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coefficients, spatial cluster analysis, and statistical 
models.
Results  We found that: (1) UGS inequality is pri-
marily reflected by the public park per capita in three 
cities. New York has larger UGS inequality than 
Beijing and Amsterdam. (2) Demand-based inequity 
in terms of low supply and high demand is mainly 
scattered around the city center in three cities. Tree 
coverage does not align with environmental pressures 
(LST/PM2.5) in New York and Beijing. (3) Relations 
between green supplies and human demands vary by 
cities and indicators. A shorter distance to the nearest 
large park is associated with a higher proportion of 
the elderly and children in New York and Amsterdam.
Conclusions  Our findings can inform UGS alloca-
tions to improve landscape sustainability in the neigh-
borhoods with low green supply and high human 
demand, and to prioritize specific green metrics based 
on demand-oriented equity.

Abstract 
Context  Urban green spaces (UGS) are not evenly 
distributed within cities, and some neighborhoods 
with high socio-environmental demands require more 
UGS than others. This raises two challenges: green 
inequality and demand-based inequity. However, 
comprehensive assessments of UGS inequality and 
inequity in cities worldwide are lacking.
Objectives  We aim to develop a multi-level 
approach and supply-demand concept to assess UGS 
inequality and inequity across neighborhoods in 
international cities with contrasting geographical and 
socio-political contexts.
Methods  We measured multi-level green acces-
sibility and human demands based on Earth Obser-
vation and statistical data. UGS inequality and 
supply-demand mismatches were assessed by Gini 
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Introduction

Urban green space (UGS), an indispensable natu-
ral element of metropolises, provides environmental 
and social benefits for urban residents (Triguero-Mas 
et  al. 2015; Veerkamp et  al. 2021). The Sustainable 
Development Goal (SDG) 11.7 has been set to pro-
vide universal access to safe, inclusive and accessible, 
green and public spaces, in particular for women and 
children, older persons and persons with disabilities 
by 2030 (UN 2021). However, UGS is unevenly dis-
tributed within cities, which is increasingly recog-
nized as an environmental justice issue worldwide 
(Xiao et al. 2017; Nelson et al. 2021). Common strat-
egies are “just green enough” for every district, such 
as developing small parks in less green areas (Wolch 
et al. 2014). Since the potential space for new UGSs 
is very limited in metropolises (Lin et  al. 2022), a 
better strategy is to optimize the UGS allocation 
based on the distribution of human demands (Men-
coni et al. 2021; Liu et al. 2022). To this end, accu-
rately assessing the green supply and its relations to 
human demand is required for scientifically planning 
demand-oriented UGS (Lin et al. 2022).

Previous studies have observed the urban green 
inequality by measuring the total amount (e.g. NDVI, 
green cover) or accessibility (e.g. distance or travel 
time to parks) (Wüstemann et  al. 2017; Meng et  al. 
2020; Spotswood et al. 2021). They revealed that the 
characteristics of UGS matter greatly for its environ-
mental and social benefits. For example, public parks 
are formal UGS and freely accessible to every inhab-
itant, and large parks can support more diverse human 
activities such as jogging or biking than small ones 
(Shanahan et al. 2015; Hoover and Lim 2021). How-
ever, little research assessed UGS inequality in terms 
of vegetation types, public or private ownership, and 
park size. In particular, neighborhood-scale inequal-
ity was rarely compared among global cities with 
contrasting geographical, socio-political, and climatic 
contexts (Fletcher et al. 2021; Veerkamp et al. 2021).

Most studies explored the uneven distribution of 
UGS without sufficiently considering human demand 
(Wüstemann et al. 2017; Han et al. 2022), defined as 

“UGS inequality” in this study. Beyond UGS inequal-
ity, recognizing distinct human demands for UGS 
would reveal mismatches between green supply and 
human demand (Hunter et al. 2019; Lin et al. 2022), 
which is defined as “demand-based inequity” (Pham 
et al. 2012). Pham et al. (2012) illustrated how equity 
in terms of the urban heat island effect (i.e. demand 
for cooling) requires different amounts and types of 
vegetation across blocks. We attempt to evaluate a 
more comprehensive inequity concerning multiple 
socio-environmental benefits of UGS, including cool-
ing, air clarification, and the well-being of vulnerable 
people. As such, green inequality and demand-based 
inequity are conceptualized as pursuing “Gini perfect 
equality” and “demand-oriented equity” in this study, 
respectively.

A growing body of studies started to consider vari-
ous human demands for UGS in terms of mitigating 
environmental pressures and supporting human well-
being (Luederitz et  al. 2015; Baró et  al. 2015; Feng 
et  al. 2019). These studies primarily focus on the 
locations of UGS beneficiaries, without specifically 
addressing vulnerable groups that could particularly 
benefit from UGS due to their heightened risk of ill-
ness and lifelong impacts. Recent research considered 
the low-income group and integrated it with envi-
ronmental pressures and total population to map the 
overall demand (Fletcher et al. 2021; Lin et al. 2022). 
Another study considered the elderly and children to 
examine UGS inequalities, particularly for local parks 
(Kim et al. 2023). However, those vulnerable groups 
were often left out of the comprehensive assessment 
of human demand (Chen et al. 2022; Veerkamp et al. 
2021). Moreover, existing demand-based studies have 
not correlated various UGS metrics with environmen-
tal and social demands, respectively, even though the 
quantity and quality of UGS would support different 
demands (details can be found in the theoretical basis 
section).

To fill the gaps in assessing demand-based ineq-
uity, this study presented a paradigmatic framework 
for multi-level analysis of green supply and human 
demand, implemented at the neighborhood level in 
New York, Amsterdam, and Beijing by integrating 
satellite and social data. The specific goals were to (1) 
quantify multi-level UGS inequality by the Gini coef-
ficient, (2) analyze UGS inequity based on supply-
demand mismatches, and (3) explore relationships 
between green supplies and human demands. Our 
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results can guide demand-oriented UGS allocation to 
achieve city goals of green equity.

Theoretical basis

Although UGS was initially promoted for food pro-
duction, modern UGSs are mainly used for leisure, 
recreation, health, and ecology (van Leeuwen et  al. 
2011). In this study, we focus on two dimensions of 
ecosystem services provided by UGSs: (a) environ-
mental benefits, including cooling effects and air 
purification; (b) socio-economic benefits, encompass-
ing leisure, recreation, character-building, therapy, 
social interactions, aesthetic value, and market value 
(Bratman et  al. 2019; Hunter et  al. 2019; Veerkamp 
et  al. 2021; Lin et  al. 2022). Urban residents seek 
these UGS benefits, and such human demands vary 
based on environmental pressures and socio-eco-
nomic vulnerability, as demonstrated in the context of 
our study cities (Huang et al. 2020; Paulin et al. 2020; 
Schrammeijer et al., 2022; Wu et al. 2020). Thus, we 
correlate green supply with human demand at three 
levels (Fig. 1):

At the first level, the green amount meets the 
demand for environmental livability (hereafter named 

‘environmental livability demand’). UGS contrib-
utes to the maintenance of a healthy urban environ-
ment by adapting to climate change and improving 
air quality toward a resilient and livable city (Meerow 
and Newell 2017; Sera et  al. 2019). The urban heat 
island effect is a widely concerning climate issue in 
cities, caused by hotter built environments than their 
neighboring rural counterparts (Oke 1982; Hsu et al. 
2021). In particular in the future, when the urban heat 
island effect is likely to intensify due to urbanization 
and global warming, moderating urban heat and the 
risk of heat-related illnesses will be of utmost impor-
tance (van Leeuwen et  al. 2011). UGSs, especially 
trees, can deliver cooling effects through shade and 
evapotranspiration (Zhou et  al. 2021). Air pollution 
is another urgent issue in the urban environment, 
whereas trees can improve air quality by absorbing 
certain airborne pollutants from the atmosphere at 
leaf surfaces (Yan et al. 2016). Thus, higher levels of 
environmental pressures represented by urban heat 
and air pollution lead to greater environmental liv-
ability demand for urban trees.

At the second level, access to public parks meets 
social demands in terms of socio-economic vulner-
ability represented by low-income households. Public 
parks, being a predominant type of UGS, often serve 

Fig. 1   Conceptual framework of this study
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as venues for physical activity accessible to all resi-
dents, thereby contributing to enhanced public health 
(Bedimo-Rung et  al. 2005; Schipperijn et  al. 2017). 
Compared to high-income households, low-income 
households are more dependent on local public parks 
considering the travel costs to distant UGSs in sur-
rounding rural regions and user fees of private UGSs 
(Feng et al. 2019; Basu and Nagendra 2021; Lin et al. 
2022). Low-income households desire more acces-
sible public parks to improve their livability since 
their neighborhoods are normally overcrowded with 
dense buildings, which has been particularly observed 
in our study cities (Huang et al. 2020). As an attrac-
tive urban setting, public parks can enhance the real 
estate values of low-income communities (Wüste-
mann et al. 2017). This economic effect may be para-
doxical since the resulting gentrification might make 
it unaffordable for low-income people, but our study 
cities are developed capital cities and improving the 
living quality is the first strategy for those relatively 
low-income neighborhoods (Paulin et al. 2020). Thus, 
higher numbers of people especially low-income peo-
ple lead to greater social demand for public parks.

At the third level, distance to a high-quality park 
meets social demands in terms of life cycle repre-
sented by elderly people (aged 65 +) and children 
(aged 14 −). We chose the size of the park to repre-
sent the quality because it is a universal standard for 
a high-quality park (Kmail and Onyango 2020; Hoo-
ver and Lim 2021; Remme et  al. 2021). Compared 
to small parks, large parks can provide more diverse 
outdoor activities such as jogging and cycling which 
could reduce the risk for many chronic diseases, and 
thus enhance the physical health and psychologi-
cal well-being of urban residents (Wolch et al. 2014; 
Remme et  al. 2021). Such benefits are particularly 
essential for the elderly and children, since access to 
parks may increase the longevity of elderly people 
(Takano et  al. 2002), and diverse outdoor activities 
in large parks can reduce obesity, develop a strong 
physique, improve attention deficit disorder, build 
active character, and other life-long impacts on chil-
dren (Taylor et al. 2001; Wolch et al. 2014; Saltham-
mer et  al. 2016). Large parks are usually well man-
aged and include facilities such as high-quality paths 
and toilets, which are essential to support children’s 
and elderly’s outdoor activities (Kemperman and 
Timmermans 2014). Moreover, senior citizens par-
ticularly rely on greenspace within walking distance 

due to their reduced mobility and cognitive function 
(Alves et  al. 2008), and nearby parks can motivate 
children to incorporate physical activity into daily life 
(Sallis et  al. 2012). Thus, higher numbers of people 
especially the elderly and children lead to increased 
social demand for adjacent large parks.

Given that the above three supply-demand rela-
tions are not strictly one-to-one correspondence, the 
overall balance between green supply and human 
demand should be assessed by integrating the envi-
ronmental and social benefits of UGS. According to 
the above theoretical basis, we define low-income 
households, elderly people, and children as vulner-
able people. Cross-supporting services exist across 
three supply-demand levels, i.e., the total green 
amount generally supports social demands, and 
access to public parks or large parks benefits vulner-
able people (Feng et  al. 2019; Fletcher et  al. 2021). 
Co-effects also exist between environmental livability 
and social demands, e.g., elderly people are vulner-
able to heat pressure due to a high risk of illness (Hsu 
et al. 2021). Therefore, high levels of environmental 
pressure, total population, and vulnerable population 
would simultaneously lead to increased demand for 
UGS. Mismatches between green supply and human 
demand (e.g. low supply-high demand clusters) can 
be identified from this comprehensive perspective. 
Such overall mismatches can guide the optimization 
of urban green allocation toward demand-oriented 
equity.

Data and methods

Study area

We chose New York, Amsterdam, and Beijing as the 
study cities for the following reasons. First, they are 
known as the populous cities on different continents 
with 2963 inhabitants/km2 in New York, 3272 in 
Amsterdam, and 8502 in Beijing in 2015 (Florczyk 
A. 2019). Second, existing evidence has revealed that 
urban residents in dense and aging cities usually have 
scarce and dwindling access to nature and greatly 
desire public open space (Remme et al. 2021). Third, 
those developed capital cities have sufficient neigh-
borhood-scale data (e.g. population of age groups) 
supporting our in-depth supply/demand assessments. 
Fourth, their municipalities have greatly focused on 
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enhancing and equalizing UGS. The municipality 
of Amsterdam epitomizes the desire to improve the 
quality and accessibility of public greenspaces and set 
the standard of a minimum green provision of 24 m2 
per household (Gemeente Amsterdam 2018). In New 
York, Million-Trees had aimed to equalize urban for-
ests but failed to “prioritize low-canopy, low-income 
communities of color” (Garrison 2019). Chinese 
official UGS planning standards point out that UGS 
construction should be guided by the ecological civi-
lization strategy and give full play to the multiple 
functions of UGS in ecology, recreation, landscape, 
and protection (Ministry of Housing and Urban-Rural 
Development 2019). Therefore, identifying the UGS 
inequality and diverse supply-demand mismatches 
could provide essential information for these official 
goals.

Our unit of analysis is the neighborhood. We 
investigated all the neighborhoods within the city 
boundary that is the metropolitan area of Amsterdam, 
the borough area in New York, and the area inside the 
fifth ring road in Beijing. The neighborhoods with 
less than five people were excluded as outliers.

Urban greenspace measurement and indicator review

Access to UGS has been widely measured by amount, 
proximity, distance, and quality indices (Wüstemann 
et al. 2017; Spotswood et al. 2021). We summarized 

their advantages and disadvantages as shown in 
Table 1. The amount/proximity metrics are the com-
mon measurement that can be obtained from public 
and timely remote sensing imagery, but they fail to 
reflect the functional use and quality of UGS (Wüste-
mann et  al. 2017; Schwarz et  al. 2018; Yan et  al. 
2020). The distance metrics can measure geographi-
cal accessibility. Many studies have used Geographic 
Information Systems (GIS) to measure the Euclidean 
distance or travel times from the centroid of a neigh-
borhood to parks (Giuliani et  al. 2021; Wang et  al. 
2021), but they did not consider the size of UGS. 
However, small parks are rather frequent and evenly 
distributed in cities which makes the distance from 
neighborhoods to parks similarly short. The quality 
metrics are the highest level of measurement while 
most existing indicators are subjective or over com-
plicated to be used for multiple cities (Hoover and 
Lim 2021; Knobel et al. 2021). Trade-offs also exist 
in different indicators. For example, a study in Bal-
timore found that although Blacks were more likely 
than Whites to live within walking distance of a park, 
Whites had access to more park acres (Boone et  al. 
2021). Therefore, we combined amount, proximity, 
distance, and quality to comprehensively measure 
access to UGS.

Based on the indicator review, we proposed three 
metrics to assess the multi-level green supply (Fig. 1; 
Table 2). We selected trees and public parks that can 

Table 1   Summary of current indicators of ‘access to green space’

Objective Indicator Pros Cons References

Amount Open forest cover %; annual 
maximum NDVI; green 
area per capita; tree/grass 
cover

reflect spatial inequality; 
easy to monitor over time; 
significantly associated 
with health

regardless of the distance 
and inequality within the 
district

(You 2016; Wüstemann et al. 
2017)

Proximity Green space within the 
buffer of a neighborhood

combine distance with 
amount

regardless of population; 
size of census blocks can 
vary across countries

(Spotswood et al. 2021)

Distance Euclidean distance from 
neighborhood to the near-
est green space; average 
travel times to parks

direct accessibility regardless of the size of 
parks; evenly distributed 
small green

(Wüstemann et al. 2017; 
Hoover and Lim 2021)

Quality Tag of parks (functional 
use); composition (tree/
grass); size; facilities

combine land use; distin-
guish vegetation types; 
larger parks support jog-
ging/biking

subjective; difficult to 
quantify

(Hoover and Lim 2021; 
Remme et al. 2021)

Tools for green quality comprehensive assessment too complicated to measure 
(e.g. biodiversity)

(Knobel et al. 2021)
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efficiently provide ecosystem services for urban resi-
dents, i.e., trees deliver a higher cooling efficiency 
by creating shades and evapotranspiration than other 
vegetation types (Zhou et al. 2021). First, we used a 
remote sensing product - ESA World Cover at 10 m 
resolution in 2020 to compute the sum of tree pixels 
in each neighborhood and get the tree cover. Second, 
we combined neighborhood-level census data with 
Open Street Map (OSM) which provides function 
and ownership information of UGS to compute the 
public park area per capita. We extracted the public 
parks under the ‘leisure’ tag in OSM and compared 
the obtained maps to the official maps of city parks. A 
400 m buffer was used in the calculation of tree cover 
and public park area per capita for each neighborhood 
because the UN-Habitat recommends using 400 m as 
an international walking distance for analyzing the 
access to public space at a neighborhood level (UN-
Habitat 2020). Previous global research has tested 
the sensitivity of different buffer distances and found 
a consistent ranking of greenspace exposure (Chen 
et  al. 2022). Third, we combined the distance with 
quality to measure the highest level of green supply: 
the distance to the nearest large park. We chose the 
size of a park to represent quality because larger parks 
can provide more services (Hoover and Lim 2021). 
Our threshold for a large park was set as 20 ha based 

on a widely used standard (Natural England 2010) 
and previous research for our study cities (Feng et al. 
2019). We also analyzed the sensitivity by adjusting 
the threshold from 15 ha to 25 ha and found no sig-
nificant impact on the distance to the nearest large 
park. Euclidean distance tool in ArcGIS pro was used 
to calculate the distance from each cell to the clos-
est large park excluding the park areas, and the aver-
age distance of a neighborhood to the nearest large 
park was then obtained. Together, we calculated tree 
cover, public park area per capita, and the distance to 
the nearest large park (> 20 ha) to measure the multi-
level green supply.

Estimating human demands for urban greenspace

The current definitions of human demand for UGS 
mainly include actual consumption and potential 
demand. The actual consumptions are based on 
empirical results, i.e., the sum of actual use or con-
sumption of green services within a certain area over 
a certain period (Burkhard et al. 2012). The potential 
demands include the desire to mitigate environmental 
pressures (Lin et  al. 2022), the amount of a service 
required by society (Luo and Li 2021), and subjective 
willingness for green services (Fletcher et al. 2021).

Table 2   Overview of data sources and methods of the green supply and demand indicators in Amsterdam/New York/Beijing.

Category Metrics Data source Methodology

Green supply Tree cover ESA WorldCover 10 m, 2020 400 m buffer
Public park per capita OSM; Census data 400 m buffer
Distance to the nearest large park OSM; Block boundary Euclidean distance from a cell to the 

nearest large park (> 20 ha); Zonal 
mean

Human demand Land surface temperature (LST) MOD11A2 Terra 8-Day LST 1 km, 
2021

Resample; 400 m buffer; Zonal mean

PM2.5 concentration Global Annual PM2.5 Grids from 
MODIS, MISR and SeaWiFS 
1 km, 2018

Resample; 400 m buffer; Zonal mean

Population density CBS 2021/NHGIS 2020/Jing et al. 
2020

Population/Neighborhood size (m2)

Income per capita CBS 2018/NHGIS 2018/Census_
district 2020; Rent 2020

Complete missing neighborhoods by 
Living Atlas maps; Neighborhood_
rent / district_rent * income_dis-
trict for Beijing

Elderly people & children’s density CBS 2021/Esri 2020/Census_block 
2010; Census_district 2020

Neighborhood_rate_2010&district_
rate_2020 * population_2020 for 
Beijing
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In this study, we integrated the metrics of envi-
ronmental livability and social demand to estimate 
potential human demand (Table 2). Based on remote 
sensing products of LST and PM2.5 at 1 km resolu-
tion, we used the zonal statistics (mean) to calculate 
the average LST during summer daytime because 
heat exposure on summer days is likely to be at a 
maximum value (Hsu et al. 2021) and annual PM2.5 
concentration in each neighborhood (van Donkelaar 
et  al. 2021). Population data of different age groups 
and income data at the neighborhood level were 
mainly collected from national and local statistical 
websites (NHGIS 2020; Statistics 2020; CBS 2021). 
Since up-to-date statistical data were not available 
at the neighborhood level for some metrics in New 
York and China, we used Living Atlas, rent distribu-
tion (Lianjia website), and estimated population (Jing 
et al. 2020) as ancillary data. Specific data and meth-
odology for each demand metric and city are listed in 
Table 2.

Quantification of inequality/inequity and 
supply‑demand clusters

Although the Gini coefficient is popular in measuring 
income inequality (Hu and Wang 2005; Xie and Zhou 
2014), it has also been used for environmental or 
social inequality such as water resources, flood drain-
age, technology, and population (Wu and Xu 2010; 
Yuan et al. 2017; Zhang et al. 2020). Recent research 
started to apply the Gini coefficient to UGS (Wüste-
mann et al. 2017; Feng et al. 2019). As such, we used 
the Gini coefficient to quantify the distributional 
“inequality” in green supplies and demands across 
neighborhoods in each city. The Gini coefficient was 
calculated as the ratio of the area between the perfect 
equality line and the Lorenz curve (A) divided by 
the total area under the perfect equality line (A + B) 
(Fig. S1). The Gini coefficient ranges between 0 and 
1, with 0 representing perfect equality and 1 com-
plete inequality (Wüstemann et al. 2017; Sitthiyot and 
Holasut 2020). To further explore green “inequity” 
considering that each neighborhood has different cir-
cumstances of demands, we drew the Lorenz lines of 
green supplies over the ranking of human demands 
(Fig.  2). Such Lorenz lines could present how UGS 
disproportionately concentrates on some neighbor-
hoods over others.

We further conducted a cluster analysis to identify 
overall matches and mismatches between green supply 
and human demand. Before clustering, metrics of sup-
ply and demand were rescaled into values of 0–1 based 
on min-max normalization within a city. Overall supply 
and demand in each neighborhood were then calculated 
by the equally weighted mean of rescaled supply and 
demand metrics, respectively. Using the overall sup-
ply and demand, we applied two algorithms to obtain 
four clusters: low supply-low demand, low supply-high 
demand, high supply-low demand, and high supply-
high demand (Fig.  6). The first algorithm is that we 
graded the levels of high and low by the median value 
of overall supply/demand (Lin et  al. 2022). Since we 
have properly defined these four clusters to guide urban 
green design, unsupervised algorithms such as k-means 
were not adopted to segment clusters of similarity. The 
second algorithm is spatial analysis - bivariate Local 
Indicators of Spatial Association (LISA), which was 
applied to map spatial clusters of extremes of green 
supply and surrounding human demand. Bivariate 
LISA analysis maps how the value of one variable is 
surrounded by the values of a second variable and 
determines the statistical significance for each cluster 
(Anselin 1995; Tate et al. 2021). In this case, the identi-
fied high-high clusters are where high green supply is 
surrounded by high human demand with significantly 
positive spatial autocorrelation, and vice versa.

Models for supply‑demand relations

The ordinary least square (OLS) model and spatial Dur-
bin model (SDM) were adopted to analyze the current 
relationship between human demand and green supply. 
Since LST and air pollution are inappropriate to explain 
the distribution of green supply, social demands were 
set as independent variables and green supplies were 
dependent variables. To avoid the collinearity between 
the total population and age groups, we transformed 
the density of the elderly and children to the percentage 
of the elderly and children ( EC ). We also performed 
logarithmic processing on population density ( PD ) and 
income per capita ( IC ) to reduce estimation errors. The 
specification of the OLS model is:

where Y is the green supply metric, � is the vector 
of coefficients, and � is the random error. Since urban 

Y = C + �
1
PD + �

2
EC + �

3
IC + �
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trees and parks are normally concentrated in several 
places (Tian et al. 2014; Haaland and van den Bosch 
2015), a neighborhood with large tree cover or park 
areas is likely to have similarly green neighbors. We 
demonstrated such spatial autocorrelation in green 
supplies by Moran’s I test. Given that green space in a 
certain region may also be affected by the population 
in surrounding regions, we included the spatial lag of 
the dependent variable (WY) and population density 
(WPD) to yield the SDM (Durbin 1960):

where � is the spatial lag parameter of the depend-
ent variable, and W is the spatial weight matrix com-
puted by using the Queen contiguity which defines 
neighbors by a common boundary (Bivand 2008). 
The Lagrange Multiplier (LM) test was applied to 
choose the type of spatial model between the spatial 
lag model and the spatial error model and whether the 
spatial model is better than the OLS model (Anselin 
1988; Park et al. 2021).

Results

Green inequality within cities

First, Gini coefficients show the inequality in green 
supplies and human demands across neighborhoods 
(Table 3). Among green supply metrics, amount met-
rics, especially the public park per capita, identify 
larger inequalities than the distance metric. Green ine-
quality is greater in New York and Amsterdam than in 
Beijing. The Gini coefficients of the public park per 
capita in New York and Amsterdam are remarkably 
close to 1 (complete inequality). Inequality in human 

Y = C + �W
Y
+ �

1
PD + �

2
EC + �

3
IC + �W

PD
+ �

demand is generally smaller than that in green sup-
ply. Among human demand metrics, environmental 
livability demands are distributed more evenly than 
social demands, of which Gini coefficients are below 
0.1.

Second, Lorenz curves illustrate how green sup-
plies are disproportionately distributed in neighbor-
hoods with uneven human demands (Fig.  2). At the 
first level (green amount-environmental livability 
demand), tree cover is more heavily allocated to 
lower-LST neighborhoods in Beijing (the Lorenz 
curve is fully located above the Gini perfect equality 
line) but to higher-PM2.5 neighborhoods in Amster-
dam (below the Gini perfect equality line). At the 
second and third levels (green accessibility-social 
demands), lower-population-density blocks share 
more tree cover and lower-income blocks share less 
public park area per capita in New York. Neighbor-
hoods with more children and elderly people share 
more distance to the nearest large park in Beijing but 
share less distance in Amsterdam. Notably, the jagged 
lines between public park area per capita and income 
are related to the great inequality in public park area 
per capita across neighborhoods (Table  3). Over-
all, Amsterdam performs better than the other cities, 
according to its close-to-Gini perfect equality lines 
and uneven green supply but generally follows the 
ranking of demands.

Demand‑based inequity

The spatial inequity in urban green is revealed by 
comparing distributions of green supply to human 
demand, as well as integrated supply-demand clus-
ters (Figs. 3, 4, 5 and 6). Overall, high peaks of green 
supplies are mostly concentrated on the fringe of the 

Table 3   Gini coefficients 
of green supplies and 
human demands

Category Metrics New York Amsterdam Beijing

Supply Tree cover 0.57 0.39 0.21
Public park per capita 0.96 0.93 0.75
Distance to the nearest large park 0.39 0.37 0.27

Demand Population density 0.40 0.42 0.28
Land surface temperature (LST) 0.04 0.03 0.01
PM2.5 concentration 0.06 0.09 0.01
Income per capita 0.38 0.21 0.11
Elderly people & children’s density 0.42 0.44 0.31
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three cities, while the distribution of high peaks of 
human demands differs across cities.

In New York, green supplies are concentrated in 
southwestern and northern parts, but the demands are 
relatively high in central parts according to the high-
density population, the elderly and children (Fig. 3), 
resulting in overall low supply-high demand clusters 
in central regions - i.e. Brooklyn district (Fig. 6). The 
opposite mismatching type (high supply-low demand 
cluster) is mainly observed in the fringe, especially 
in the Staten Island reflected as high tree cover but 
low environmental pressures as well as short distance 
to large parks but low population density. The LISA 
map also depicts a large area of high-low clusters in 
Staten Island representing high supply with surround-
ing low demand (Fig. 6). Across three supply-demand 
levels, notable mismatches are observed between tree 
cover and urban heat and between distance to the 
nearest large park and elderly/children density.

In Amsterdam, green supplies are low in the city 
center, where high peaks of demands in LST, popula-
tion density, and elderly/children density are located 
(Fig.  4), resulting in the overall low supply-high 
demand cluster scattering around the central area 

(Fig. 6). The opposite mismatching type (high supply-
low demand cluster) is mainly observed in the fringe, 
especially in southwestern areas reflected as high tree 
cover but low LST as well as short distance to large 
parks but low population density. The LISA map pre-
sents a large area of low-low clusters in the northeast 
representing a spatial match with low supply and sur-
rounding low demand (Fig. 6). Across three supply-
demand levels, the notable mismatches are similar 
to those in New York. Interestingly, the demand for 
improving air quality increases from the city center to 
the edge, which generally matches the corresponding 
green supply (tree cover) pattern.

In Beijing, overall low supply-high demand clus-
ters cover a large area in both the north and south 
(Fig.  6), which are reflected at different supply-
demand levels (Fig.  5). The low-high mismatches 
in the north are mainly reflected as low public park 
per capita but high population density, while mis-
matches in the south are mainly reflected as low tree 
coverage but high environmental pressures. Matches 
occur in the southeastern part where the large public 
park area per capita meets the high demand of low-
income neighborhoods. The LISA clusters are mostly 

Fig. 2   Lorenz curves for the distribution of urban green supplies over the ranking of human demands across neighborhoods
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not significant indicating weak spatial autocorrelation 
between green supply and human demand (Fig. 6).

Relations between green supply and human demand

In addition to supply-demand maps, OLS and SDM 
models further unraveled diverse associations 
between green supply and social demand in cities 

(Table 4). Our models are quite robust since OLS and 
SDM estimates are generally similar. Overall, Amster-
dam performs well since most social demands are 
positively associated with green supplies (p < 0.05), 
while most associations in Beijing and New York 
are negative (p < 0.05) or insignificant. Specifically, 
higher population density is related to less tree cover 
in New York and Beijing (p < 0.05). Neighborhoods 

Fig. 3   Spatial distributions of green supply metrics and demand metrics across urban block groups in New York
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with a higher proportion of the elderly and children 
tend to have a shorter distance to the nearest large 
park representing easier access to high-quality parks 
in New York and Amsterdam (p < 0.01). Notably, 
income per capita is not significantly connected with 
green supplies, except for the negative connections 
with distance to the nearest large park in New York 
(p < 0.01) which means that higher social demands of 
low-income neighborhoods tend to have less supply 
of high-quality parks.

When we look at spatial lag factors in SDM, most 
spatial lag effects of dependent variables (lag.Y) are 
significantly positive, suggesting that green supply in 
a neighborhood is significantly related to green sup-
plies in its bordering neighborhoods. Population den-
sity also has spillover effects (lag.Population density) 
on tree cover and public park area per capita, which 

means that more green supplies in a certain neighbor-
hood are associated with higher population density in 
bordering neighborhoods.

Discussion

Gini perfect equality or demand‑oriented equity

Urban green inequality in study cities has been 
observed in previous research in terms of green cov-
erage and urban park accessibility, which is consist-
ent with our findings (Feng et al. 2019; Paulin et al. 
2020; Pipitone and Jović 2021). We integrated tree 
cover, park accessibility, and green quality to assess 
multi-level UGS inequality. In contrast to a previous 
finding that UGS inequality is mainly reflected by 

Fig. 4   Spatial distributions of the green supply metrics and demand metrics across urban neighborhoods in Amsterdam
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coverage instead of distance in Germany (Wüstemann 
et al. 2017), our results show comparable inequalities 
in tree coverage and distance (Table 3). In addition to 
distinct cities, varying measurements of distance can 
be another reason: the previous study used the com-
mon distance metric – distance to any nearest UGS, 
while small and informal UGSs are rather frequent 
but have fewer benefits than large parks. To address 
such shortages, we considered green quality (i.e. park 
size) and obtained an improved distance metric – dis-
tance to the nearest large park (> 20 ha), which identi-
fied meaningful inequalities in three cities. The meas-
urement strategy of green accessibility can therefore 
have a significant impact on the findings and makes it 
difficult to compare our findings to others.

City performance varies by the objective of 
environmental justice – “Gini perfect equality” or 
“demand-oriented equity”. According to the concept 
of perfect equality implied in the Gini coefficient, 

Beijing performs the best among study cities as its 
Gini coefficients of green supplies are the smallest 
indicating the most evenly distributed UGS (Table 3). 
However, when we involve the demand to get the con-
cept of equity, Amsterdam has the best performance 
since UGS distribution follows the ranking of human 
demands (Fig.  2). For instance, neighborhoods with 
higher PM2.5 pressures share more trees and those 
with more elderly people and children share more 
nearby large parks in Amsterdam (Fig.  2). Those 
findings suggest that evenly distributed UGS is not 
necessarily concurrent with demand-oriented equity 
and vice versa – highlighting the necessity to con-
cern demand variation towards environmental justice 
(Chen and Huang 2021).

Our study contributes to the scientific under-
standing of urban environmental justice, by high-
lighting the concept of demand-oriented equity. We 

Fig. 5   Spatial distributions of the green supply metrics and demand metrics across urban neighborhoods in Beijing
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should reflect on whether the Gini perfect equality 
or demand-oriented equity is the ideal goal for envi-
ronmental justice. On the one hand, Gini perfect 
equality represents evenly distributed UGS across 
neighborhoods, which is the definition of environ-
mental justice in most previous research (Wolch 
et  al. 2014; Xiao et  al. 2017). On the other hand, 
as UGS is serving people, UGS should be more 
allocated to neighborhoods with higher demand. 
This UGS inequality is consistent with the demand 
variation which can be regarded as demand-oriented 
equity. Nevertheless, demand-oriented equity has 
difficulty determining how much UGS should be 
prioritized in high-demand neighborhoods. Moreo-
ver, the distribution of human demands changes 
over time, and thus investigating how to achieve 
demand-oriented equity based on circular statistics 
is warranted (Li et al. 2022).

Supply‑demand mismatches: calling for UGS 
allocation optimization

In addition to measurements of inequality and ineq-
uity, we presented spatial patterns of supply-demand 
mismatches, which are generally consistent with pre-
vious studies. Specifically, in New York, we found 
mismatches between tree cover and environmental 
pressures, and a recent study in US cities also revealed 
that tree planting is not prioritized by urban heat dis-
tribution (Zhou et al. 2021). In Amsterdam, previous 
research detected an increasing gradient of tree cover-
age from the center to the edge but an opposite gradi-
ent of population density and cooling demands (Pau-
lin et al. 2020; Schrammeijer et al. 2022), which are 
also shown in our maps (Fig. 4). In Beijing, an earlier 
study observed a mismatch between the spatial dis-
tribution of urban parks and population in 2017, par-
ticularly for elderly residents (Feng et al. 2019), and 

Fig. 6   Spatial distributions of overall supply, overall demand, and two types (columns) of supply-demand clusters (classified by the 
median value and LISA, respectively) in New York, Amsterdam, and Beijing (from top to bottom)
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our study found a similar mismatch for the year 2020 
and more specific mismatch between distance to the 
nearest large park and vulnerable population (Fig. 5). 
Compared to existing findings, our results reflected 
more dimensions and spatial detail of up-to-date mis-
matches between green supplies and human demands.

Similar to most studies on supply-demand mis-
matches (Luo and Li 2021; Lin et al. 2022), we iden-
tified mismatches as low supply-high demand and 
high supply-low demand clusters. Beyond that, we 
distinguished multi-level mismatches that can sepa-
rate the deficit for environmental livability demands 

and social demands. For example, Fig.  6 presents a 
large area of low supply-high demand mismatches 
in Beijing, and Fig.  5 further reveals that such mis-
matches are mainly caused by low park accessibil-
ity-high social demand in the North but by low tree 
cover-high environmental livability demand in the 
South. Accordingly, UGS development in Beijing 
should focus on developing public parks in the North 
and planting trees in the South, rather than making 
undifferentiated plans.

Relationships between green supplies and human 
demands vary by city and metric (Table 4). Overall, 

Table 4   The ordinary least square (OLS) model and spatial Durbin model (SDM) between green supply (dependent variables) and 
social demand (independent variables) in study cities

*p < 0.1; **p < 0.05; ***p < 0.01

New York Amsterdam Beijing

Dependent variable: Tree cover %
OLS SDM OLS SDM OLS SDM

Constant 0.387*** 0.178*** 0.619** 0.210 0.375 − 0.064
Population Density − 0.053*** − 0.040*** 0.014** 0.002 − 0.015 − 0.024**
Elderly and Children % 0.383*** 0.225*** 0.378*** 0.298*** − 0.515** − 0.430**
Income per capita 0.016*** 0.001 − 0.048** − 0.024 0.012 − 0.01
Lag.Population density 0.019*** 0.015* 0.072***
Lag.Y 0.683*** 0.530*** 0.222
Observations 6235 6235 448 448 89 89
Adjusted R2 0.13 0.025 0.093

Dependent variable: Public park area per capita
OLS SDM OLS SDM OLS SDM

Constant 3.309*** 1.713*** 1.009* 0.855 0.071* 0.023
Population Density − 0.305*** − 0.479*** − 0.060*** − 0.090*** − 0.009*** − 0.010***
Elderly and Children % − 0.623*** − 0.353** 1.885*** 1.712*** − 0.033* − 0.029
Income per capita − 0.008 − 0.007 − 0.047 − 0.060 0.002 0.001
Lag.Population density 0.329*** 0.062*** 0.008***
Lag.Y 0.209*** 0.138** − 0.095
Observations 6235 6235 448 448 89 89
Adjusted R2 0.10 0.338 0.474

Dependent variable: Distance to the nearest large park
OLS SDM OLS SDM OLS SDM

Constant 3.326*** 0.181*** 1.255* 0.704*** 0.106 0.935
Population Density 0.045*** 0.010*** − 0.082*** − 0.013 0.381*** 0.406***
Elderly and Children % − 1.060*** − 0.091*** − 1.470*** − 0.550*** − 0.132 0.116
Income per capita − 0.189*** − 0.014*** 0.027 − 0.039 − 0.223 − 0.138
Lag.Population density − 0.011*** − 0.015 − 0.276
Lag.Y 0.996*** 0.961*** 0.408***
Observations 6235 6235 448 448 89 89
Adjusted R2 0.017 0.045 0.165
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the distribution of green supplies meets the distribu-
tion of social demands in Amsterdam with positive 
relationships, while they are not positively related 
in New York and Beijing. Our models indicate that 
higher-demand neighborhoods with greater popula-
tion density tend to have lower green supplies with 
less tree cover and longer distances to the near-
est large park in New York and Beijing. Such mis-
matches can be explained by that high population 
density is usually related to high built-up density (Li 
et al. 2019) and are consistent with the previous stud-
ies (Feng et al. 2019; Chen and Huang 2021). Beyond 
the consistent findings, our spatial lag factors imply 
that green supply in a certain neighborhood tends 
to meet the demand of population density in its bor-
dering neighborhoods. Moreover, existing studies 
have shown that low-income people have less access 
to green space than other people in our study cit-
ies (Wolch et al. 2014; Hughey et al. 2016; de Vries 
et al. 2020; Wu et al. 2020). Our models unravel more 
specific mechanisms that the low-income communi-
ties tend to have shorter distances to the nearest large 
park in New York and Amsterdam but have no signif-
icant association with tree cover or public park area 
per capita. In addition, our spatial models reveal that 
green supplies in a neighborhood are significantly 
influenced by green supplies in its bordering neigh-
borhoods, which can be explained by that the distri-
bution of parks is primarily determined by geographi-
cal locations and the development history (Tian et al. 
2014; Haaland and van den Bosch 2015).

Our results on supply-demand mismatches at the 
neighborhood level can help guide local green plan-
ning toward meeting diverse human demands (Liu 
et  al. 2020; Menconi et  al. 2021). The low supply-
high demand clusters we identified should be the 
focus of future urban greening projects. Negative 
relationships between green supply and human 
demand would cause a series of inequity issues, 
particularly warranting intervention. As such, our 
results provide concrete green advice for study cit-
ies: Green plans in New York (e.g. Million-Trees 
NYC) can plant more trees in the blocks with high 
population density, and expand the public parks 
around the low-income blocks. The municipality of 
Amsterdam should particularly develop large pub-
lic parks around low-income neighborhoods to more 
efficiently achieve its target of increasing the public 
park area per capita and UGS quality. With the largest 

supply-demand mismatches, Beijing officials are sup-
posed to make extra efforts to allocate more trees and 
new public parks to neighborhoods with higher levels 
of temperature, PM2.5, and vulnerable people. How 
to better meet human demand with limited UGS is 
an important challenge for environmental equity and 
sustainable development in these capital cities.

Uncertainties and limitations

Uncertainties exist in the data source which might 
influence the results. Given that our study involves a 
comparative analysis of three international cities, it 
is imperative to adopt globally remote sensing prod-
ucts with uniform definitions and methodology for 
estimating tree cover, LST, and PM2.5 concentration. 
However, the LST and PM2.5 datasets at 1 km reso-
lution are relatively coarse to capture neighborhood-
level environments and can omit localized or fine-
grain patterns, which might result in underestimated 
inequalities across neighborhoods. Due to this limita-
tion, we did not involve LST and PM2.5 concentra-
tion in the statistical models but only depicted spatial 
patterns. The user’s accuracy of the tree cover in the 
World Cover 2020 product is around 80%, also affect-
ing the precise assessment of the distribution of green 
spaces (Tsendbazar et  al. 2021). Therefore, we rec-
ommend the use of globally consistent products based 
on high-resolution data for future investigations into 
urban green spaces and environments in international 
cities. For instance, further research can produce 
high-resolution LST products from Landsat 8 and 
Sentinel-2 imagery to obtain more accurate LST at 
the neighborhood level.

Furthermore, the statistical data we gathered to 
assess social demands exhibit variations among cit-
ies regarding which data are publicly available, at 
what administrative resolution, and how up-to-date 
the datasets are. For instance, while Amsterdam and 
New York provide neighborhood-level income data 
for the year 2018, Beijing only offers district-level 
income information, which was then downscaled 
using rent distribution for every neighborhood. These 
disparities in data sources may influence the absolute 
value of demands, but we mainly look at the ranking 
of demands where the influence is diminished. Our 
regression models between green supply and social 
demand were built for each city, and thus the regres-
sion coefficients are comparable between cities.
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Our study design and methodology also have 
some limitations. First, different divisions of neigh-
borhoods and income concepts between cities can 
lead to differences in the Gini coefficient we used to 
measure inequality. Second, we directly compared 
green supply with human demand without converting 
them into the same evaluation system, i.e., ecosystem 
services (Lin et  al. 2022; Liu et  al. 2020). Environ-
mental services provided by UGS can be calculated 
by cooling rates and PM2.5 removal amount per 
day of trees, woodland, shrubs, and grass, and then 
linked to environmental livability demands (Lin et al. 
2022). Third, our assessment of ‘human demand’ is 
not sufficient. We assessed the potential demands 
without considering the actual use of parks. Given 
park space in low-income communities may be per-
ceived as unsafe for children (Wolch et  al. 2014). 
Although previous research in the Global North has 
revealed that UGS could decrease the number of total 
crimes and gun assaults by relieving stress, studies 
in the Global South found tree cover associated with 
higher sexual crimes (Hunter et al. 2019; Venter et al. 
2022). Further research is needed to explore causal 
mechanisms behind crime-green space associations 
and complement the demand assessment in terms of 
safety. We also used environmental pressures such as 
LST to represent the demand but did not concern the 
various heat tolerance of residents. Future research 
can improve the assessment of human demands for 
UGS through more indicators and surveys, such as 
conducting surveys and interviews on human pref-
erences. Fourth, we established a singular set of 
regression coefficients to obtain a general relation-
ship between green supply and human demand within 
each city, disregarding spatially varying relationships. 
Although spatially varying relationships can be ana-
lyzed by models such as the Geographically Weighted 
Regression (GWR), it requires a unified distance or 
range used for spatial correlation which is difficult 
to set due to varying neighborhood size and density 
in three international cities. Nevertheless, we recom-
mend future research to apply GWR on a large scale, 
creating a map of the green supply-demand relation.

Conclusions

Using a unique green supply-human demand con-
cept at the neighborhood level, we proposed 

“demand-oriented equity” as a sustainable goal of 
urban green justice, rather than the common “Gini 
perfect equality”. This study has measured multi-level 
green inequality and analyzed supply-demand mis-
matches based on spatial clusters and models.

Overall, the public park per capita reflects the larg-
est inequality in green supplies, and the mismatch-
ing neighborhoods with low supply and high demand 
are mainly scattered around urban centers. Among 
study cities, New York is the city with the greatest 
inequality in green supplies, and mismatches between 
tree cover and population density and between the 
access to public parks and low-income households 
are remarkable. In Beijing, the green supplies are 
more evenly distributed compared to other cities, 
but the distribution of green supplies does not match 
that of environmental livability demands and social 
demands, particularly of the elderly and children. 
Amsterdam performs well in demand-oriented equity 
with green supplies generally consistent with the 
demand distribution, while the green supply around 
low-income communities can be enhanced.

Our findings can guide urban greening pro-
jects by pinpointing areas with low supply and high 
demand, facilitating the development of neighbor-
hood-specific strategies for landscape sustainabil-
ity. A key contribution of this study lies in creating 
a pyramid of green supply indicators correspond-
ing to human demand indicators. This framework is 
applicable across diverse cities and analysis scales. 
Future research can improve the assessment of human 
demand and debate how to achieve demand-oriented 
equity of urban green in cities, ultimately fostering 
urban sustainability.
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