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• Cyanobacterial-derived spectral vari
ability was induced during biomass 
growth. 

• Five cyanobacterial genera were spec
trally discriminated in 80-90% of cases. 

• Spectral pre-processing assisted in clas
sification and model robustness. 

• Reflectance from wavelengths in both 
VIS and NIR ranges was essential.  
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A B S T R A C T   

Cyanobacteria are major contributors to algal blooms in inland waters, threatening ecosystem function and water 
uses, especially when toxin-producing strains dominate. Here, we examine 140 hyperspectral (HS) images of five 
representatives of the widespread, potentially toxin-producing and bloom-forming genera Microcystis, Plankto
thrix, Aphanizomenon, Chrysosporum and Dolichospermum, to determine the potential of utilizing visible and near- 
infrared (VIS/NIR) reflectance for their discrimination. Cultures were grown under various light and nutrient 
conditions to induce a wide range of pigment and spectral variability, mimicking variations potentially found in 
natural environments. Importantly, we assumed a simplified scenario where all spectral variability was derived 
from cyanobacteria. Throughout the cyanobacterial life cycle, multiple HS images were acquired along with 
extractions of chlorophyll a and phycocyanin. Images were calibrated and average spectra from the region of 
interest were extracted using k-means algorithm. The spectral data were pre-processed with seven methods for 
subsequent integration into Random Forest models, whose performances were evaluated with different metrics 
on the training, validation and testing sets. Successful classification rates close to 90 % were achieved using 
either the first or second derivative along with spectral smoothing, identifying important wavelengths in both the 
VIS and NIR. Microcystis and Chrysosporum were the genera achieving the highest accuracy (>95 %), followed by 
Planktothrix (79 %), and finally Dolichospermum and Aphanizomenon (>50 %). The potential of HS imagery to 
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discriminate among toxic cyanobacteria is discussed in the context of advanced monitoring, aiming to enhance 
remote sensing capabilities and risk predictions for water bodies affected by cyanobacterial harmful algal 
blooms.   

1. Introduction 

Cyanobacteria are photosynthetic prokaryotic organisms that syn
thesize chlorophyll-a (Chla) and other pigments, such as phycocyanin 
(PC), which is the pigment responsible for their known blue-green color 
(Whitton and Potts, 2012). They can be found in the water column of 
lakes and reservoirs, coexisting naturally with the phytoplankton com
munity at relatively low abundances. However, under specific condi
tions (e.g., eutrophication, high water temperature, stability of the 
water column, etc.), they can undergo massive proliferation, leading to 
the formation of dense blooms (Huisman et al., 2018). When these 
blooms are dominated by toxin-producing cyanobacterial strains, they 
are referred to as harmful cyanobacterial algal blooms (CyanoHABs) 
(Huisman et al., 2018). Cyanotoxins have a wide range of adverse ef
fects, with hepatotoxins such as microcystins (MCs) being the most 
common worldwide, followed by cytotoxins such as cylindrospermopsin 
(CYN), and neurotoxins, such as anatoxin-a (ATX) and paralytic shellfish 
poisoning toxins (PSPs), with Microcystis, Dolichospermum (formerly 
Anabaena), Aphanizomenon, Planktothrix and Chrysosporum being the 
main toxin-producing genera in freshwater ecosystems (Svirčev et al., 
2019). In this manner, CyanoHABs have a profound impact on water 
quality, influencing multiple water uses such as recreation and water 
supply. As a result, they engender significant socio-economic conse
quences, with associated costs that reach up to millions of euros/dollars 
per year for some countries (Sanseverino et al., 2016). Furthermore, it is 
expected that eutrophication and climate change will increase the fre
quency and duration of cyanobacterial blooms (Chapra et al., 2017), as 
well as expand their distribution towards higher latitudes (Przytulska 
et al., 2017). 

Due to the potential risks associated with CyanoHABs, a wide range 
of techniques has been developed to monitor cyanobacteria. These 
techniques vary from more traditional and time-consuming methods, 
such as microscopic enumeration or pigment extraction, to more auto
mated approaches. Automation in recent decades in the field of cyano
bacterial monitoring includes tools such as probes permanently installed 
in water bodies or satellite-based remote sensing, among others. Addi
tionally, machine learning has emerged as an efficient way to process all 
the data coming from automation, boosting cyanobacterial monitoring 
and enabling broader data applications (Almuhtaram et al., 2021). 
Optical methods, including approaches based on the absorption, trans
mission, fluorescence, and reflectance of cyanobacteria when exposed to 
light, have been used in different manners to monitor algae and blooms 
at laboratory and field scales (Almuhtaram et al., 2021; Solovchenko, 
2023). In this context, Rousso et al. (2020) showed how data-driven 
forecasting strategies, based on statistical relationships between input 
variables and bloom occurrence, had gained popularity in the research 
of CyanoHABs compared to process-based models, which require a 
detailed understanding of the underlying physical and biological pro
cesses. The shift towards data-driven approaches can be attributed to the 
evolution of more automated monitoring strategies and tools, as 
mentioned above, with in-situ fluorescence and remote sensing as the 
main contributors (Rousso et al., 2020). These methods are capable of 
generating large amounts of data, while machine learning techniques 
play a key role in enabling their processing and integration in predictive 
models. 

Nowadays, key parameters associated with the occurrence of Cya
noHABs, such as turbidity, Chla and PC, can be estimated using data 
from multispectral satellite imagery (Jiang et al., 2020; Pamula et al., 
2023). Thus, remote sensing has become a well-recognized tool for the 
early warning of cyanobacterial blooms (Almuhtaram et al., 2021). 

However, while satellite multispectral imagery collects data in discrete 
bands from specific parts of the electromagnetic spectrum, HS technol
ogy provides reflectance data in narrower spectral bands, offering 
higher resolution. This higher resolution allows to expand remote 
sensing capabilities beyond early detection of cyanobacterial blooms, to 
early identification of potentially toxic genera dominating these pro
liferations (Kudela et al., 2015). In addition, HS remote sensing using 
satellites, drones, or local HS cameras can detect potential cyanobacte
rial risk not only in the early stages of bloom development, but also in 
low-risk areas associated with more strategic or exposed water bodies 
that could become a threat due to future displacement or proliferation of 
the cyanobacterial biomass. Another reason supporting the utility of HS 
imagery for cyanobacterial classification in the field is that each genus 
has specific traits. For instance, not all potentially toxic species exhibit 
the same ratio of toxin/biomass. Microcystis species, for example, are 
well-known for their high microcystin production (Dittmann et al., 
2013; Li et al., 2023). As a result, varying levels of potential risk are 
expected across different genera. In this context, machine learning 
provides various techniques that are essential for properly handling, 
processing and analyzing reflectance data from HSl imagery. Despite its 
suggested potential for early identification of potentially toxic genera 
dominating developing blooms (Kudela et al., 2015), HS technology 
capabilities are still relatively unexplored in this field (Almuhtaram 
et al., 2021). Recent advances in HS technology have made HS cameras 
more affordable and commercially available, increasing their popu
larity, especially at industrial and laboratory scale (Liu et al., 2021). The 
range of applications is diverse, for instance, Salmi et al. (2021) utilized 
various vegetation indices, incorporating reflectance data from selected 
wavebands captured by a HS camera, to monitor the growth of different 
cyanobacteria and algae species, revealing strong correlations with 
fluorescence measurements. In another study, Adejimi et al. (2023) 
explored the suitability of HS transmittance for classifying cyanobacte
rial species in bioreactors, employing data from the visible and near- 
infrared (VIS/NIR) spectrum to train machine learning algorithms. 
However, while the existing studies have focused more on industrial 
perspectives, there is a lack of agreement regarding the applicability of 
HS imagery from an environmental standpoint (Almuhtaram et al., 
2021). 

This study aims to explore the potential of reflectance HS imagery 
combined with machine learning techniques for discriminating among 
five representative species of bloom-forming, potentially toxin- 
producing cyanobacterial genera when a wide spectral variability is 
considered, elucidating the importance of visible and near-infrared 
wavelengths on achieving accurate classifications. The ultimate goal is 
to demonstrate the capacity of HS technology to fine-tune existing early 
warning systems based on remote sensing tools by discerning specific 
cyanobacterial genera with potential toxicity. To the best of our 
knowledge, this study represents the first investigation to consider such 
technology along with the significant spectral and taxonomical vari
ability, highlighting the novelty of both the methods employed and the 
findings obtained. 

2. Materials and methods 

The methodology used is illustrated in Scheme 1 and it can be 
summarized in five main steps. First, different cyanobacteria were 
grown under various conditions to induce pigment and spectral vari
ability. Next, HS images were acquired to record the spectral informa
tion from the grown biomass, and some bio-optical characteristics were 
measured to confirm the induced variability. Finally, the resulting HS 
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images were pre-processed and integrated into machine learning 
models, whose performances were evaluated by different metrics. 

2.1. Cyanobacterial collections and factorial experiment 

Five cyanobacteria were selected from the collection of Universidad 
Autónoma de Madrid (UAM, Spain): (1) Microcystis aeruginosa 
(M. aeruginosa) (UAM284, MCs producing strain), (2) Planktothrix 
agardii (P. agardii) (UAM565, MCs producing strain), (3) Aphanizomenom 
gracile (A. gracile) (UAM529, PSPs producing strain), (4) Chrysosporum 
ovalisporum (C. ovalisporum) (UAM292, CYN producing strain), and (5) 
Dolichospermum crassum (D. crassum) (UAM502, non-toxic strain) 
(Table S1). Two collections were created for the study. The mother 
collection (Fig. S2) consisted of five cultures, each corresponding to one 
of the cyanobacteria mentioned above, maintained under their stock 
conditions at UAM culture collection (temperature 25 ◦C, light intensity 
of 8 μmol photons m− 2 s− 1, and nutrients). M. aeruginosa and P. agardhii 
were cultivated in BG11 medium (Rippka, 1988), while the other spe
cies, which can fix atmospheric nitrogen via specialized cells (hetero
cyst), were cultured in BG110 medium (with the same composition as 
BG11 but lacking a source of nitrogen). The second collection was 
cultivated with biomass from the mother collection in a factorial experi
ment. Thus, the cyanobacterial biomass was cultivated in 300 mL of the 
corresponding medium in a 500 mL Erlenmeyer flask, starting with an 
initial biomass equivalent to an optical density at 750 nm (OD750) of 0.1. 
The factorial experiment involved different light and nutrient condi
tions. Three levels of light intensity were defined for all cyanobacteria: 
8, 30, and 120 μmol photons m− 2 s− 1. Additionally, three nutrient levels 
were defined for non-N-fixing cyanobacteria: BG11 with nitrogen pro
portions of 1/20, 1/4, and undiluted (1.4, 7, and 28 mg of N/L, 
respectively). Thus, M. aeruginosa and P. agardhii were exposed to all 
factorial levels, experiencing changes in both nutrient and light condi
tions, while nitrogen-fixing cyanobacteria were subjected to variations 
in light conditions only. As mentioned above, the main goal of the 
factorial experiment is to induce pigment and spectral variability by 
manipulating nutrient and light availability, which directly affect the 
production of key photosynthetic pigments as well as other biological 
traits (e.g., cell size and morphology) (Wyman and Fay, 1986). 
Following other similar works (Legleiter et al., 2022), we assumed a 
simplified scenario in which the water column consisted only of pure 
water and the cyanobacterial biomass. Therefore, spectral variability 
resulting from other potential sources, such as colored dissolved organic 
matter (CDOM), suspended sediments, or other non-cyanobacterial algal 
constituents, was not considered in this experiment. 

2.2. Bio-optical measurements 

Turbidity, determined by measuring OD750, served as a proxy for 

cyanobacterial growth. Additionally, for each culture used for image 
acquisition in the factorial experiment, Chla and PC were extracted, and 
their concentrations were measured. For Chla extraction, 10 mL of the 
culture was centrifuged at 4700 rpm for 15 min, and the resulting pellet 
was resuspended in 8 mL of 90 % (v/v) cold methanol at 4 ◦C (Cirés 
et al., 2011). The extraction took place overnight, in darkness and at 
4 ◦C. After the extraction period, the extract was centrifuged again at 
4700 rpm for 15 min, the OD665 (chl a absorbance peak) and OD750 
(turbidity) were measured, and chl a concentration (μg L− 1) was 
calculated using equations derived from Marker (1980) (Supplementary 
material – Eq. S4-a). Similarly, for PC extraction, 10 mL of the culture 
were centrifuged at 4700 rpm for 15 min, followed by resuspension in 5 
mL of phosphate buffer (0.1 M, pH = 6). PC was extracted according to 
Lawrenz et al. (2011) by sonication (5 s duration, 8-W pulses for 30 s), 
and then in darkness, at 4 ◦C for 48 h. After extraction, 2 mL of the 
extract were centrifuged at 10,870g (7,130 rpm) for 5 min. The OD620 
(PC absorbance peak) and OD750 (turbidity) were measured, and PC 
concentration (μg L− 1) was calculated using equations detailed in 
Lawrenz et al. (2011) (Supplementary material – Eq. S4-b). All absor
bance measurements were taken using a Hitachi U-2000 Dual-Beam 
UV–Vis Spectrophotometer. 

Statistical tests were employed to examine differences in pigment 
ratios among groups of environmental conditions for each cyanobacte
rial taxa. If the assumptions of normality and variance homogeneity 
were met, assessed using the Shapiro-Wilk and Levene tests respectively 
(Levene, 1960; Shapiro and Wilk, 1965), an ANOVA test was applied 
(Fisher, 1925), otherwise Kruskal-Wallis test was used (Kruskal, 1952). 

2.3. Image acquisition 

A line-scanning HS imaging system with push-broom configuration 
was used to acquire the HS images. It was located in a dark room and 
covered with a blackout cloth, minimizing light interference from the 
room (Fig. S3). The system comprises a HS camera (Specim FX10), and a 
scanner (Specim LabScanner 40 × 20). The camera operates in the 
visible and near-infrared (VIS/NIR) region, recording reflectance data 
for 448 bands from 397 to 1004 nm, with a spectral resolution FWHM 
(Full Width at Half Maximum) of 5.5 nm (mean). The camera was 
mounted in the scanner, that also includes a moving table where the 
sample was placed, and a light source (170 W halogen dual illumination) 
positioned at a 45-degree angle to the sample location to reduce shad
owing effects. Each sample consisted of 10 mL of the cyanobacterial 
culture contained within a 50 mm diameter petri dish. The samples were 
placed one by one in a fixed position on the moving table. Some pa
rameters were adjusted to convey spectral and spatial resolution, such as 
the frame rate (24 Hz), exposure time (12 ms), positioning speed (12 
mm/s), and scanning speed (5 mm/s). The procedure was controlled and 
implemented by an image acquisition software (Specim Lumo software, 

Scheme 1. Workflow followed in this study. For details read material and methods.  
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Spectral Imaging Ltd, Oulu, Finland), and the results were checked in 
real time through fast visualization using a HS analysis software (Specim 
Insight software, Spectral Imaging Ltd., Oulu, Finland). The output 
consisted of the raw image, created from multiple congruent and over
lapping images, the dark reference (0 % reflectance) generated by 
closing the shutter of the camera, and white reference (99 % reflectance) 
obtained from a Spectralon panel. Due to the low signal-to-noise ratio at 
the two ends of the spectral ranges, only wavelengths from 400 to 1000 
nm (442 bands) were used to train the models. 

Two datasets were created. The primary, referred to as CLN (from 
Cyanobacteria, Light, and Nutrients), consisted of 125 HS images 
captured throughout the entire life cycle of the cultures from the 
factorial experiment (light and nutrient conditions explained in Section 
2.1). The second dataset, referred to as MC (from Mother Collection), 
was composed of 15 HS images (three of each culture) captured when 
great biomass was reached, and cultures were between exponential and 
stationary phases. The main goal of generating the MC dataset was to 
provide images of cultures grown under standard and optimal condi
tions. Although the biomass of each genus came from the same stock and 
can be seen as triplicates, their average reflectance showed some 
differences. 

2.4. Treatment of hyperspectral images 

Spectral calibration of the acquired HS images was computed 
applying Eq. (1). 

Ii =
Ri − Di

Wi − Di
(1)  

where I is the corrected HS image, R is the raw HS image, W and D are 
the white and dark references respectively, and i corresponds to the pixel 
index. This calibration was performed using a Python command-line 
software developed in-house, designed to automatically compute Eq. 
(1) across all images. 

Spectral extraction consisted of the automatic selection of the pixels 
from the Region of Interest (ROI) containing cyanobacterial biomass, 
followed by the extraction of reflectance data from each pixel. The 
extraction was achieved by creating a mask over the ROI using the k- 
means algorithm (Lloyd, 1982), an unsupervised clustering method that 
separates n observations into k clusters based on their similarities. Each 
observation is assigned to the cluster with the nearest mean by mini
mizing the within-cluster sum of squared distances (Eq. (2)). Thus, pixels 
in each cluster are spectrally similar to the pixels in their own group, and 
spectrally different from pixels in other groups. 

∑n

i=0
min
μj∈C

(⃒
⃒xi − μj

⃒
⃒2
)

(2)  

where n is the number of clusters, C is each cluster, μ its centroid, and x 
is every data point. 

The spectra from all the pixels included in each mask were averaged 
to obtain a single representative spectrum for each sample, that was then 
stored in a common dataset. 

Spectral exploration was performed on the resulting dataset to 
identify distinct and well-defined groups, applying techniques such as 
the Principal Component Analysis (PCA) to visualize the data in a two- 
dimensional space that captures maximum variability, enabling a better 
understanding of the potential grouping patterns (Jolliffe, 1986). The 
averaged spectra and standard deviation of each cyanobacterial taxa 
were displayed to identify differences and similarities. 

2.5. Spectral analysis: model training and evaluation 

Spectral pre-processing techniques are known to reduce the noise in 
the data (Gholizadeh et al., 2015), while enhancing important features 
and spectral data quality (Saberioon et al., 2019), significantly 

improving the accuracy and reliability of machine learning predictions. 
Importantly, we refer to noise as any variations within the data that do 
not correspond to specific cellular features but come from other sources, 
such as vibrations or reflections during image acquisition. 

Following previous successful experiences with HS imagery (Saber
ioon et al., 2019), seven different pre-processing methods were applied 
and combined to achieve optimal results in the classification model. The 
main goal of exploring these different pre-processing methods was to 
identify and select the one that effectively enhanced critical features for 
classification, minimizes noise, and strengthens the robustness of the 
model. Specifically, the Savitzky-Golay (SG) smoothing technique was 
applied using a second-order polynomial fit and 11 smoothing points. SG 
was then combined with six other techniques, including first (FD) and 
second (SD) derivatives, Multiplicative Scatter Correction (MSC), Stan
dard Normal Variate (SNV), Continuum Removal (CR), and Detrend. 
Further information about these pre-processing techniques can be found 
in Table S5. 

The Random Forest algorithm was selected as classification model, 
due to its outstanding performance in previous studies after spectral pre- 
processing (Belgiu and Drăgu, 2016), demonstrating its capacity to 
handle high-dimensional and correlated data, identify complex non- 
linear relationships, and maintain high accuracy even with noisy or 
imbalanced datasets. Random Forest is an ensemble classifier that builds 
multiple decision trees using for each one a random selection of samples 
and variables (Breiman, 2001). Each decision tree in the forest makes a 
prediction, and the final result is determined by the mode of all the in
dividual tree predictions. The different combinations of the datasets 
mentioned in Section 2.2 (CLN, CLN + MC, and CLN + MC filtered) were 
randomly split 80 %/20 %, maintaining a proportional representation of 
each class. As the three combinations had a shared set of samples, a 
common core of randomly selected data pairs was maintained in the 
splitting to avoid bias potentially introduced by different data partitions. 
Beyond this, instead of a single split, a multiple train-test split approach 
was followed. Each model was trained on multiple training sets, and the 
performance was evaluated on the corresponding test sets. The results 
were then averaged for each model. Randomness was fixed during 
model training to enable reproducibility. This iterative process aimed to 
reduce the variance that may occur in the data splitting process, espe
cially when dealing with limited data, and thus to provide a more robust 
estimate of the performance of the models. Moreover, hyperparameters, 
such as the number of trees in the forest and the maximum depth of these 
trees, were optimized using a random search approach with five-fold 
cross-validation. Thus, each validation set consisted of approximately 
16 % of the samples from the original dataset (i.e., 20 % of the 80 % of 
the training set). The search was conducted over multiple iterations with 
a standardized randomness, to maintain reproducibility and enable 
comparison. 

The evaluation of the classification models was performed on the 
training, validation, and testing sets. The training set, containing 80 % of 
the data, was used to train the models, therefore optimal performance of 
the classifiers is expected on this set. The validation set, obtained 
through 5-fold cross-validation, was used for hyperparameter tuning 
and model selection. As a result, the performance of the classifiers is 
expected to be slightly lower on this set, which may be influenced by 
factors such as data limitations. Finally, the testing set, consisting of the 
remaining 20 % of the data, was used to estimate the capacity of the 
model to generalize to unseen data. Thus, the Accuracy (Acc) was 
analyzed in the training and validation sets, while Cohen's Kappa coef
ficient (Kappa) was computed for all sets. These metrics were calculated 
with Eqs. (3) and (4) respectively. 

Acc =
(TP + TN)

(TP + FP + TN + FN)
(3)  

where TP and TN are true positives and true negatives respectively; and 
FP and FN are false positives and false negatives respectively. 
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kapa =
Pr(a) − Pr(e)

1 − Pr(e)
(4)  

where Pr(a) is the probability of observed agreement and Pr(e) is 
probability of random agreement. 

Since a single metric may not capture all aspects of the performance 
of a model, it is often necessary to use multiple metrics simultaneously 
during the evaluation process (Sokolova and Lapalme, 2009). In this 
case, specificity and F1 score (a combination of precision and sensitivity 
metrics) were also calculated in the testing set. These metrics were 
calculated with Eqs. (5), (6), (7) and (8) respectively. 

Specificity =
(TN)

(TN + FP)
(5)  

F1 = 2×
(precision × sensitivity)
(precision + sensitivity)

(6)  

Precision =
(TP)

(TP + FP)
(7)  

Sensitivity =
(TP)

(TP + FN)
(8)  

where again TP and TN are true positives and true negatives respec
tively; and FP and FN are false positives and false negatives respectively. 

2.6. Computational tools and libraries 

All analyses were carried out with in-house Python (version 3.9.2) 
scripts developed and executed in the Jupyter Notebook environment, 
an open-source web-based platform for interactive computing (Perkel, 
2018). Statistical analyses were carried out with functions from the stats 
module of SciPy library (version 1.10.1), spectral extraction and aver
aging with Spectral Python (SPy) module (version 0.21), pre-processing 
with functions from PySpectra package (version 0.0.1.2) and SciPy li
brary (version 1.10.1), and machine learning models with functions 
from the Scikit-learn library (version 1.2.2) (Pedregosa et al., 2011). 

3. Results and discussion 

In the following subsections, all results are presented with specific 
references to related studies, allowing for comparison and discussion of 
specific results in their relevant context. At the end of the section, overall 
novelties, limitations, and research directions are addressed. 

3.1. Visual and pigment variability during cyanobacterial growth 

Significant visual variations were observed during cyanobacterial 
growth, both within and between groups. Fig. S6 shows the evolution of 
OD750 for each cyanobacterial genus. Notably, C. ovalisporum color 
ranged from greenish brown under low light conditions to dark brown 
under high light intensities. Similarly, M. aeruginosa color varied from 
dark green under high nutrient and low light conditions, to yellowish 
tones under low nutrient and high light conditions (Fig. S7). In certain 
cultures, the development of yellowish colors indicated a stress 
response, particularly in cases where low nutrient levels and high light 
intensities coincided. Xi et al. (2015) discussed the applicability of HS 
absorbance measurements in discriminating among phytoplanktonic 
groups. In their experiments, they subjected the cultures to similar light 
intensities as those used in this study, obtaining an effective induced 
variability, however they did not take into account nutrient variations. 
These variations were also observed in the pigment concentrations. 
Table 1 presents the average and standard deviations of PC and Chla 
concentrations, and their ratios across the different conditions. Overall, 
a consistent trend emerged among all cyanobacteria, where increasing 
light intensity led to decreased PC and Chla concentrations. Moreover, 
in non-N-fixing cyanobacteria, higher nutrient availability resulted in 
the opposite outcome, with higher concentrations of both pigments. 
However, exceptions were observed in P. agardhii and D. crassum, which 
could be due to insufficient light levels required for their maximum 
growth rates, causing pigment synthesis to decrease as growth becomes 
light limited (Wyman and Fay, 1986). On the other hand, the PC/Chla 
ratio exhibited variations across all cyanobacteria and conditions, with 
statistically significant differences observed in M. aeruginosa under 
different nutrient conditions, and P. agardhii under different light 

Table 1 
Mean and standard deviation values of pigment concentrations and pigment ratios grouped by conditions from CLN dataset.   

[PC](mg L− 1) [Chla] (mg L− 1) PC/Chla 

Mean SD Mean SD Mean SD 

Microcystis 

Light 
Low  11.0  12.8  3.7  3.4  2.7  0.9 
Medium  6.2  6.3  2.3  2.0  2.4  0.9 
High  3.7  3.4  1.3  0.9  2.7  1.1 

Nutrients*** 
Low  1.9  1.0  1.0  0.4  2.0  1.0 
Medium  4.9  3.2  2.2  1.4  2.4  0.9 
High  13.8  12.3  4.1  3.5  3.3  0.5 

Planktothrix 

Light*** 
Low  4.8  2.8  2.6  0.5  1.8  0.8 
Medium  2.2  0.8  1.0  0.3  2.1  0.6 
High  1.9  0.5  0.6  0.2  3.2  1.0 

Nutrients 
Low  1.8  0.5  1.4  0.9  1.8  0.9 
Medium  4.2  2.6  1.7  0.9  2.7  1.2 
High  3.8  2.5  1.7  1.0  2.3  0.6 

Chrysosporum Light 
Low  9.6  4.7  4.1  2.3  2.4  0.4 
Medium  7.7  2.7  3.6  1.4  2.2  0.3 
High  4.7  1.3  2.5  0.7  2.0  0.5 

Aphanizomenon Light 
Low  14.4  10.3  4.3  3.1  3.3  0.4 
Medium  3.6  1.8  1.3  0.6  2.7  0.7 
High  1.7  0.2  0.7  0.1  2.4  0.5 

Dolichospermum Light 
Low  12.1  6.5  4.4  2.6  2.8  0.5 
Medium  2.7  1.0  1.3  0.3  2.1  0.7 
High  4.2  2.0  2.4  1.1  2.4  1.5 

A symbol is included when intragroup differences in the PC/Chla ratio were statistically significative regarding culture conditions. SD: standard deviation. 
*** p-Value < 0.01. 
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conditions. In the case of Microcystis, the ratio increased with higher 
nutrient availability, primarily driven by a substantial increase in the 
average PC concentration (from 1.9 to 13.8 mg L− 1, more than a seven- 
fold increase), which was greater than the increase in the average Chla 
(from 1 to 4.1 mg L− 1, approximately a four-fold increase). Conversely, 
in Planktothrix the ratio increased with higher light intensity, primarily 
due to a decrease in the average Chla (from 2.6 to 0.6 mg L− 1, a four-fold 
decrease), which was greater than the decrease in the average PC con
centration (from 4.8 to 1.9 mg L− 1, a two to three-fold decrease). Under 
the light of these results, it can be assumed that the wide range of 
physicochemical conditions applied led to variations up to two orders of 
magnitude in pigment concentrations (from minimum to maximum 
values). These variations were consistent with the changes in culture 
colors observed during the experiment, confirming that great variability 
had been effectively induced. 

3.2. Spectral pre-treatment 

After image acquisition, final images (Fig. 1a) consisted of >320,000 
pixels (313 lines, and 1024 pixels per line), each one integrating 
reflectance data from 448 bands. Applying the k-means algorithm 
generated a mask for each image, where the pixels with cyanobacterial 
biomass were selected as shown in Fig. 1b. With this masking process, 
the quantity of pixels effectively decreased (e.g., to 50,000 pixels in the 
case of the image displayed in Fig. 1b). Finally, the spectra from every 
pixel in the ROI was averaged into one mean spectrum (Fig. 1c), which 
conserved the reflectance from the 448 bands, and it was assumed to be 
representative of the sample. Importantly, the standard deviation was 
constant for all wavelengths except for those between 400 and 450 nm, 
where the standard deviation increased, which could be due to some 
interferences during the hyperspectral image acquisition (e.g., light 
reflection from the metal platform or Petri dish). The spectral extraction 
process could be automated if the number of clusters (k) required for 
each image was the same, as it occurred when biomass was concentrated 
enough. However, most images with lower biomass concentration had a 
different optimal number of clusters, which should be taken into 
consideration for future experiments as it implies an increased amount 
of work. 

In any case, this method for spectral extraction proved to be practical 
and innovative compared with other studies with phytoplanktonic 
biomass where the ROI was manually selected with a default square of 
pixels or commercial software, which apart from being more time- 
consuming, is also prone to losses of spectral information (Salmi et al., 

2022). It is important to note that during the image acquisition process, 
in cases where the biomass concentration was too low, the k-means al
gorithm was unable to effectively discriminate the cyanobacterial 
biomass from the background. Consequently, not all pixels containing 
biomass were included in the mask, while some pixels without biomass 
were mistakenly included. It was observed that, on average, a minimum 
OD750 of 0.3 was required to generate an accurate mask when placing 
10 mL of cyanobacterial culture within a 50 mm diameter petri dish for 
HS image acquisition. This aspect has been observed in other studies 
with HS imagery of cyanobacterial and algal biomass, where similar 
minimum concentrations for detection were determined (Salmi et al., 
2021), or even ratios among absorbance at specific wavelengths (751/ 
676 nm) were used as indicators for minimum concentrations (Salmi 
et al., 2022). Consequently, during spectral extraction some noise could 
be introduced. Thus, three combinations of the obtained datasets were 
selected for the following analysis: (1) CLN images (125 images), (2) 
CLN and MC images (140 images), and (3) CLN and MC images after 
applying a quality filter (96 images). The latter (data set 3) was used to 
illustrate the patterns observed during the exploration, although all data 
set combinations were consistent with the results. The quality filter 
rejected images that met either of the following conditions: (1) low 
biomass concentration that could not be properly distinguished from the 
background when the mask for spectral extraction was applied (the main 
reason of image rejection), and (2) samples consisting primarily of 
white, dead biomass with abnormally high reflectance and no distinct 
spectral shape. 

3.3. Data exploration – comparative of five genera and grouping patterns 

The averaged spectra from the five cyanobacteria appeared to follow 
a similar pattern, presenting characteristic hills and valleys in the range 
from 400 to 700 nm (Fig. 2a), being consistent with other HS studies 
where cyanobacteria spectra have been explored, not just in terms of 
reflectance (Legleiter et al., 2022; Salmi et al., 2021), but also in terms of 
absorbance (Malhotra and Örmeci, 2022; Salmi et al., 2022), and 
transmittance (Adejimi et al., 2023). One notable valley between 620 
and 640 nm coincides with the maximum absorbance of PC, while 
another clear valley at 680 nm aligns with the maximum absorbance of 
Chla in vivo. Remote sensing commonly utilizes this property and the 
relation between these two pigments to differentiate cyanobacteria from 
other algal groups (Dev et al., 2022), which will be further discussed in 
subsequent sections. It is important to note that the reflectance pattern 
observed in the blue bands (between 400 and ~450 nm) looks different 

Fig. 1. General visualization of (a) calibration, (b) spectral extraction (red mask corresponds to the pixels containing cyanobacterial biomass), and (c) mean VIS/NIR 
spectral reflectance from all pixels in the ROI. Image from Dolichospermum crassum is used as example. 
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from those in the previously mentioned publications, which is probably 
related to the great standard deviation observed when the mask was 
applied (Fig. 1-c). Finally, in the near-infrared bands, all the spectra 
appear to be similar, but slight differences still distinguish them from 
one another, presenting some maximums and minimums between 750 
and 800 nm and around 870 nm. These averaged spectra show some 
overlapping areas, but there is never complete overlap between any two 
cyanobacterial taxa, which could assist in classification. However, when 
the standard deviations are included (Fig. 2-b), the scenario changes 
significantly, resulting in spectral overlapping among all groups, which 
could pose a challenge in classifying them based on their HS data. 

Principal Component Analysis (PCA) resulted in two principal com
ponents that accounted for >93 % of the variability (Fig. 3). All samples 
were distributed along the first and second components, and no clear 
groups could be visually detected. However, some patterns might be 
present. For example, C. ovalisporum samples (red dots) were distributed 
in the higher area of PC2, and most of the M. aeruginosa samples (purple 
dots) were in the lower part of PC2. This lack of clear aggregation brings 
us to the same point as Fig. 2b, representing a potential challenge for the 
classification task. 

Two other interesting findings emerged. Firstly, the most relevant 
wavelengths in both the first and second components of PCA were 
within the 400–700 nm (VIS) range. This aligns with the specific 
pigment activity of cyanobacteria, which focuses on wavelengths within 
this range as previously mentioned. Secondly, when exploring the VIS/ 
NIR spectral reflectance of each genus separately, an intragroup pattern 
based on the life stage was observed (Fig. S8). Thus, three types of 
spectra were identified within each group: (1) an initial stage with low 
reflectance but a discernible shiny shape, (2) a transitional stage be
tween exponential and stationary growth stages with well-defined shape 
and slightly higher reflectance, and (3) a later stage with higher 
reflectance but decreasing shape definition. These findings imply that 
the spectral response of cyanobacterial biomass could potentially pro
vide insights into its life stage, which could be potentially useful to 
discern between healthy cyanobacterial populations and those in decay, 
but further research is necessary to validate this observation. 

3.4. Classification model 

To ensure the creation of a reliable classification model and to 
explore the impact of spectral pre-processing on classification accuracy, 
seven different pre-processing methods were used for the training of the 
classifier. Fig. 4 shows the pre-processing combinations used to train the 
models for all samples. The variability included in each data split across 
the different fixed randomizations is shown in Fig. S9. 

The trained models and evaluation metrics from the three combi
nations of datasets and pre-processing methods are presented in Table 2, 
resulting in a total of 24 models. Accuracy was considered a reliable 
indicator of the performance, consistent with other metrics such as 
specificity and F1 in all cases. Kappa coefficient exhibited high sensi
tivity and produced the most stringent results, while specificity tended 
to overestimate the performance of the models. Overall, significant 
differences were observed between the performance of the classifier on 
the training set and that on the validation and testing sets. The metrics 
reached near-maximum values on the training set, suggesting potential 
overfitting to the training data. Nevertheless, performance on the vali
dation and test sets yielded more moderate results, with softer differ
ences between them. The consistency of performance between the 
validation and testing sets was systematically improved by various 

Fig. 2. Mean of VIS/NIR spectral reflectance of the five cyanobacteria. (a) Averaged spectra only. (b) Averaged spectra including standard deviations. Spectra belong 
to data set 3, with CLN and MC images after applying a quality filter N: 96 images. 

Fig. 3. Principal Component Analysis of the VIS/NIR spectral reflectance of the 
five cyanobacteria. Spectra belong to data set 3, with CLN and MC images after 
applying a quality filter N: 96 images. 
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preprocessing methods in all data sets. For example, when SG was 
coupled with FD or SD, the differences between the training, validation, 
and testing sets were much less pronounced, resulting in improved 
consistency. These results highlight the importance of using effective 
preprocessing methods when working with HS data for cyanobacterial 
classification, and suggest that FD and SD are good options in this re
gard. Beyond the global classification accuracy, specific classification 
accuracy across classes is displayed in Table S10. Classification accu
racies were highest for the genera Microcystis and Chrysosporum, 
exceeding 90 % when models were trained with both first and second 
derivatives. Planktothrix followed closely, achieving an accuracy of 
around 80 %. Models had greater difficulty in classifying the genera 
Aphanizomenon and Dolichospermum, with accuracies still >50 %. Since 
Microcystis and Planktothrix were sampled across more environmental 
conditions (nutrients and light) than the other genera, a greater number 
of images were available. This abundance of data may have contributed 
to their higher classification accuracies. Although Chrysosporum was less 
represented compared to these two genera, the models showed a strong 
ability to discriminate its images, likely due to the distinct brownish 
tone characteristic of Chrysosporum cultures during cyanobacterial 
growth. Conversely, Aphanizomenon and Dolichospermum, which were 
primarily subjected to light changes, yielded fewer images, and cultures 
of these genera did not show a distinct tone, likely posing a greater 
challenge for the classification. 

In this case, the combination of SG and FD techniques consistently 
yielded the best results. Following this, SG coupled with the SD also 

performed well, outperforming SG-FD when the models were trained 
with the third dataset (CLN + MC filtered). In general, the performance 
of the classification models was either maintained or improved after 
applying the pre-processing methods, with the exception of the MSC, 
which showed the worst results across all metrics and datasets. 
Regarding the other results, accuracy ranged from 0.43 to 0.92. The 
highest values were achieved when using filtered data pre-processed 
with SG and FD or SD techniques. Overall, the RF classifier with data 
preprocessed using SG and FD performed the best when considering all 
datasets (Accuracy: 0.81–0.88, Kappa: 0.75–0.84). These results indi
cate that the combination of SG and FD techniques can successfully 
reduce noise and baseline effects, and enhance features related to 
different cyanobacteria, as is supported by other studies with HS mea
surements of cyanobacteria. For example, Malhotra and Örmeci (2022) 
effectively applied Savitzky-Golay coupled with the first derivative of 
absorbances to enhance the features of the spectra and decrease detec
tion limits, or Adejimi et al. (2023) that found the first derivative as an 
effective technique to pre-process HS transmittance data for training 
Support Vector Machines for cyanobacterial inter-genera classification. 
In general, the results were similar across all datasets, with no significant 
differences observed. The high performance demonstrated by the 
models trained on the CLN dataset, which included images that did not 
pass any quality filters, suggest that the combination of SG and FD with 
RF can yield robust results that are not likely to be affected by the quality 
of the input. However, two aspects should be considered. Firstly, the 
accuracies of the CLN + MC dataset were slightly lower, despite 

Fig. 4. Representative VIS/NIR average spectra of the different combinations of pre-processing methods used for the training. Spectra belong to data set 3, with CLN 
and MC images after applying a quality filter N: 96 images. SG: Savitzky-golay; FD: First Derivative; SD: Second Derivative; SNV: Standard Normal Variate; MSC: 
Multiplicative Scatter Correction; CR: Continuum Removal; Detrend: Detrend. 
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containing additional images intended to improve the classification 
capacity. Secondly, when a quality filter was applied, the number of 
images was significantly reduced, however best performances were still 
achieved, but the discrepancy between the results of the validation and 
testing sets increased. This suggests that while high quality data can 
compensate for lower data availability, it may also affect hyper
parameter tuning and model optimization. Regarding the performance 
of the other pre-processing methods, the combination of SG and SD 
yielded the best results (Accuracy: 0.75–0.92, Kappa: 0.66–0.88) fol
lowed by SG and Detrend (Accuracy: 0.65–0.73, Kappa: 0.52–0.62). On 
the other hand, the other pre-processing techniques, including SG, SG 
with SNV, and SG with CR, did not show any significant improvement in 
model performance compared to the raw data. Based on these results, 
models were retrained with data preprocessed solely using the first de
rivative to assess the added value of SG (Table S11). Notably, although 
results between Raw-RF and SG-RF showed no clear impact on perfor
mance, preprocessing with only the FD led to a decrease in consistency 
among metrics across the training, validation, and testing sets, as well as 

in the overall performance. 
Finally, the importance of each wavelength in the best models (i.e., 

the ones pre-processed with SG and FD) are displayed in Fig. 5. The 
importance of all wavelengths sum up to 1 according to the impurity 
decrease within each tree, it can be understood as the relative impor
tance of each wavelength for a particular model. As anticipated based on 
the results from the PCA, a vast majority of the significant wavelengths 
were within the VIS range, with some of them coinciding with the 
maximums of absorption of photosynthetic pigments. These findings 
align with those from similar studies where the most important features 
are mostly between 550 and 570 nm, and 640 and 690 nm (Adejimi 
et al., 2023). Nevertheless, important features were also in spectral re
gions within the NIR range. The first and most prominent of these re
gions was located between 870 and 900 nm, where numerous 
wavelengths demonstrated substantial importance in every model. 
Additionally, several other regions between 700 and 800 nm exhibited 
moderate importance, especially when the models were trained on data 
filtered based on image quality suggesting that, while a larger dataset 
may result in higher classification accuracies, a minimum quality of the 
images is critical to capture small details from the NIR range. The rea
sons for this relevance are still to be explored. One possible explanation 
is that the relevance of chlorophyll extends into this range. The “red 
edge” consists of the abrupt change in spectral behavior of chlorophyll 
from high absorbance in the VIS to high reflectance in the NIR, a 
property commonly used in vegetation analysis (where NIR reflectance 
is used) (Haboudane et al., 2004). Another hypothesis is that the specific 
structure of cells, or derived from cell aggregation, may result in 
different light absorption and scattering behavior from each taxa, pro
ducing unique reflectance properties in the NIR. Finally, and regarding 
the results in the blue bands mentioned in the previous sections (in 
relation to Figs. 1-c and 2), it is reassuring that the models that per
formed best in classifying the images did not identify any particularly 
relevant wavelength patterns in this region. However, the discrepancy 
between our findings and those of other publications concerning this 
spectrum range (~400 nm) should be considered for future uses of the 

Table 2 
Performance for classification models on the training, validation and testing sets. Eight combinations of spectral pre-processing and three datasets considered. Cor
responding classification accuracies across classes is available in Table S10.  

Dataset Pre-processing-model Training Validation Testing 

Accuracy Kappa Kappa Accuracy Kappa Specificity F1 

CLN 
(N: 125) 

Raw-RF 0.98 0.98 0.34 0.63 0.46 0.90 0.63 
SG-RF 0.96 0.94 0.37 0.62 0.43 0.90 0.62 
SG + FD-RF 0.99 0.99 0.75 0.87 0.82 0.97 0.87 
SG + SD-RF 0.99 0.99 0.61 0.78 0.68 0.94 0.76 
SG + SNV-RF 0.98 0.97 0.38 0.67 0.52 0.91 0.67 
SG + MSC-RF 0.90 0.87 0.11 0.40 0.12 0.85 0.40 
SG + CR-RF 1.00 1.00 0.27 0.60 0.43 0.90 0.60 
SG + Detrend-RF 0.99 0.99 0.50 0.70 0.56 0.92 0.70 

CLN + MC 
(N: 140) 

Raw-RF 0.99 0.99 0.37 0.53 0.36 0.88 0.53 
SG-RF 0.98 0.98 0.36 0.56 0.34 0.88 0.52 
SG + FD-RF 1.00 1.00 0.73 0.81 0.75 0.95 0.81 
SG + SD-RF 1.00 1.00 0.70 0.75 0.66 0.94 0.75 
SG + SNV-RF 0.98 0.97 0.36 0.57 0.40 0.89 0.57 
SG + MSC-RF 0.87 0.82 0.14 0.34 0.04 0.84 0.35 
SG + CR-RF 1.00 1.00 0.23 0.43 0.21 0.85 0.43 
SG + Detrend-RF 1.00 1.00 0.55 0.65 0.52 0.91 0.65 

CLN + MC filtered 
(N: 96) 

Raw-RF 0.99 0.98 0.44 0.62 0.46 0.91 0.62 
SG-RF 0.99 0.99 0.42 0.60 0.44 0.90 0.60 
SG + FD-RF 0.99 0.99 0.68 0.88 0.84 0.97 0.88 
SG + SD-RF 0.99 0.99 0.75 0.92 0.88 0.98 0.92 
SG + SNV-RF 0.99 0.99 0.43 0.60 0.44 0.90 0.60 
SG + MSC-RF 0.98 0.97 0.12 0.30 − 0.02 0.83 0.30 
SG + CR-RF 1.00 1.00 0.41 0.50 0.33 0.88 0.50 
SG + Detrend-RF 0.99 0.99 0.57 0.73 0.62 0.94 0.73 

CLN: imagery collection from the cultures subjected to the factorial experiment. MC: imagery collection from cultures grown under same light and nutrient conditions. 
Raw: not preprocessed. RF: Random Forest. SG: Savitzky-Golay. FD: First Derivative. SD: Second Derivative. SNV: Standard Normal Variate. MSC: Multiplicative 
Scatter Correction. CR: Continuum Removal. Detrend: detrend. In bold FD and SD results for clear comparison of top-performing models. 

Fig. 5. Importance of wavelengths in the models trained with the SG and FD 
pre-processed data from CLN, CLN + MC, and CLN + MC filtered. CLN: imagery 
from the cultures subjected to the factorial experiment. MC: imagery from 
cultures grown under the same light and nutrient conditions. 
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hyperspectral library created. 
Overall, the models trained on data pre-processed with SG and FD 

achieved accuracies up to 0.81 to 0.88, meaning that these classifiers 
were able to accurately determine the cyanobacterial taxa of the new 
provided images in 81 to 88 % of the cases, with VIS and NIR wave
lengths playing a critical role, and with impressive performance in 
identifying Microcystis and Chrysosporum genera. These results are 
particularly surprising and showcase the impressive capabilities of our 
models in classifying unfamiliar images. Moreover, it is important to 
consider that the data used to train these models came primarily from 
the CLN dataset, which consisted of cultures that were grown under 
varying light and nutrient conditions. As anticipated, these varying 
conditions induced a high degree of variability in appearance, pigment 
concentrations and ratios, and spectral behavior, which resulted in 
spectral ranges from the five cyanobacteria to overlap, potentially 
threatening the performance of the classifiers. Nevertheless, the results 
indicate that, even with the induced high variability, the Random Forest 
algorithm combined with SG and FD pre-processing methods can suc
cessfully differentiate among these cyanobacteria with high accuracy 
levels. 

Our study offers a promising tool validated at laboratory scale in 
relevant bloom-forming potentially toxic taxa. This could pose a base
line work towards the ultimate goal of effectively applying HS remote 
sensing in the field, once some challenges are met via future field 
studies. Firstly, although great variability was induced, in natural eco
systems this variability is likely to be greater. For instance, in the field, 
cyanobacteria exhibit various morphologies such as unicellular, fila
mentous, or colonial forms, that can be lost when cultured in the lab 
(Salmaso et al., 2015). For example, in aquatic ecosystems, Microcystis 
forms dense floating aggregations of biomass by growing as colonies, 
structure that tends to be lost in lab cultures, where it grows spreading 
homogenously throughout the medium. Another example of natural 
variability in cyanobacteria is the presence of gas vesicles in some 
genera. For instance, Planktothrix genus has been observed to have 
different amounts of gas vesicles, which can affect their position in the 
water column modifying their interaction with the environment and 
basic resources such as light and nutrients, likely resulting in a greater 
range of spectral responses (D'Alelio et al., 2011). On the other hand, the 
application of machine learning algorithms is becoming increasingly 
popular in the field of cyanobacterial blooms. However, while various 
datasets are emerging due to more automated sampling methods, usu
ally only one machine learning technique is applied to analyze each of 
them making comparison challenging (Rousso et al., 2020). Here we 
demonstrate the potential of Random Forest to handle HS data from 
cyanobacterial cultures, providing accurate classification models; in 
future studies, different machine learning algorithms should be trained 
on this data, not only to improve the accuracy of the results, but also to 
facilitate comparison. A final consideration to bear in mind is that the 
experiment was carried out with one representative species for each 
genus, therefore it is not possible to determine whether these results are 
genus, species or strain specific. As suggested by other authors (Legleiter 
et al., 2022), a possible solution to these limitations could be the crea
tion or expansion of a cyanobacterial hyperspectral library, such as the 
one created in this study, to include images from more genera and 
species, thus becoming more complete and representative. Ideally, not 
only images from cultures in the lab, but also fresh cyanobacterial 
biomass or field images should be incorporated into this library. In fact, 
this could facilitate the transition from lab-based analyses to practical 
field applications of HS imagery, as it has been pointed by Legleiter et al. 
(2022) that showed the potential from cyanobacterial HS reflectance 
data acquired in the lab, to be extrapolated into the field. This fact, 
combined with the increasing sources of hyperspectral data from water 
bodies, such as the provided by unmanned autonomous vehicles (Kislik 
et al., 2018), or ground-based multispectral cameras (Zhao et al., 2021), 
along with the increased quality of these data, supported by HS tech
nology aimed to improve remote sensing estimations from satellite 

imagery (Goyens et al., 2021), highlights the capabilities of these 
techniques in the early management of cyanobacterial blooms. 

4. Conclusions 

Advances in cyanobacterial early warning are critical given the ex
pected worsening of CyanoHABs under future human and climate 
change scenarios. Based on the analysis of a HS imagery collection 
created with images from five bloom-forming cyanobacterial taxa with 
toxicological relevance in the context of CyanoHABs, we conclude that:  

• Hyperspectral imagery of cyanobacteria, combined with machine 
learning techniques, has the potential to effectively discriminate 
among the five taxa.  

• The classification remains accurate even when a wide pigment and 
spectral variability is induced by growing the cultures under 
different light and nutrient conditions, and when images from 
different stages of the cyanobacterial life cycle are considered. 

• The Random Forest algorithm is shown to be effective for cyano
bacterial classification, particularly when trained on spectral data 
pre-processed with smoothing techniques and first derivatives.  

• Reflectance from wavelengths in both the visible and near-infrared 
regions play a critical role in successful classification. 

Our findings highlight the importance of considering hyperspectral 
technology to enable the early identification of cyanobacterial genera 
with potential toxicity, which may facilitate timely and effective pre
vention of the associated risks. 
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Meriluoto, J., Codd, G.A., 2019. Global geographical and historical overview of 
cyanotoxin distribution and cyanobacterial poisonings. Arch. Toxicol. 93, 
2429–2481. https://doi.org/10.1007/s00204-019-02524-4. 

Whitton, B.A., Potts, M., 2012. Introduction to the cyanobacteria. In: Ecology of 
Cyanobacteria II: Their Diversity in Space and Time. https://doi.org/10.1007/978- 
94-007-3855-3_1. 

Wyman, M., Fay, P., 1986. Underwater light climate and the growth and pigmentation of 
planktonic blue-green algae (Cyanobacteria) I. The influence of light quantity. Proc. 
R. Soc. Lond. B Biol. Sci. 227, 367–380. https://doi.org/10.1098/rspb.1986.0027. 
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