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A B S T R A C T   

The NASA MODIS MOD10A1 snow albedo product has enabled numerous glaciological applications. The tem
poral consistency of MODIS albedo is critical to obtaining reliable results from this 22-year time series. The orbit 
of Terra began to drift toward earlier acquisition times after the final inclination adjustment maneuver to 
maintain its nominal orbit by NASA on 27 February 2020, which may introduce biases that compromise the 
accuracy of quantitative time series analysis as the drift continues. Here, we evaluate the impact of Terra’s orbital 
drift by comparing the differences between the Terra MODIS albedo and albedo products derived from Aqua 
MODIS, harmonized Landsat and Sentinel 2, Sentinel 3, and PROMICE (Programme for Monitoring of the 
Greenland Ice Sheet) ground measurements over the Greenland ice sheet. Our results suggest that the influence of 
orbital drift on albedo is small (+0.01 in 2020), but potentially biased for time series analysis. Our analysis also 
finds that the drift effect that causes earlier image acquisition time may lead to more apparently cloudy pixels 
and thus effectively reduce the Terra MODIS temporal resolution over Greenland.   

1. Introduction 

Surface albedo controls the absorption of solar energy, and is a key 
factor governing surface melt and runoff in polar and other glaciated 
areas (Stroeve et al., 2006; Box et al., 2012; Naegeli et al., 2017, 2019). 
Albedo products derived from satellite remote sensing data provide 
valuable time series data for different environments around the globe, 
including the cryosphere. The MODerate resolution Imaging Spectror
adiometer (MODIS) sensors aboard the two sun-synchronous orbit sat
ellites, Terra (launched on 18 Dec. 1999) and Aqua (launched on 4 May 
2002), have provided more than two decades of near daily global earth 
observatory records (Barnes et al., 2003; Giglio and Roy, 2022). Both 
MODIS sensors have been in operation well beyond their designated 
six-year operational life expectancy (Xiong et al., 2015). The MODIS 
Snow Albedo Daily Tile is produced by applying an algorithm (Klein and 
Stroeve, 2002) to both Terra MODIS and Aqua MODIS, and forms part of 
the Snow Cover Daily Global 500 m (MOD10A1 for Terra and MYD10A1 

for Aqua) product (Hall et al., 1995, 2018; Hall and Riggs, 2007), 
distributed by the US National Snow and Ice Data Center (NSIDC). The 
MODIS daily snow and ice albedo products have been validated with in 
situ measurements, e.g., Liang (2005); Stroeve et al. (2006); Hall and 
Riggs (2007); Box et al. (2017); Casey et al. (2017), and reprocessed to 
improve the data quality (Schaaf et al., 2011a; Hall et al., 2018). Their 
consistency has been repeatedly checked (Stroeve et al., 2013; Pola
shenski et al., 2015; Casey et al., 2017). MODIS albedo has been widely 
used in glaciological applications, such as estimating snow cover dura
tion (Dietz et al., 2015), land ice mass balance (Østby et al., 2017; Xiao 
et al., 2022), snowline variations (Ryan et al., 2019; Noël et al., 2019), 
accumulation area ratio (Box et al., 2022), and meltwater runoff 
modeling e.g., van As et al. (2017); Cook et al. (2020). MODIS albedo is 
also commonly used as a reference product in validating modeled 
and/or measured albedo products (Alexander et al., 2014; Macander 
et al., 2015; Kokhanovsky et al., 2020). 

Greenland ice sheet surface melt is enhanced by snowcover ablation, 
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exposing a relatively dark, low albedo ablation area. The ablation or 
melt area of the ice sheet contributes over 80% of the total runoff (Steger 
et al., 2017; Irvine-Fynn et al., 2021) and the darkening of the bare ice 
area has been enhancing melting (Van As et al., 2013; Shimada et al., 
2016; Cook et al., 2017; Ryan et al., 2018). Accurate discrimination 
between artifacts and real surface process changes (e.g., the darkening 
of the ice sheet) is important in interpreting long time series of remote 
sensing products (Roy et al., 2002; Tian et al., 2015; Hall et al., 2018; 
Giglio and Roy, 2022). The decline in ice sheet albedo derived from 
MODIS data has ranged from -0.060 ⋅ decade− 1 to -0.028 ⋅ decade− 1 (Box 
et al., 2012; He et al., 2013; Alexander et al., 2014), depending on the 
period being considered. The long term darkening trend may be prone to 
error if a bias in the data acquisition is of similar magnitude to or of 
greater magnitude than the real trend. Bias may arise from changes in 
the satellite sampling time due to orbital drifts. 

Orbital drift impacts the consistency of time series of satellite data, e. 
g., the advanced very high resolution radiometers (AVHRR) (Kaufmann 
et al., 2000; Sobrino et al., 2008), Landsat 5 (Zhang and Roy, 2016; Roy 
et al., 2020), and Landsat 7 (Qiu et al., 2021), from different aspects. 
Those aspects include 1) the local acquisition time, 2) the Bidirectional 
Reflectance Distribution Function (BRDF) effect, 3) cloudiness, and 4) 
the effective spatial resolution. Orbital drift has occurred at different 
operational stages of Terra and Aqua (Fig. 1a-b). The mean local time 
(MLT) equator crossing time of Terra gradually changed from 10:45 in 
the first two years until it reached its designed time around 10:30 
(Davies et al., 2017). Terra made its final inclination adjustment ma
neuver to maintain its nominal orbit by the flight operations teams on 
2020-02-27, after nearly 20 years of continuous earth observation 
(NSIDC, 2021). Terra will continue to drift, resulting in earlier overpass 
times. Similarly, Aqua’s orbit began to drift to a later MLT from 
2021-03-18, again leading to later overpass times. Orbital drift in
fluences the local acquisition time (Fig. 1a-b), which induces variations 
in shadows (NSIDC, 2021), surface melt, viewing conditions, and the 
solar zenith and viewing zenith and azimuth angles. The viewing angles 
impact albedo estimates because the surface reflectance varies as a 
function of these two angles as described by the BRDF (Zhang and Roy, 
2016; Ji and Brown, 2017) but since the angles are known to a high 
precision, this is accurately accounted for in MODIS albedo products 
using a BRDF correction, unless SZAs exceeding 75◦ (Stroeve et al., 

2005, 2006; Schaaf et al., 2011a). Temporal consistency of cloud 
discrimination is another source of albedo error. For example, Davies 
et al. (2017) found a high frequency of cloud artifacts in the first two 
years (2000-2001) of records derived from the Multiangle Imaging 
Spectroradiometer (MISR) aboard Terra. We note that the image foot
print also changes as the orbital drift progresses, with lower orbits 
resulting in smaller footprints. The MODIS albedo products utilized in 
this study are high level products that have been reprocessed to a coarser 
resolution than the lower level products. This minimizes the orbital drift 
effect on the effective spatial resolution, and so it was not analyzed 
further here. 

In this study, we attempt to quantify the effect of orbital drift on time 
series of Terra MODIS snow albedo by comparison with 1) Aqua MODIS 
albedo, 2) a harmonized Landsat and Sentinel 2 derived albedo product 
(Feng et al., 2023), 3) a Sentinel 3 albedo product (Kokhanovsky et al., 
2020, 2022; Wehrlé et al., 2021) and 4) Programme for Monitoring of 
the Greenland Ice Sheet (PROMICE) surface automatic weather stations 
(AWSs) (Van As and Fausto, 2011; Fausto et al., 2021). 

2. Methods 

2.1. Data processing 

The Greenland ice sheet has a relatively flat, homogeneous surface 
away from the ice margin and is less cloudy than other Arctic regions, 
making it attractive for evaluating albedo products derived from satel
lite imagery (Stroeve et al., 2006). There is an extensive network of 
weather stations (Fig. 1c) for ground truthing. Our area of interest (AOI) 
is the entire ice sheet, defined by the ice mask from the Greenland Ice 
Mapping Project (Howat et al., 2014). In total, 17,793 sampling points 
were randomly generated with a 5 km buffer (Fig. 1c and d) in Google 
Earth Engine (GEE) (Gorelick et al., 2016), which is ten times coarser 
than the spatial resolution of the MODIS albedo data. This is to avoid the 
influence of spatial autocorrelation in the sampling sites (Olofsson et al., 
2014; Ploton et al., 2020; Gorelick, 2021). 

In total, four different albedo products (Table .1) were imported and 
processed. The MODIS albedo collection 006 includes considerable im
provements, as suggested by validation with in situ observations (Wright 
et al., 2014; Hall et al., 2018), and was utilized in this study. The latest 

Fig. 1. The monthly average local image acquisition times of Terra (a) and Aqua (b) at different latitudes. The black dashed lines indicate periods of stable orbit: a) 
2002-01-01 to 2020-02-27; b) 2002-07-04 to 2021-03-18. The Greenland ice sheet study area (c), and the random sampling points which were generated with a 5 km 
grid are shown by green dots (subfigure d). Locations of PROMICE/GC-Net AWSs (How et al., 2022) are marked as orange dots. 
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collection 6.1 was not yet fully ingested into GEE due to projection is
sues; therefore, collection 6 was utilized instead. The processing pipeline 
developed in GEE can be converted to collection 6.1 or 7 data once it is 
available in GEE. Hereafter, Terra MODIS albedo (MOD10A1.006) is 
referred to as MOD10 (Hall et al., 2016b) and Aqua MODIS albedo 
(MYD10A1.006) as MYD10 (Hall et al., 2016a). Snow and ice albedo is 
part of the Snow Albedo Daily Tile band. Invalid pixels are masked 
(Huang et al., 2022). A harmonized satellite albedo (HSA) dataset 
calculated from harmonized Landsat 4-9 and Sentinel 2 surface reflec
tance datasets (Feng et al., 2023) is used for comparative purposes using 
a 30 m ground resolution. Cloud and cloud shadows detected by Fmask 
(Zhu and Woodcock, 2012; Zhu et al., 2015) and Sen2Cor (Main-Knorn 
et al., 2017), gaps caused by the scan line error on Landsat 7, and 
saturated pixels were all masked. A daily Sentinel 3 ice albedo (S3 al
bedo) product with 1 km resolution has been produced by the ESA SICE 
project (http://snow.geus.dk/) (Kokhanovsky et al., 2020, 2022; Wehrlé 
et al., 2021). Invalid albedo values (< 0 or > 1) from all datasets were 
excluded from the analysis. The accuracy of MODIS albedo decreases at 
high SZAs, especially when SZA>75◦ (Stroeve et al., 2005, 2006; Schaaf 
et al., 2011a), so the study period was restricted to June through August 
(JJA), when SZA is minimal (Box et al., 2012), in order to avoid prob
lematic albedo data. The albedo products used here span JJA of 
2000-2022. The effect of orbital drift was assessed by the albedo data 
extracted from the randomly generated sampling points at 500 m scale. 

Cloudiness influences the data density (Zhang et al., 2021), and in
formation about the product quality influences the reliability of MODIS 
datasets (Schaaf et al., 2011a). Invalid MODIS albedo values consist of 
pixels classified by ten categories, namely, cloud, cloud detected as 
snow, ocean, land, night, self-shadowing, missing, inland water, 
non-production mask, BRDF failure, and no decision (Huang et al., 
2022). Product quality data in the Snow Albedo Daily Tile Class band 
were extracted for the sampling sites to assess the effect of orbital drift 
on the availability of clear sky observations. The ground truth hourly 
cloud cover fraction is estimated from the downward longwave irradi
ance and near-surface air temperature (Van As et al., 2005; Fausto et al., 
2021) by the PROMICE AWS network (Van As and Fausto, 2011; Fausto 
et al., 2021; How et al., 2022). PROMICE AWS Edition 4 dataset began in 
mid-2020 and includes a new generation of Greenland Climate Network 
(GC-Net) AWS (Steffen et al., 1996; Steffen and Box, 2001) carried for
ward by the Geological Survey of Denmark and Greenland (GEUS). The 
timestamps of AWS data were converted from Coordinated Universal 
Time (UTC) to local solar time. 

2.2. Evaluation of orbital drift effect 

The Terra MODIS albedo performs slightly better than the Aqua 
MODIS albedo when compared with in situ ground truth data (Stroeve 
et al., 2006) and is used more frequently in trend analysis because of its 
longer temporal coverage. The band 6 failure on Aqua MODIS has been 
restored by applying a Quantitative Image Restoration (QIR) (Gladkova 
et al., 2012; NSIDC, 2016). Aqua MODIS is a nearly identical copy of 
Terra MODIS (Barnes et al., 2003) and was not influenced by orbital drift 
until approximately one year after Terra, making it useful to evaluate 
the orbital drift effect of Terra MODIS. The HSA and S3 albedo were used 
to show the relative impact of orbital drift that is not covered by the 

nominal operational time of Aqua. The orbital drift effect was also 
evaluated at point scale using PROMICE in situ measurements. 

The orbital drift effect, d(t), was quantified by using Eqs. (1)–(3), 
adapted from Qiu et al. (2021), where i is the ith sampling point and n =
17,793 (Fig. 1c-d). All the extracted MOD10 point values were matched 
with MYD10, HSA, and S3 albedo using the timestamp (dt ≤ 1 day) and 
the coordinates, so pairing the MOD10 albedo (αMOD10) at each sampling 
point with the other reference albedo (αRef) data acquired on the same 
day. Paired pixel values with differences (|αMOD10

i − αRef
i |) greater than 

their average value (0.5|αMOD10
i +αRef

i |) were masked out from the 
analysis using a noise filter (Eq. (4)) adapted from Roy et al. (2016). The 
MOD10 data acquired in a nominal orbit (t0 = 2002-2019) were 
compared with the reference albedo data to establish the baseline 
(medianΔα(t0)) of albedo differences (Eq. (3)). Next, the MOD10 data 
within the drift period were compared with the paired αRef. The d(t) was 
also quantified at pixel level for the entire ice sheet. 

d(t) = medianΔα(t) − medianΔα(t0) (1)  

medianΔα(t) = median{Δα1(t),Δα2(t),Δα3(t),…Δαn(t)} (2)  

Δαi(t) = αMOD10
i (t) − αRef

i (t) (3)  

|αMOD10
i − αRef

i |

0.5|αMOD10
i + αRef

i |
< 1 (4) 

The cross sensor difference between MOD10 and MYD10 in 2002- 
2019 was measured by Eq. (3), and Eq. (2) calculated the 
medianΔαi(2002 − 2019) to establish the baseline of the cross sensor 
albedo difference. The median cross sensor difference 
(medianΔαi(2020)) between MOD10 and MYD10 after Terra began to 
drift in 2020 was also derived. Finally, the orbital drift effect (d(2020)) 
was calculated by Eq. (1), which compares the cross sensor difference to 
the baseline value. Similarly, the HSA and S3 albedo were each used as 
the reference albedo to quantify the effect of orbital drift when MYD10 
was unavailable (t = 2000-2001) or when Aqua also began to drift (t =
2021-2022). The orbits of Landsat 5 (2003-2007) and 7 (2017-present) 
were not as stable as Landsat 8 and may introduce temporal inconsis
tency to the surface reflectance data (Zhang and Roy, 2016; Roy et al., 
2020; Qiu et al., 2021). Hence, the d(2000 − 2001) was evaluated by the 
HSA (t0 = 2002) and the d(2020 − 2022) was evaluated by the HSA (t0 
= 2019, excluding Landsat 7) and the S3 albedo (t0 = 2019). 

The utilized albedo products were also compared with in situ 
PROMICE daily albedo data to test if the orbital drift effect can be 
quantified at point scale. MOD10, MYD10, HSA, and S3 albedo were 
extracted at the coordinates of the AWS UPE_L (Fig. 1d) and linearly 
correlated with the ground truth albedo to demonstrate the change in 
absolute error over time. 

2.3. Processing tools and GEE web application 

A GEE web application (MODIS-Orbit-Drift-Viewer, https://fsn1995. 
users.earthengine.app/view/modis-orbit-drift-viewer) is made to 
enable readers to visually inspect the orbital drift effect (d(t)) and 
extract summer (JJA) time series data of d(t), MOD10, and MYD10 at 
any point of interest. The d(t) map covers the entire ice sheet and ice 
covered areas using the ice mask from the Greenland Ice Mapping 
Project (Howat et al., 2014) and the Global Land Ice Measurements 
From Space (GLIMS) Current database (GLIMS Consortium, 2005; Raup 
et al., 2007). The assessment of future MODIS albedo products will be 
updated in the web app once new versions become available on GEE. All 
the scripts for processing and analysis are available on GitHub https://gi 
thub.com/fsn1995/orbit-drift-MODIS-ice-albedo and Zenodo (Feng, 
2023). https://doi.org/10.22008/FK2/IW73UU. The MODIS albedo, 
Landsat, and Sentinel 2 data are available on GEE and are processed 
mainly using GEE’s code editor, geemap (Wu, 2020; Wu et al., 2019) and 

Table 1 
Summary table of the spatial resolution and spectral band wavelengths of the 
utilized albedo products.  

Data Spatial Resolution (m) Spectral Wavelength (nm) 

Original Resampled 

MOD10 500 - 400-1400 
MYD10 500 - 400-1400 
HSA 30 500 400-865 
S3 albedo 1000 500 400-1020  
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the Arctic Mapping Tools (Greene et al., 2017). The colormap is from the 
cmocean package (Thyng et al., 2016). 

3. Results 

3.1. Cloudiness and data density 

The temporal resolution of MOD10 is daily, but the effective tem
poral resolution (frequency of clear observations) is influenced by cloud 
cover and various other relatively minor factors (Fig. 2a). Cloud data 
comprises more than 93% of all the invalid pixel values in the entire 
study period, except 2000 (Fig. 2a). The number of invalid pixels 
increased as the image acquisition time progressively became earlier 
after the orbital drift started in 2020 (Fig. 2a), in contrast with the trend 
of annual cloud cover in the in situ records. The median 2022 cloud cover 
from PROMICE/GC-Net AWSs (Fig. 2b) was significantly lower than in 
2021 according to a left-tailed Wilcoxon rank sum test (p < 0.01). Yet, 
the number of cloud pixels in 2022 was 66% more than in 2021, and was 
triple the average in the pre-orbital drift period (2002 to 2019), sug
gesting that systematic changes in acquisition time influenced the 
number of cloud contaminated pixels. The diurnal variations of AWS 
cloud cover are shown in Fig. 2c-d. 

3.2. Orbital drift effect 

The quantification of the orbital drift effect focused on evaluating the 
temporal consistency of the albedo values. Analysis was undertaken at 
regional scale (Fig. 3a-b), aggregated random sampling scale (Fig. 3c), 
and point scale (Fig. 5). 

The reference MYD10 was used for the spatial evaluation of the 
orbital drift effect. The albedo difference between MOD10 and MYD10 
(medianΔα(2002-2019), Eq. (2)) was negligible for most of the ice sheet 
(median = 0, std = 0.017) (Fig. 3a), although outliers occur in the 
northeast and northwest. The MOD10 and MYD10 values agreed well 
during the nominal operation (medianΔα(2002 − 2019) = 0). The 
orbital drift effect (d(2020), Eq. (1)) was more spatially variable 
(Fig. 3b). 

The overall d(t) was consolidated for the sampling points and was 
evaluated using the reference MYD10, S3 albedo, and HSA. Generally, 
MOD10 became increasingly positively biased (d(2020) = +0.01, 

Fig. 3b-c) relative to MYD10, HSA, and S3 albedo as the MODIS orbital 
drift began in 2020. The trend of d(t) estimated by S3 albedo was con
stant (d(2021) and d(2022) =+0.01). The orbital drift of Terra occurred 
in the first two years of operation and cannot be assessed using MYD10 
after 2020. The HSA estimated discrepancy with MOD10 in 2020 was 
double the MYD10 estimated drift effect, and the increasing trend of the 
orbital drift effect in 2020-2022 was systematic (+0.02 ⋅ a− 1). The 
orbital drift effect in 2000-2001 was negative, indicating that MOD10 
decreased relative to the HSA, but the estimated d(2000 − 2001) values 
were less reliable as the orbit of Landsat 5 was not as stable as Landsat 8 
(Qiu et al., 2021). 

The estimated d(t) is relatively small, but it is important to under
stand its impact on time series of albedo. The long-term trend of albedo 
in the pre-drift period (2002-2019) is -0.0004 ⋅ a− 1, but the albedo 
decline rate calculated for the period 2002-2020, after the orbital drift 
started, is -0.0003 ⋅ a− 1 because of the increased average JJA albedo in 
2020 (Fig. 4). He et al. (2013) found that the albedo decline was more 
significant around the year 2000. We excluded the period (2000-2001) 
from our analysis because Terra was in its designated orbit in these two 
years, and so orbital drift may have influenced albedo accuracy in this 
period too. 

The orbital drift effect evaluated at point scale using in situ AWS daily 
albedo measurements (black line in Fig. 5) from AWS UPE_L is shown in 
Fig. 5. It is to test if the orbital drift effect can be quantified by AWS 
albedo observations. The agreements between the ground truth albedo 
and the satellite derived albedo products had Pearson’s R values of 0.63 
(slope = 0.42) for MOD10, 0.74 (slope = 0.60) for MYD10, 0.80 (slope 
= 0.69) for HSA, and 0.84 (slope = 0.64) for S3 with p < 0.05 (Fig. 5e-h). 
The correlation of MOD10 deteriorated over time (R decreased from 
0.79 in 2020 to 0.50 in 2021, and 0.40 in 2022, p < 0.05, and the Root 
Mean Squared Error increased from 0.07 to 0.10 from 2020 to 2022). 
The deterioration in correlation is only obvious in the UPE_L data 
compared to other PROMICE AWSs in the Dark Zone and EGP, which is a 
site in a perennially snow-covered area in northeast Greenland. Thus, 
ground measurements may not be suitable for quantifying the orbital 
drift effect, as the correlation between MOD10 and in situ AWS albedo 
can be influenced by various factors (e.g., the difference in spatial res
olution, AWS condition, and seasonal variations in ice surface 
homogeneity). 

Fig. 2. a) Annual invalid MOD10 variations June through August (JJA) from 2000 to 2022 by class, revealing the dominant effect of clouds. Notched boxplot (b) of 
annual variations in JJA automatic weather station (AWS) cloud cover index 2007-2022 with the average value as the red line. (c) median hourly cloud cover for data 
from individual AWS used here. (d) hourly average AWS cloud cover includes standard error whiskers. 
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4. Discussion 

4.1. Cloudiness and data density 

Orbital drift directly influences the image acquisition time of MOD10 
(NSIDC, 2021). The mean local time (MLT) varies latitudinally (Levy 
et al., 2018), and gradually changed by 14 min at the Arctic Circle from 
12:06 (2000) to about 11:52 (2002-2019). Terra progressively drifted to 
give an MLT that was 27 min earlier (11:39) in 2022 (Fig. 1a). A 
threefold increase in MOD10 cloud pixels occurred after the orbital drift 
began in 2020, yet an increase in cloud frequency is not observed in the 
AWS data (Fig. 2b). However, we do not yet have sufficient data to test 
whether this is a source of error in the albedo product. We note that we 
did not observe an increase in cloud frequency in the AWS data, but on 
the other hand, the AWS data is coarse and limited in spatial coverage. 

Generally, summer clouds in the Arctic form in the morning, dissi
pate near the solar noon and accumulate again in the afternoon (Shupe 
et al., 2011). The cloud cover fraction across the ice sheet varies 
depending on the hour of the day (Fig. 2d) and the location (Fig. 2c). The 
number of clear observations is influenced by the satellite overpassing 
time (King et al., 2013; Tang et al., 2020). The trend towards earlier 
satellite overpassing times could, in principle, account for some of the 
increase in invalid MOD10 pixels predominated by clouds (Fig. 2a), but 
we find that an increase in cloud pixels is not evident in in situ AWS cloud 
index data. Both Terra MODIS and Aqua MODIS are to remain opera
tional until 2025 and 2026, respectively (NSIDC, 2021), and it may well 

be that earlier image acquisition times lead to more apparent cloud 
cover in MODIS imagery, so impacting the availability and utility of 
images (Fig. 2a). The temporal resolution of bare ice albedo is crucial for 
the performance of regional melt models (Irvine-Fynn et al., 2021), and 
so less dense observations may handicap time series analysis (Qiu et al., 
2021) using MOD10. 

We examined the statistical significance of the apparent decrease in 
cloud cover measured by the AWS from 11:00 to 12:00 by a right-tailed 
Wilcoxon signed rank test, which indicated a weak relationship (p =
0.07). We note that cloud frequency is highly variable and it is possible 
that the point scale PROMICE AWS measurements may not capture the 
spatial and temporal variations of clouds over the ice sheet in the same 
way as from the relatively much wider coverage that is obtained from 
satellite swath data. Hence, we can only highlight the discrepancy be
tween the two data sets, that satellite imagery shows increasing cloud 
cover whereas AWS measurements do not, and can provide no clear 
explanation for the discrepancy at present. The change in cloudiness 
being a mechanism for the observed effects of orbital drift remains a 
hypothesis that can be more rigorously tested with additional data (e.g., 
cloud cover fraction data derived from geostationary satellites like the 
Geostationary Operational Environmental Satellite (GOES) (Schmit 
et al., 2017; Bah et al., 2018) and/or climate reanalysis dataset like the 
Modern-Era Retrospective Analysis for Research and Applications 
(MERRA) (Rienecker et al., 2011)) in the future, and as the orbital drift 
increases, the overpass time change. 

4.2. Absolute albedo consistency 

The orbital drift of Terra has a limited but measurable impact on the 
absolute accuracy and consistency of MOD10 albedo. The MYD10 esti
mated orbital drift effect is small (d(2020) = +0.01), but may be critical 
because the long term trend in albedo reduction over the ice sheet is 
relatively small ([− 0.0060, − 0.0028] ⋅ a− 1) (Box et al., 2012; He et al., 
2013; Alexander et al., 2014) and appears insignificant. The positive 
bias of albedo may become increasingly important after including the 
recent years (2015-2020) when the albedo decline rate is further 
reduced (Fig. 4). The reliability of trend detection will deteriorate over 
time if the MOD10 generally becomes increasingly positively biased 
relative to the reference albedo (Fig. 3c). The orbital drift effect also 
varies spatially (Fig. 3b) and so is not homogeneous. Therefore, any 
orbital drift correction factor may need to account for pixel-by-pixel 
variability. Trend analysis using MOD10 influenced by the orbital drift 
needs to be conducted with caution. 

Comparison and evaluation of alternative products are necessary to 
ensure the continuity of observation records (Riggs and Hall, 2020) as 
the orbital drift progresses or when MODIS reaches the end of its 

Fig. 3. Quantification of the orbital drift effect on MOD10. Maps of pixel-wise medianΔα(2002-2019) and d(2020) calculated using MYD10 are illustrated in sub
figures a and b, respectively. The drift effect (d(t), subfigure c) derived from the sampling points is calculated using the HSA, MYD10, and S3 albedo. 

Fig. 4. Time series of average JJA albedo and the long-term trend for the 
period 2002-2019 and the period 2002-2020. The albedo is the sampled 
MOD10 albedo data and the grey-shaded area shows the data influenced by the 
orbital drift of Terra. 
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lifetime. HSA has a higher spatial resolution (30 m), and S3 albedo is 
reprocessed to a daily product comparable to MOD10. Both the HSA and 
the S3 albedo are good alternatives and correlate well with in situ AWS 
albedo (Fig. 5). 

4.3. Uncertainties 

Uncertainties in cross sensor comparison of ice albedo products can 
result from cloud contamination, differences in effective spatial resolu
tion, and other factors, such as image acquisition time, viewing geom
etry, and surface melt (Liu et al., 2017; Riggs and Hall, 2020). The 
orbital drift effect estimated by using the MYD10 is the most reliable, as 
the similarities between MOD10 and MYD10 help minimize the un
certainties. The orbital drift effect estimated using an independent 
reference albedo data set, such as the HSA and S3 albedo, is indicative, 
due to the cross sensor differences. However, the cross sensor compar
ison could help us estimate the trend of the orbital drift effect after 
MYD10 began to drift. 

The MCD43A3, hereafter referred to as MCD43, albedo product 
provides both directional hemispherical reflectance (black sky albedo) 
and bihemispherical reflectance (white sky albedo) (Schaaf et al., 2002, 
2011b), and has also been well validated and calibrated (Stroeve et al., 
2005, 2013). The reason we chose MOD10 over MCD43 products is 
because of the wide MOD10 data user-base, including a) the Bulletin of 
the AMS (BAMS) State of the Climate reporting, the orbital issue relevant 
for the most recent two BAMS reports (Blunden and Boyer, 2022; 
Blunden et al., 2023), and b) the Copernicus Arctic Regional Re-analysis 
dataset (Køltzow et al., 2022). MOD10 is a popular product that has been 
widely used in studies that focus on the darkening of the Greenland Ice 
Sheet and the Dark Zone, for example, Box et al. (2012, 2022), Ryan 
et al. (2017, 2019), Tedstone et al. (2017, 2020), Wang et al. (2020), and 
Williamson et al. (2020). We note that Box et al. (2017) conducted a 
more comprehensive validation of MOD10 data than that of an earlier 
MCD43 data validation (Stroeve et al., 2013). These validation results 
suggest that both are well calibrated and are reliable albedo products, 

but Casey et al. (2017) found that trend analysis using the MCD43 C6 
dataset can lead to false statistically significant trends due to a cali
bration error. Terra MODIS and Aqua MODIS are near identical sensors, 
and orbital drift did not occur to Aqua until about a year after Terra. 
Therefore, the impact of orbital drift should be different because Terra 
and Aqua began to drift at different times, and Terra is drifting towards 
earlier acquisition time while Aqua is drifting towards later acquisition 
time. It is important to treat the sensors separately. Eq. (1)) quantifies 
the orbital drift effect by calculating the deviations of albedo influenced 
by orbital drift relative to the reference albedo. However, the MCD43 
product was generated by using both MODIS Terra and MODIS Aqua. 
The orbital drift effect of two sensors is mixed in MCD43, and it is 
challenging to separate MODIS Terra and MODIS Aqua data in MCD43. 
Therefore, the orbital drift effect on the MCD43 albedo was not 
analyzed. The calibration drift error was not considered in this study 
because it has not been found in the MOD10 dataset (Casey et al., 2017). 
Major updates on the MODIS sensor calibration will be made by NASA to 
mitigate the degradation and keep the data consistency of future 
Collection 7 (C7) MODIS products (Angal et al., 2023; Xiong et al., 
2023). We plan to re-evaluate the orbital drift effect of both MOD10 and 
MCD43 when the better calibrated C7 datasets are available. 

MODIS albedo is positively biased relative to in situ measurements 
over the ablation area (Stroeve et al., 2013; Ryan et al., 2017) mostly 
because coarser resolution albedo data have more limited capability of 
detecting local scale albedo changes, which are often on finer spatial 
scales (Tedstone et al., 2020). The HSA was resampled from 30 m to 500 
m, but it cannot fully address the differences introduced by the spatial 
resolution. The image resolution of S3 is 300 m, and the S3 albedo 
product is resampled to 1 km, which is more similar to MOD10 than 
HSA. Further, the spatial resolution of MODIS pixels is about 20 times 
larger than the footprint of the AWS albedo data, so confounding easy 
comparison of the data sets. Therefore, it is hard to discriminate the 
effect of orbital drift from noises introduced by the mismatch between 
the ground sampling distance of AWS at point scale and satellite sensors 
with coarser resolutions (Fig. 5). In our future studies, we aim to use 

Fig. 5. Time series of albedo at PROMICE AWS UPE_L (location is shown in Fig. 1c-d) during summer (June through August) 2019-2022 (a-d). Albedo data include 
PROMICE AWS daily measurements, MOD10, MYD10, HSA, and S3 albedo. Lower panel (e-h) shows the scatterplots and the linear regressions between MOD10 and 
PROMICE AWS albedo. 

S. Feng et al.                                                                                                                                                                                                                                     



Science of Remote Sensing 9 (2024) 100116

7

both the reprocessed historical GC-Net AWS dataset and PROMICE AWS 
dataset to reevaluate the orbital drift effect, sensor degradation, and 
sensor calibration issues associated with MODIS data. The uncertainties 
in the orbital drift effect estimated by the HSA are inherently greater. 
The reference HSA is also not free from the impact of orbital drift, but 
the influence should be small as the time of interest did not include the 
years (1995 for Landsat 5 and after 2020 for Landsat 7) when the impact 
of orbital drift was most significant (Zhang and Roy, 2016; Roy et al., 
2020; Qiu et al., 2021). 

5. Conclusion 

The orbital drift of the NASA Terra satellite has led to a progressively 
earlier image acquisition time since 2020 by over 24 min at the Arctic 
Circle. The comparison with reference albedo products in nominal orbits 
incurred a small impact (d(2020) =+0.01) on the temporal consistency, 
and the bias is expected to increase in the future. The positive bias 
relative to the reference albedo products is small, but it may be sub
stantial for trend analysis when the real trend is smaller than the artifact 
induced by the orbital drift. The impact of orbital drift-related bias on 
other glaciological applications that do not require high accuracy in the 
absolute albedo values (e.g., snowline migration monitoring, mass bal
ance modeling, snow-free durations) should still be negligible. In sum
mer, a diurnal cloud development cycle, in combination with the orbit 
drift causing an earlier satellite overpass time, may give rise to more 
pixels affected by clouds, decreasing the number of clear observations. 
The influence on the data density in time series analysis, varying due to 
the overpass time drift interaction with diurnal cloud development, 
should also be taken into consideration in future studies. It is possible 
that MODIS products may confirm this trend or other puzzles to solve, 
but this will involve an analysis of the channels utilized and the algo
rithms used to produce the products under consideration. A more 
comprehensive evaluation of MODIS orbital drift effects on data con
sistency, the effective image footprint, the BRDF effect, future orbital 
drift trends, and the continuity of MODIS products using alternative 
sensors should be conducted in the future. The analysis presented in this 
paper will be useful for future studies that aim to generate orbital-drift 
corrected albedo products. 
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