre-versus post-treatment canopy cover. Species: Douglas Fir. Site ID: 1_DG.
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Figure A3. Pre- versus post-treatment canopy cover. Species: Scots Pine. Site ID: 1_SP. Figure A3. Pre- versus post-treatment canopy cover. Species: Scots Pine. Site ID: 1_SP.
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Figure A4. Pre- versus post-treatment canopy cover. Species: Beech. Site ID: 2_BE. Figure A4. Pre- versus post-treatment canopy cover. Species: Beech. Site ID: 2_BE.
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Figure A5. Pre- versus post-treatment canopy cover. Species: Douglas Fir. Site ID: 2_DG. Figure A5. Pre- versus post-treatment canopy cover. Species: Douglas Fir. Site ID: 2_DG.
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Figure A6. Pre- versus post-treatment canopy cover. Species: Scots Pine. Site ID: 2_SP. Figure A6. Pre- versus post-treatment canopy cover. Species: Scots Pine. Site ID: 2_SP.
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Figure A7. Pre- versus post-treatment canopy cover. Species: Beech. Site ID: 3_BE. Figure A7. Pre- versus post-treatment canopy cover. Species: Beech. Site ID: 3_BE.
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Figure A8. Pre- versus post-treatment canopy cover. Species: Douglas Fir. Site ID: 3_DG. Figure A8. Pre- versus post-treatment canopy cover. Species: Douglas Fir. Site ID: 3_DG.
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Figure A9. Pre- versus post-treatment canopy cover. Species: Scots Pine. Site ID: 3_SP. Figure A9. Pre- versus post-treatment canopy cover. Species: Scots Pine. Site ID: 3_SP.
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Figure A10. Pre- versus post-treatment canopy cover. Species: Douglas Fir. Site ID: 4_DG. Figure A10. Pre- versus post-treatment canopy cover. Species: Douglas Fir. Site ID: 4_DG.



Remote Sens. 2024, 16, 1553 32 of 40Remote Sens. 2024, 16, 1553 32 of 40 
 

 

 
Figure A11. Pre- versus post-treatment canopy cover. Species: Scots Pine. Site ID: 4_SP. Figure A11. Pre- versus post-treatment canopy cover. Species: Scots Pine. Site ID: 4_SP.
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Figure A12. Pre- versus post-treatment canopy cover. Species: Beech. Site ID: 5_BE. Figure A12. Pre- versus post-treatment canopy cover. Species: Beech. Site ID: 5_BE.
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Figure A13. Pre- versus post-treatment canopy cover. Species: Douglas Fir. Site ID: 5_DG. Figure A13. Pre- versus post-treatment canopy cover. Species: Douglas Fir. Site ID: 5_DG.
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Figure A14. Pre- versus post-treatment canopy cover. Species: Scots Pine. Site ID: 5_SP. 
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Table A1. Pairwise marginal means contrast significance for VH polarization.  

  Contrast–VH Polarization 
  Beech—Douglas Beech—Scots Pine Douglas—Scots Pine 
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1 <0.001 <0.001 <0.001 
2 <0.001 <0.001 0.010 
3 <0.001 <0.001 0.026 
4 <0.001 <0.001 0.286 
5 0.130 0.293 0.886 
6 <0.001 0.037 0.269 
7 0.017 0.324 0.345 
8 0.152 0.080 0.951 
9 0.833 0.783 0.995 

10 0.999 0.288 0.267 
11 <0.001 0.003 0.054 
12 <0.001 <0.001 0.002 

Table A2. Pairwise marginal means contrast significance for VV polarization.  

Figure A14. Pre- versus post-treatment canopy cover. Species: Scots Pine. Site ID: 5_SP.
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Table A1. Pairwise marginal means contrast significance for VH polarization.
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1 <0.001 <0.001 <0.001

2 <0.001 <0.001 0.010

3 <0.001 <0.001 0.026

4 <0.001 <0.001 0.286

5 0.130 0.293 0.886

6 <0.001 0.037 0.269

7 0.017 0.324 0.345

8 0.152 0.080 0.951

9 0.833 0.783 0.995

10 0.999 0.288 0.267

11 <0.001 0.003 0.054

12 <0.001 <0.001 0.002
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Table A2. Pairwise marginal means contrast significance for VV polarization.

Contrast–VV Polarization

Beech—Douglas Beech—Scots Pine Douglas—Scots Pine

M
on

th

1 <0.001 <0.001 0.006

2 <0.001 <0.001 <0.001

3 0.002 <0.001 <0.001

4 0.095 <0.001 <0.001

5 0.945 <0.001 <0.001

6 0.831 <0.001 <0.001

7 0.193 <0.001 <0.001

8 0.852 <0.001 <0.001

9 0.995 <0.001 <0.001

10 0.936 <0.001 <0.001

11 0.011 <0.001 0.003

12 0.003 <0.001 0.001

Appendix D

Table A3. Effect size of fixed effects expressed as partial eta squared.

VV Polarization VH Polarization

Partial eta
Squared

Confidence
Interval

Partial eta
Squared

Confidence
Interval

Fi
xe

d
Ef

fe
ct

s

species 0.81 (0.49, 0.91) 0.43 (0.00, 0.70)

year 0.00 (0.00, 0.00) 0.01 (0.00, 0.01)

month 0.10 (0.09, 0.11) 0.10 (0.09, 0.10)

species:year 0.00 (0.00, 0.01) 0.00 (0.00, 0,00)

species:month 0.05 (0.05, 0.06) 0.28 (0.27, 0.29)

year:month 0.10 (0.09, 0.11) 0.14 (0.13, 0.15)

species:year:month 0.02 (0.01, 0.02) 0.02 (0.02, 0.02)
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