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High-resolution impact-based early warning
system for riverine flooding

Husain Najafi 1 , Pallav Kumar Shrestha 1,2, Oldrich Rakovec 1,3,
Heiko Apel4, Sergiy Vorogushyn 4, Rohini Kumar 1, Stephan Thober 1,
Bruno Merz2,4 & Luis Samaniego 1,2

Despite considerable advances in flood forecasting during recent decades,
state-of-the-art, operational flood early warning systems (FEWS) need to be
equipped with near-real-time inundation and impact forecasts and their
associated uncertainties. High-resolution, impact-based flood forecasts pro-
vide insightful information for better-informed decisions and tailored emer-
gency actions. Valuable information can now be provided to local authorities
for risk-based decision-making by utilising high-resolution lead-timemaps and
potential impacts to buildings and infrastructures. Here, we demonstrate a
comprehensive floodplain inundation hindcast of the 2021 European Summer
Flood illustrating these possibilities for better disaster preparedness, offering
a 17-hour lead time for informed and advisable actions.

Flooding affectsmore peopleworldwide than any other natural hazard
does1 and represents one of the four key climate change hazards2.
Approximately 1.81 billion individuals, constituting 23% of the global
population, are found to be directly exposed to 100-year floods3.
Anthropogenic climate change, inadequate investments of govern-
ments and the private sector, and cognitive biases in human percep-
tion and decision-making are usually blamed for disastrous flood
impacts4,5. Since the 1990s, the observed number of record-breaking
rainfall events has deviated substantially from a stationary climate and
this deviation has occurred at an increasing rate6. The rarest rainfall
events are projected to experience the most substantial relative
increase inmagnitude under future climate change7. Extreme and even
unprecedented rainfall events, and the associated flooding, are thus
expected to occur much more often than in the past. As flood pre-
paredness and defences are often overwhelmed by such extremes,
forecasting and early warning systems are perceived as crucial tools to
safeguard human life and reduce monetary losses8.

For decades, science and state agencies have been developing
hydro-meteorological monitoring and forecasting systems9,10. Recent
improvements in model resolution, process representation, para-
meterisation, data assimilation, and computational efficiency have
advanced numerical weather prediction (NWP) and hydrological

forecasting, and earlywarning systemshave benefited from that alike11.
Efforts to enhance the monitoring of atmospheric variables and
hydrological fluxes and conditions have also contributed to achieving
more accurate initial conditionswithin the forecasting chain. However,
the general public12 and the media speculate why these scientific
advances do not translate into reductions in socio-economic and
human costs once a catastrophic event occurs - even in developed
countries with advanced flood early warning systems (FEWS) as
demonstrated by the floods in Western Europe in July 2021.

The components of the forecasting chain for a technologically
advanced FEWS are depicted in Fig. 1. First, observed meteorological
data is needed for generating hydrological initial conditions. The next
component is the NWP system. The skill of NWPmodels is constrained
by several factors, including intrinsic atmospheric chaos, errors in the
initial conditions, the spatio-temporal resolution of the model, limited
knowledge of physical processes, model errors, and limited compu-
tational power. However, with the steady progress of forecasting
technology and skill over the past 40 years13, NWP systems now pro-
vide improved quantitative precipitation forecasts because of the
increased resolution to the scale of convective-permitting schemes
(1–4 km), incorporating several sources of uncertainties and better
representation of physical processes14. A substantial challenge in NWP
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pertains to the uncertainties in precipitation forecasts, particularly for
rare events15. These uncertainties propagate throughout the model
chain and require quantification.

NWP model outputs are then passed to hydrological models to
forecast discharge/water levels. Hydrological forecasting technology
has also seen substantial progress. A decade ago, producing global
hydrological forecasts from land surface models at a hyper-resolution
of 0.1–1 km was viewed as a formidable challenge16. Achieving high-
resolution hydrological forecasting is still ongoing within the research
field. Delivering it would be possible with the availability of input data
at high resolution andwith the implementation ofmethods that derive
seamless parameter fields as well as downscaled forcings and initial
conditions17. Despite the widespread application of ensemble fore-
casting in NWP, ensemble flood forecasting is considered to be in its
infancy even in countries with advanced operational FEWS18,19. This is
mainly related to the challenges of transferring ensemble forecasts
into operational decision-making and floodmanagement19. Large-scale
operational FEWSs that provide ensemble forecasts (e.g., the European
Flood Awareness System-EFAS20) do not often satisfy the expectations
of regional flood managers requiring hydro-meteorological forecasts
at river gauge locations with high spatio-temporal resolutions and
update frequencies21.

Flood warnings are usually provided for river gauge locations.
Extending flood forecasts from streamflowandwater levels at selected
river gauges to spatially distributed information on inundation, flow
velocities and further impacts has been considered unfeasible for

many years19 because of twomain reasons: first, the extensive runtime
required by fine-resolution (high-fidelity) hydrodynamic models to
produce an ensemble forecast in real-time, and second, the lack of
river cross-section data at a reasonably high resolution along the river
network22. Despite the existing computational and operational chal-
lenges, flood managers need forecasted impact maps in real-time for
issuing more targeted flood warnings and for better emergency
responses23. By extending the forecast model chain with high-
resolution (1-10 m grid size) hydrodynamic and impact forecasting,
shown in Fig. 1, it would be possible to provide essential information
downstream of the river gauge. For example, expected consequences
of imminent flooding impacts, extending beyond traditional hazard
data like river gaugewater levels, affected assets and anticipated losses
can be delivered. It holds considerable promises for enhancing dis-
aster risk management by considering the physical characteristics of
the event, as well as the affected socio-economic systems.

Local authorities and civil protection agencies benefit from
impact forecasting, gaining actionable insights for initiating safety
measures and evacuation protocols during floods. However, opera-
tional FEWS still need to integrate flood impact forecasting at the local
scale of disaster management, particularly through the utilisation of
2D hydrodynamicmodelling24. Table 1 provides an overview of the key
components within existing state-of-the-art FEWS. Notably, both
GloFAS25 and EFAS employ an approach to inundation and impact
forecasting, relying on the interpolation of pre-calculated floodhazard
maps for a limited set of return periods26. This approach provides a
rough estimate of potential inundation areas, and the so-produced
floodmaps are spatially inconsistent and do not retain continuity. This
integration of the inundation prediction within operational FEWS
presents two major challenges:
1. Computational Efficiency: Computationally efficient FEWS are

imperative for promptly generating inundation and impact
information, including associated uncertainties. Several studies
have developed prototypes of flood forecasting modelling chains
that include probabilistic flood inundation forecasting (see e.g.
refs. 24,27,28). While high-fidelity models offer precision, they
comewith substantial computational demands. Strategies such as
non-physics-based (simplified) methods29 and model emulation,
as demonstrated by Ivanov et al.24 and Fraehr et al.30, seek to strike
a balance between computational efficiency and prediction
accuracy. Sustaining prediction accuracy requires accounting
for a wide range of flooding scenarios and inundation
behaviours30. However, these approaches may encounter chal-
lenges when adapting to diverse flood scenarios or diverse
landscape contexts31. Simplified methods, for instance, are
particularly suitable for applications where dynamic effects play
aminimal role, and the focus is primarily on the final ormaximum
flood extent and water levels29. Moreover, surrogate models may
struggle when faced with inputs outside their training scope or
complex, non-linear interactions among flood drivers32. Notably,
they may also face difficulties accurately simulating unprece-
dented extremes compared to high-fidelity models32.

2. Propagation and Representation of Uncertainties: Recent
research demonstrates the potential usefulness of probabilistic
forecasts for emergency managers facing real-world constraints.
However, the exact impact of these forecasts on user decision-
making remains unquantified33. The challenge resides in propa-
gating the uncertainties along the entire forecast model chain
and representing the uncertainty of impact indicators in a
suitable way.
To address these challenges, the advancements in inundation and

impact-based forecasting are demonstrated by comparing the com-
mon practice of pre-calculated flood hazard maps with our proposed
forecasting chain. Utilising real-time forecasts as an extra layer
enriches pre-calculated hazard maps by considering antecedent
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Fig. 1 | A holistic end-to-end impact-based flood forecasting modelling chain.
The state-of-the-art flood early warning system is extended with components of
quasi-real-time hydrodynamic and impact forecasting. Observational initial condi-
tions are obtained based on data from ground, radar, satellite, and reanalysis. The
Technology Readiness Level (TRL)69 serves as a scale for evaluating the develop-
mental stage and maturity of a technology. At TRL 1, the technology is in the initial
scientific researchphase,while TRL9 signifies that the systemhasbeen successfully
demonstrated in a real-world operational environment. Data sources: OSM rivers,
roads and buildings: OpenStreetMap60 contributors 2021, distributed under the
Open Data Commons Open Database License (ODbL) v1.0. National German
boundary: GADM. Meteorological stations (Deutscher Wetterdienst).
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conditions34. In addition, fast hydrodynamic modelling captures real-
time flood dynamics, overcoming the limitation of pre-calculated
maps assuming a seamless connection between real-time forecasting
models and static inundation and impact assessments, potentially
leading to inaccuracies, especially for unusual flood events. Further-
more, these maps rely on several factors which might not be
valid for all flood events34. We leverage fast and real-time hydro-
dynamic modelling while transparently communicating uncertainties
for decision-makers. Our method, featuring dynamic simulation, pro-
vides crucial timing information for effective emergency responses.
Additionally, it offers improved adaptability in flood hazard map
resolution, particularly with high-resolution Digital Elevation Mod-
els (DEM), ensuring accuracy without sacrificing computational
efficiency.

Theneed for impact-basedwarnings for disaster riskmanagement
has been addressed recently in various guidelines and studies35,36. For
instance, the shift from weather forecasts and warnings to impact-
based forecasts and warning services is outlined by the World
Meteorological Organization (WMO) guidelines37. This shift also
underlines the need for decision-making protocols tailored to align
with the distinct dynamics of specific hazards, geographical locations,
institutional capabilities, and cultural contexts. The initiative on
impact-based early warnings is gaining global support, as more
national hydro-meteorological services align their strategies and
investments with this approach.

The effectiveness of an experimental impact-based flood early
warning system is showcased in this study by utilising the catastrophic
flood event thatoccurred in theAhrRiver, Germany in 2021. During the
July 2021 flood event, 134 people in the Ahr Valley lost their lives21. The
total economic loss in Germany exceeded 40 billion EUR38. The return
period of the event based on observed annual peak discharge gauge
data between 1946 and 2019 and four historical floods between 1888
and 1920 is estimated to be about 8600 years39. The magnitude of the
flood and its damage to buildings and infrastructure required themost
extensive response and recovery operation in German history38. The
GermanWeather Service (DWD) predicted a heavy precipitation event
several days prior to the event40. In addition, the official hydrological
forecasts indicated unprecedentedwater levels at several gauges. Post-
event analysis has revealed that early warnings solely on hazard
metrics suchasmaximum local rainfall depths ormaximumwater level
at a gauge site resulted in misinformed actions, delayed responses,
and at times, no action at all38. Local weather and civil protection
officials underscored that their limited knowledge to understand the
potential impacts of 150mm or 200mm of rainfall, or a gauge level of
6m, prevented them from giving clear guidance on the specific pro-
blems or damage expected from the forecasted rainfall or water
levels38.

Here, we show how a state-of-the-art flood forecasting modelling
chain can providemore sophisticated information, enhancing disaster
preparedness. To illustrate the capabilities of our system, we provide a
floodplain inundation hindcast ensemble for the 2021 European
Summer Flood. The proposed approach allows for a more dynamic
and responsive early warning system, offering enhanced insights into
potential flood impacts. By employing high-resolution, object-based
impact forecasting techniques, we are able to generate near-real-time
flood inundation maps and other relevant impact indicators with
associateduncertainties. This serves as a practical example tohighlight
the potential of our approach in accurately predicting and visualising
flood impacts for better decision-making and preparedness in the face
of such devastating events. It provides lessons that contribute to the
improved management of future events and underscores why users
need to put rare but severe events into perspective33. The current
study serves as a proof-of-concept, laying the groundwork for the
further development and testing of prototypes for such operational
systems.Ta
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Results
Ensemble precipitation and probabilistic water level forecasts
Here, we use the DWD’s latest NWP limited area ensemble prediction
system (ICON_D2_EPS) for generating ensemble forecasts of water level
for the event. The operational NWP ensemble prediction system gen-
erates 20 ensemble forecasts at a spatial resolution of 2.2 km. It con-
siders different sources of forecast uncertainty arising from initial
conditions and model error, in addition to the uncertainty in the
boundary conditions for limited area ensembles41. For the hindcast
experiment, ensemble forecastswere retrieved for every 3-h initialisation
between 13 July 2021 (02:00 CEST) and 14 July 2021 (23:00 CEST), thus
covering a window of opportunity of 47h to 2h prior to the flood peak.

Probabilistic forecasts are considered much more valuable than
deterministic forecasts, especially for extreme and rare events42.
Therefore, to evaluate the predictability of the flood event in Ahr Val-
ley, with a catchment area of 746 km2, themesoscale hydrologic model
(mHM)43 is forcedwith 320 ensemble predictions (16 initialisations × 20
members) from ICON_D2_EPS to generate streamflow and water level
predictions at the gauge Altenahr. The mHM has been evaluated as a
prospective choice for continental-scale operational flood forecasting
in Europe44. Ensemblemedians and thewater level predictions for all 16
initialisations are depicted in Fig. 2. Hydrological predictions for each
initialisation is elaborated in Supplementary Fig. S1.

The Altenahr gauge was wrecked by the flood; therefore, water
levels reconstructed by the responsible authority (Rhineland-

Palatinate (RP) State Office for the Environment; LfU) are used for the
evaluation of the ensemblewater level predictions (refer to Fig. 2). The
probabilities of exceeding warning levels are shown in Fig. 2 for each
initialisation as well, assuming that all ensemble members have an
equal likelihood42. The classification of official flood notification levels
varies across Germany’s federal states. In Rhineland-Palatinate, the
categorisation of flood situations hinges on the concept of return
periods. Specifically, flood occurrences with return periods equal to or
exceeding that of a 50-year flood are labelled as extreme events. The
100-year flood (HQ100) serves as the critical benchmark for potential
risks to life, property42, and infrastructure.

Figure 2 displays a considerable variation in water level predic-
tions among the ensemble members. This wide range of predictions
can be attributed to the inherent uncertainties in the flood forecasting
modelling chain, primarily stemming from ensemble precipitation
predictions42. The precipitation forecasts derived from the ICON_-
D2_EPS (shown in Fig. 2) reveal substantial variations. These variations
can reach up to 80 mm among distinct NWP ensemble members and
across diverse forecast initialisations. The observed precipitation
estimation for the event also exhibits uncertainty. The most realistic
estimate indicates 119mm of precipitation between the period 07/14
07:00 and 07/14 21:00 CEST21. This amount surpasses the ensemble
median forecasts, and in some cases almost doubling them. Because
this flood was an exceptionally rare event, and the calibration period
has not hadmany such extreme events to tailor themodel parameters,
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Fig. 2 | Ensemble predictions of precipitation and water levels from the
ICON_D2_EPS-mHM chain. Ensemble predictions initialised every 3-h before the
reconstructed flood peak at Altenahr gauge. The probabilities of exceeding the 50-
year (HQ50) and 100-year (HQ100) flood thresholds are displayed for 16 forecast
initialisations (See Supplementary Fig. S1 for more details). The range of 48-h areal
precipitation forecasts for the Ahr basin is shown as whisker plots for each

initialisation from ICON_D2_EPS. The whisker plots of precipitation forecast for
each initialisation represent theminima,maxima, the bounds of the box (25 and 75
percentiles) and the centre (median) based on 20 ensemble members. The
uncertainty of quantitative precipitation estimation for the event is shown for the
target period of 07/14 07:00 to 07/14 21:00 CET21.
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precipitation amounts higher than 119mm were necessary to accu-
rately predict the flood peak. For these reasons, water level ensemble
forecasts are substantially lower than the reconstructed water level at
gauge Altenahr. Despite the discrepancies in the ensemble precipita-
tion forecast, the primary focus remains on assessing the exceedance
probability of the warning threshold as a key variable45.

The expected precipitation amounts from high-resolution and
convection-permitting NWP (ICON_D2_EPS) differentiate largely
depending on the forecast time21. This uncertainty is propagated to
water level predictions and finally to the probability of exceedance of
warning thresholds. This complicates the task for flood managers,
making it challenging to arrive at a confident decision21. For example,
the probability of exceeding HQ100 increased by 30% from the fore-
cast initialisation 20 h prior to the flood peak to that of 17 h but
dropped by 20% in the next issued forecast.

For all water level forecasts issued within the lead time of 17 h to
thefloodpeak, the probability of exceedingHQ100 is greater than 50%
(PWL>HQ100 ≥ 50%) based on the ICON_D2_EPS-mHM forecast chain.
Additionally, at the 11-h mark in advance (14 July, 14:00 CEST initi-
alisation), the probability of a flood exceeding the HQ100 threshold
surged to 90% (Fig. 2). This dramatic increase in probability further
emphasises the urgency for appropriate flood response measures and
is a confirmation of the adequacy of the modelling chain.

Comparison between the official and experimental water level
forecasts
Ten official deterministic water level forecasts were published by LfU
within a time window ranging of 22 h–1 h prior to the reconstructed
maximum level for Altenahr21. LfU forecasts ranged from 225 cm in the
morning of the 14 July to 707 cm in the late evening. Thiswide range of
predicted maximum levels illustrates the uncertainty associated with
atmospheric forecasts and observation errors of the rain gauges and
water levels at Altenahr gauge21. LfU uses the LARSIM water balance
model46 as an operational forecast model. The Ahr catchment is
represented by 561 sub-basins in their model. The real-time forecasts
on the 14 July 2021were generatedbased on a LARSIM calibration from
the period ranging between 1993 and 201621.

In the post-assessment report by LfU21, an ensemble forecast was
provided based on the ICON_D2_EPS for the 14 July 2021 (14:00 CEST)
initialisation. The ensemble water level forecasts based on the ICON_-
D2_EPS – mHM are quite similar to the official forecasts for the same
initialisation. Ensemble median water levels based on the ICON_D2_EPS
–mHMwere approximately 1m lower than the deterministicwater level
forecasts of the LfU within the window of 5 h to the flood peak. Differ-
ences between water level forecasts may be due to the post-processing
method used in the radar-adjusted quantitative precipitation estimate,
the structural and parameter uncertainty, and the initialisation of the
hydrologic model. In our proposed modelling chain, the LfU recon-
structed hydrograph is used as a reference for the hindcast experiment.

Lead-time maps and impact-based warning
Probabilistic water level forecasts at a gauge location do not provide
sufficient information for emergency measures downstream. To
address this shortcoming, the provision of lead-time maps to reach
critical levels, along with high-resolution near-real-time inundation
maps, and flow velocities are crucial and may ultimately save human
lives and reduce socio-economic impacts47–49.

Here, we demonstrate that near-real-time impact forecasting for
floods is possible, even for comparatively small and fast-reacting riv-
ers. The NWP-hydrologic forecasting chain is extended with the high-
resolution (10m grid) hydrodynamic model RIM2D, which proved to
reliably simulate inundation for the Ahr valley50. In this study, the
uncertainty along the modelling chain is considered, which is the
added value compared to studies which have used only a single fore-
cast (e.g., see Apel et al.50). The near-real-time forecasts of inundation

depth are compared first to HQ100 raster-based water depth map to
identify regionswith extremefloodhazard. For the grid cells, forwhich
the water depth predictions exceeds HQ100, the lead time is calcu-
lated based on forecast outputs from hydrodynamic modelling. By
running the ensemble inundation prediction, information on themost
likely estimate of flood impacts can be derived from the ensemble
mean. In addition, the ensemble members that have generated the
minimum and maximum water levels can provide the uncertainty of
inundation extent in each forecast initialisation.

In the presence of considerable uncertainties within the forecasting
chain, effectively communicating forecast persistency is imperative for
informed decision-making. Communication with local authorities
should encompass the persistent impacts of flood forecasts, providing
guidance for effective emergency response operations. Here, the selec-
tion of three consecutive forecast initialisations is considered. The lead
time is calculated for each grid cell across consecutive forecast
initialisations11 when the water level surpasses the HQ100 threshold. To
account for prediction uncertainty, we select ensemble members that
produce the lowest and highest water levels at the gauge, in addition to
the ensemblemedian, as well as the 25th and 75th percentiles. In Fig. 3a,
b, lead-timemaps for the ensemblemedian andmaximumarepresented
for the river reachdownstreamof theAltenahr gauging station, covering
multiple settlements. The high-resolution raster-based lead-time map
shows a time window ranging from 6 h to 30h, which could have been
used for themost likely outcome (i.e., ensemblemedian). Themaximum
water level predictions indicate a lead-time map ranging from 24 h to
48 h before the forecasts exceed the HQ100 warning threshold. The
predicted inundation extent from the ensemblemedian underestimates
the actual flood extent mapped by LfU. The maximum ensemble
member, i.e., one member out of 20, matches well with this estimate,
(Fig. 3b). For this specific event, the assessment of the predicted inun-
dation areas suggests that the flood extents generated by themaximum
rainfall estimate from the ICON_D2_EPS model could closely resemble
the actual conditions. This conclusion is confirmed by a recently pub-
lished report21, which shows that the observed precipitation was pre-
dominantly within the range of the maximum values of the ensemble
forecast. Relying on lead-time estimation from a single forecast can
extend the window of the opportunity for response, yet it may also
elevate the occurrence of false alarms. Supplementary Figs. S2 and S3
present lead-time maps for median and maximum water levels without
considering forecast persistence.

To validate the impact forecasts, we compared the affected
buildings' footprint as well as road and railway lengths to those esti-
mated by the Copernicus Emergency Management Service (CEMS)
Rapid Mapping as a benchmark51. The service was activated by the
German Joint Information and Situation Centre (GMLZ). The figures
are compared for different ensemble members related to different
percentiles (Table 2). For example, the maximum ensemble member,
issued 47 h in advance of the flood peak, overestimated the inundated
building footprint by 10% compared to Copernicus Rapid Mapping.
Notably, the maximum ensemble member for several forecast initi-
alisations closely aligns with the benchmark for several forecast initi-
alisations. Our estimates for the number of affected buildings and
infrastructure often turn out to be less severe compared to the post-
event surveys. This aligns with the underestimation of water levels and
consequently of the inundation areas.

Enhancingflood forecast communication for informeddecision-
making and risk management
Decision-makers frequently encounter the taskof issuingdeterministic
directives based on inherently probabilistic data11. Although FEWS
capabilities may limit the provision of high-resolution flood impact
forecasts and introduce uncertainties, effective communication of this
information can still enhance user trust52. In the domain of emergency
response, theoretical models and decision analysis methods abound,
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with notable contributions like the Protective Action Decision Model
(PADM)53 and cumulative prospect theory54. In cases where official risk
thresholds are not defined by relevant agencies, decision-makers often
need to set their own probability thresholds that align with their spe-
cific needs and organisational goals, as illustrated by Fundel et al. 33. In
this respect, Fig. 4 provides a useful visualisation of how probabilistic
information, based on lead-time, can support flood managers. The
whisker plot visually represents the predicted inundated area down-
streamof the Ahr River, with an estimated coverage of 8.37 km2. Visual
representations like this effectively contextualise infrequent yet severe
events, providing valuable perspective33.

The convergence line in Fig. 4 falls short when compared to the
11.33 km2 extent mapped by LfU due to the uncertainties inherent in
forecasting rainfall, which subsequently impacts the predicted water
levels and inundation extent. Nevertheless, the ensemble median
inundation map has revealed that the affected area would potentially
match or surpass the HQextreme level, which is the most extreme
scenario of flood hazard mapping. Regarding Fig. 4, the ensemble
median consistently surpassed the inundation areas of HQ100 and
HQextreme by 20 and 17 lead hours, respectively. This time frame
provides a potential warning lead time for preparation and response in
the face of impending floods. For this particular event, it was

demonstrated that the maximum forecast ensemble member was
more closely aligned with the post-event inundation area mapping
compared to the median forecast. However, more events should
be investigated to better understand how to use the full ensemble
for decision-making. We advise flood managers to adjust the thresh-
olds based on their daily experience in making warning decisions,
as proposed by Fundel et al.33, or in accordance with national
regulations.

Discussion
We demonstrate that recent advancements in hydrologic and hydro-
dynamic models and computational capabilities enable high-
resolution flood inundation and impact forecasting within opera-
tional FEWS even for comparatively small and fast-reacting rivers.
These forecasts encompass probabilistic inundationmaps and identify
buildings and transportation infrastructure at risk of flooding. Opera-
tional inundation and impact modelling provide much richer infor-
mation on the space and time dynamics of flooding and its effects.
Flood depth and flow velocities are not only available at a few gauge
locations, but continuously and consistently in space. Time-varying
characteristics such as lead time to specific depth thresholds or the
rate ofwater rise canbeprovidedduring the courseof the entire event.

Fig. 3 | The maximum flood lead-time warning based on the ICON_D2_EPS-
mHM-RIM2D FEWS chain. A maximum lead-time raster-based flood warning map
is a geospatial representation that highlights themaximum available time for flood
preparedness and response. The lead time is calculated downstream Altenahr
gauge based on water levels (WL) exceeding HQ100. a The lead-time map derived
from 16 ensemblemedianwater levels (i.e., median over 20members for eachNWP
initialisation). b The same but obtained with 16maximum water levels. These lead-

time maps are obtained when three consecutive initialisations exceed the HQ100
for a given 10 m grid cell. Please refer to the “Forecast persistency” section in the
“Methods” section for additional details. The red extent delineates the inundation
areamappedby the LfU of Rhineland-Palatinate. Supplementary data sources: OSM
river, roads and buildings: OpenStreetMap60 contributors 2021 distributed under
the Open Data Commons Open Database License (ODbL) v1.0. Hillshade: DTMv0.3
(CC BY)70.
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At last, the prediction of affected buildings and critical infrastructure
are compared against emergency mapping products derived from
satellite data. Current satellite inundation maps, given their prior-
itisation of rapid mapping over quality, should not be regarded as
absolute truth, leading to inherent uncertainties55. Using Synthetic

Aperture Radar (SAR) for emergency mapping of floods may have
some limitations, such as misclassification and timing issues. This
highlights the need for caution and an acknowledgement of the upper
limits of SAR-basedflooddetectionmethodswhen identifying affected
areas and assessing damages56.

Table 2 | Comparison of impact-based forecasted damages to buildings, railways, and roads to benchmark

Infrastructure Benchmark Ensemble
statistic

Forecast (Time to Flood Peak in hours)

47 44 41 38 35 32 29 26 23 20 17 14 11 8 5 2
The ratio of forecast damage to benchmark (%)

Building
footprint

Copernicus
Rapid Mapping

Max 110 73 71 75 60 117 104 104 91 90 90 85 89 72 84 70

75p 5 1 15 15 25 50 47 32 16 51 71 52 74 52 72 70

Median 1 1 1 1 1 4 12 14 1 15 44 29 57 41 70 70

25p 1 1 1 1 1 1 1 2 1 3 20 1 46 32 69 70

Min 1 1 1 1 1 1 1 1 1 1 1 1 4 26 64 70

LfU Max 76 51 49 52 42 81 72 72 63 63 63 59 62 50 59 49

75p 3 1 10 11 17 35 33 22 11 35 49 36 51 36 50 49

Median 1 1 1 1 1 3 8 9 1 10 31 20 40 29 49 49

25p 1 1 1 1 1 1 1 2 1 2 14 1 32 22 48 49

Min 1 1 1 1 1 1 1 1 1 1 1 1 3 18 45 49

Railways LfU/Copernicus
EMS Rapid
Mapping

Max 124 97 95 97 90 132 117 118 103 102 102 100 102 97 100 94

75p 40 32 58 59 69 84 82 73 59 84 95 85 97 85 97 94

Median 29 29 29 29 32 39 55 56 30 57 80 70 90 78 94 94

25p 29 29 29 29 29 29 29 36 29 38 65 29 82 72 94 94

Min 29 29 29 29 29 29 29 29 29 29 29 29 39 69 91 94

Roads LfU/Copernicus
EMS Rapid
Mapping

Max 111 83 81 84 73 115 106 107 95 94 94 91 94 82 90 81

75p 22 15 37 38 48 67 65 54 38 67 81 68 84 69 82 81

Median 14 14 14 14 15 22 35 36 15 37 63 51 71 60 81 81

25p 14 14 14 14 14 14 14 18 14 20 43 14 65 54 80 81

Min 14 14 14 14 14 14 14 14 14 14 14 14 21 49 76 81

A 100% percentage indicates that the damage equals that of the benchmark while values exceeding (falling below) 100 signify an overestimation (underestimation) of the forecasted damage.
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Fig. 4 | Uncertainty representation of the forecasted inundated area down-
streamof the Altenahr gauge.Uncertainty is quantified based on 16 initialisations
issued 47h to 2 h prior to the 2021 European Summer Flood. The uncertainty of the
atmospheric forecast based on 20 ensemble members (n = 20) is propagated
through the modelling chain to the hydrological and inundation prediction.

The whisker plots of inundation prediction for each initialisation represent the
minima, maxima, the bounds of the box (25 and 75 percentiles) and the centre
(median) based on this ensemble. HQextreme represents the hazard map for the-
most extreme flood derived with a multiplication factor of a 100-year
flood (HQ100).
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The feasibility of the operational flood impact forecasting was
demonstrated in the hindcast of the 2021 European Summer Flood
event in the Ahr basin in this study. Several challenges, however, remain
as we progress in adopting impact-based FEWS: (1) An increasing
number of national hydro-meteorological services are investing in a
paradigm shift from traditional FEWS to high-resolution, impact-based
FEWS. However, implementing real-time services on a national scale
poses challenges, given the trade-offs involving computational power,
operational service scheduling, and data storage archiving. (2) Avail-
ability of quality data and computational resources is crucial for
implementing near-real-time flood impact forecasting. Many regions,
especially flood-prone areas, lack essential datasets such as high-
resolution soil and terrain data, real-time meteorological observations,
and high-resolution atmospheric forecasts. Continuous and long-term
dischargemeasurements are also essential for floodmonitoring, model
calibration and warning threshold establishment. (3) NWPs still have
uncertainties due to factors like ensemble size, model structure, and
how small-scale convection processes are represented. Real-time pre-
cipitation can be underestimated and therefore needs to be post-pro-
cessed for better accuracy. (4) The complexity of data integration and
validation poses an additional challenge. The integration of workflow
managers like ecFlow57, complemented by a user-friendly graphical
interface, streamlines the scheduling of operational services. This not
only enhances user engagement and accessibility but also contributes
to the optimisation of service delivery in real-time hydrodynamic
modelling and forecasting. (5) Evaluating the performance of FEWS can
be difficult, especially when hindcast data is not available and NWP
models have limited operational history. Ensuring the reliability of
FEWS is critical to respond quickly to predicted events. It helps avoid
the cry wolf effect, where too many false alarms make people and
authorities less likely to act promptly during real flood threats. (6) The
prediction of rare, extreme flood events with return periods of more
than a century is a challenge due to the limited data available, which
emphasises the need for comprehensive training of floodmanagers. (7)
The introduction of real-time impact-based warnings should go along
with the development of specific customised warningmessages, action
instructions and emergency decisions. In order to tackle this problem
effectively, interdisciplinary cooperation with social and psychological
sciences is required. (8) In a world where the likelihood of unprece-
dented rainfall and subsequentflooding is increasing, impartiality in the
communication of information is critical. Ongoing calibration of the
hydrological component of operational FEWS is important to better
anticipate flood events. Moreover, there is a growing demand to
account for the most extreme events to avoid surprises of megafloods
similar to the 2021 European Summer Flood58. The shift in thinking
beyond national flood risk assessment and the removal of cognitive
biases are necessary to prevent unexpected surprises4,58.

Finally, more attention needs to be paid to the effective com-
munication of forecast uncertainties. Uncertainties need to be propa-
gated along the entire forecast chain delivering the plausible ranges of
flood impact indicators.We believe that better-informed decisions can
be made given transparently presented uncertainties rather than sin-
gle deterministic values. Future studies are needed to find out how the
proposed impact-based FEWS can be used for better communicating
the flood impacts to users, decision-makers and the public. A sub-
sequent investigation could involve seeking input from decision-
makers regarding their preferences for ensemble ranges.

Methods
Extended warning chain
The extendedwarning chain (ICON_D2_EPS-mHM-RIM2D) is illustrated
in Supplementary Fig. 4. This model chain produces high-resolution
impact forecasts indicating inundation depth and flow velocity at
buildings and infrastructure. The four components of this chain are
described below.

Meteorological inputs. The regional ensemble prediction system
ICON-D2 EPS provides operational forecasts for a 48-h forecast hor-
izon, covering the entireGerman territory. High-resolution forecasts of
ICON-D2 (2.2 km) are initialised every 3 hwith a convection-permitting
model set-up suitable for early warning of local heavy rainfall events.
Hydrological initial conditions are derived from near-real-time radar-
adjusted gridded hourly precipitation data provided by the DWD. The
gridded fields of temperature were generated by using the External
Drift Krigging (EDK) method59 using variograms derived from DWD
station observations.

Ensemble hydrological forecasting. Streamflow and water level
forecasts are generated based on mHM at a resolution of 1.1 km. The
mHM uses multiscale parameter regionalisation for estimating dis-
tributed parameter fields43 and is forced with real-time forecasts from
DWD-ICON_D2_EPS for hindcast evaluation and hydrological predict-
ability of the Ahr flood.

Hydrodynamic forecasting. The hydrodynamic model RIM2D was
setup and validated for the 2021 flood event in the Ahr valley50. Flood
inundation depth for HQ100 was mapped first by running RIM2D.
Then, the lead time of water level forecasts exceeding the HQ100 level
was calculated for each raster cell at 10m resolution downstream of
the gaugeAltenahr. The locations of buildings, roads and railwayswere
extracted from the OpenStreetMap (OSM) layers. Hydrodynamic
forecasts are triggered only upon reaching or exceeding pre-
established warning thresholds customised for selected percentiles
based on the user’s specific interest. This automated trigger mechan-
ism enhances the responsiveness and adaptability of the system
accommodating real-time services easier. The RIM2D simulations are
executed on the Graphical Processor Units (GPUs) to achieve high
computational performance. Each ensemble run is allocated to a single
GPU device allowing for parallel processing. While 20 ensemble
members are available, our real-time forecasting focuses on selected
percentiles with respect to peak discharge at the upstream boundary
(minimum, 25%, median, 75%, and maximum). This approach ensures
timely forecasts every 3 h and is able to accommodate larger ensem-
bles if needed.

Quantitative impact forecasting. Several criteria can be provided for
impact forecasting including object-based forecasting (e.g., building
footprint), and the length of roads and railways. This information is
calculated based on the synthesis of data extracted from open geo-
graphic databases such as OpenStreetMap60, and hydrodynamic
forecasting outputs.

Copernicus EMS Mapping products. The Copernicus Emergency
Management Service (CEMS) employs satellite imagery and additional
geospatial data to respond to natural disasters, including floods. CEMS
offers a variety of products that provide insights into the impact and
reach of the event, including overall flood extent and detailed assess-
ments of damage severity51. It provides information on affected
buildings and infrastructures basedon several detectionmethods such
as semi-automatic and automatic extractions. We utilised the standard
spatial datasets (vector data) from CEMS, which are publicly available
free of charge51.

Comparison between forecasts of inundated building footprint
with abenchmark. In this research,we analysed thenumberof affected
building footprints, as well as the total lengths of roads and railways
from RIM2D inundation forecasts by benchmarking them against
established data sources. Our study utilised datasets from OSM and
CEMS. The CEMS dataset provides valuable information on the extent
and severity of flood impacts based on damage grades (ranging from
damaged to potentially damaged and destroyed), and their spatial

Article https://doi.org/10.1038/s41467-024-48065-y

Nature Communications |         (2024) 15:3726 8



distribution. The processing of this data involved several key steps: (1)
CEMSdatapoints corresponding toOSMbuilding centroidswere linked
to the respective OSM building footprints; (2) in cases where multiple
CEMSdata points reporteddamage to the sameOSMbuilding, theOSM
footprint was counted only once to eliminate duplication; and (3) CEMS
data points lacking corresponding OSM building polygons were exclu-
ded from the analysis. We leveraged OSM data to furnish building
footprints for structures affected according to the CEMS dataset. The
processing and analysis were carried out using a combination of Python
and R scripts, encompassing geospatial matching, damage statistics,
and assessments of spatial distribution. Moreover, we compared the
predicted inundation impact on building footprints for each initialisa-
tionwith the total building footprintwithin the flood extent, asmapped
by the LfU. This comparative analysis allowed us to thoroughly evaluate
the accuracy and reliability of our predictive models.

Hydrological model setup and calibration
The mHM setup used in this study is based on the BUEK200 soil
dataset61. Soil layers are vertically discretized in four layers (0–5, 5–25,
25–60, and 60-cm - variable) in the mHM. More details regarding the
mHM setup are described by Boeing et al.62. The corresponding mHM
global parameters were calibrated using theDynamicallyDimensioned
Search (DDS)63 algorithm with 500 iterations, against observed hourly
time series of river discharge at Altenahr gauge. A detailed description
of the procedure for calibrating mHM can be found in Rakovec et al.64.
In the present case, we considered a 10-year simulation period
(1.1.2011–31.12.2020) with five years of warm-up; thus the July 2021
flood peak was excluded from the calibration exercise. Hourly
RADOLAN grids of precipitation65,66 are adjusted to 24-h total
precipitation67 and used for model calibration. The mHM historical
performance is provided in Supplementary Fig. S5.

Computational resources and data requirements
The implemented near-real-time flood impact forecasting chain is
applicable to another region around the world contingent upon the
availability of specific quality data and appropriate computational
resources. To ensure effective operation, it is necessary to generate
frequent NWPs of precipitation and temperature. Near-real-time access
tohourlyprecipitation and temperature, observations is required for the
regular reinitialisation of themHMmodel. For theRIM2Dhydrodynamic
model, a high-resolution DEM and land-use information is required. We
tackled the computational challenge inherent in real-time inundation
forecasting through the utilisation of the massively parallelised Graphi-
cal Processing Units (GPUs)50. Using the state-of-the-art NVIDIA Tesla
P100 device, we achieved a 22-min runtime for a 48-h event simulation
(one ensemble member) for the entire domain of about 30km river
length with a spatial resolution of 10m by 10m. We would like to
emphasise here that all the underlying datasets and modelling tools
which have been used in this study are available freely. To develop a
similar system in other regions, high-resolution terrain information
(DEM) along with morphological datasets (e.g., soil, vegetation, etc)
would be needed. Additionally, access to near-real-time meteorological
forcings and river gauge station data for model calibration can be
acquired from responsible agencies. To this end, the growing availability
of remote-sensing and satellite-based information can provide addi-
tional opportunities to reliably establish theFEWS indata-scarce regions.

Definition of forecast persistency
The probability of exceedance of a predefined warning threshold can
rapidly change with subsequent forecast initialisations. A definition is
provided for the forecast persistency in the forecast information
across different initialisations. Once three consecutive forecast initi-
alisations showwater levels aboveHQ100 for a given grid cell, the time
span between the time point of the forecast initialisation and model
time step corresponding to WL ≥HQ100 for the third forecast is

calculated as the lead time. The definition of lead time with and
without confidence is provided in Supplementary Fig. S6. Selecting the
ideal number of forecast initialisations to establish forecast persis-
tency can be determined by balancing the frequency of operational
NWPs and the required preparedness time.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
REGNIE, RADOLAN data and location of meteorological stations, all
from DWD, are freely available for research at the Open Data Portal
(https://opendata.dwd.de, last access: 9 May 2022). DWD weather
forecasts (ICON-D2-EPS) are available at Pamore (PArallelMOdel data
REtrieve from Oracle databases) after registration (https://www.dwd.
de/EN/ourservices/pamore/pamore.html, last access: 29 Nov 2022).
The Digital Elevation Model with a 10-metre grid, is provided by
ⓒGeoBasis-DE/BKG 2022 and is available under restricted access for
free use. Access can be obtained by (https://gdz.bkg.bund.de/index.
php/default/digitale-geodaten/digitale-gelandemodelle/digitales-
gelandemodell-gitterweite-10-m-dGm10.html), Bundesamtfuür Karto-
graphie und Geodäsie, 2022. OSM river network and buildings are
available from ⓒOpenStreetMap contributors 2021, distributed under
the Open Data Commons Open Database License (ODbL) v1.0. The
OpenStreetMap data are open source. DTM v0.3 (to derive hillshades)
can be obtained at https://opengeohub.org/datasets/european-digital-
terrain-models-eu-dtm/. The hourly data from the gauges in the Ahr
basin were kindly processed and provided by Michael Göller, Land-
esamt für Umwelt, Rheinland-Pfalz (https://wasserportal.rlp-umwelt.
de/servlet/is/8181/). Streamflow gauge data and mHM output are
provided for calibration of the hydrologicalmodel. Flood hazardmaps
are based on (https://geoportal.bafg.de/karten/HWRM_Aktuell/#). We
used the flood hazard maps from Rhineland-Palatinate (https://
hochwassermanagement.rlp-umwelt.de/servlet/is/200041/) accessed
on 23.06.2022. This flood hazard map could have been updated after
the 2021 flood event. The mapped inundation extent was provided by
the Landesamt für Umwelt (LfU) Rheinland-Pfalz (Dr.Thomas Bett-
mann). The dataset for generating flood impact forecasting can be
accessed under this link https://www.ufz.de/record/dmp/archive/
14607/en/. The supplementary data for Figs. 2, 4 and S5 are provided
with this paper. The shapefiles from the German national boundary
and its neighbouring countries can be accessed under this link: https://
gadm.org/maps/DEU.html. Source data are provided with this paper.

Code availability
ThemHMv5.11 and EDK codes can be found at https://git.ufz.de/mhm/
mhm and https://git.ufz.de/chs/progs/edk_nc. RIM2D is available for
non-commercial use at https://git.gfz-potsdam.de/hydro/rfm/rim2d.
The codes and algorithms to generate figures provided in this study
can be accessed under this link https://www.ufz.de/record/dmp/
archive/14607/de/.
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