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Abstract The Sporadic E layer or Es is an ionospheric phenomenon characterized by enhancements in
electron density within 90–120 km above the Earth's surface. Based on the wind shear theory, the formation of
Es layers is associated with vertical shears in the horizontal wind, in the presence of the Earth's magnetic field.
This study explores the role of planetary waves on inducing these vertical shears and subsequently shaping Es
layers. Our investigations benefit from a large amount of data facilitated by the FORMOSAT‐7/COSMIC2 and
Spire missions, which offer extensive global coverage. A wave analysis is applied to the Es intensity as
represented by the S4 index derived from radio occultation measurements, in search of potential planetary wave
signatures. Additionally, measurements from Aura/MLS are used to analyze corresponding spectra for the
geopotential height, enabling a comparative examination of planetary wave signatures in the Es layer and
geopotential height variations. The findings reveal westward and eastward wave components with specific
wavenumbers and periods, suggesting the involvement of westward propagating quasi 6‐day, quasi 4‐day
planetary waves, and eastward propagating Kelvin waves with a period of around 3 days in Es layer formation at
low latitudes.

1. Introduction
Sporadic E (Es) layer is a phenomenon characterized by thin patches of enhanced electron density detected in the
lower thermosphere, situated approximately 90–120 km above the Earth's surface (Haldoupis, 2011; Math-
ews, 1998; Whitehead, 1989; Wu et al., 2005). Es occurrences are commonly observed during daytime in local
summer at mid‐ and low latitudes (Arras, 2010; Arras et al., 2010; Christakis et al., 2009; Haldoupis, 2012;
Haldoupis et al., 2007). The significance of studying Es layers arises from their potential impact on the propa-
gation of radio waves in communication and navigation systems, a topic explored since the mid‐twentieth century
(Macleod, 1966; Whitehead, 1961, 1970, 1989, 1989, 1989).

The formation of the Es layer is interpreted by the “wind shear” theory, initially proposed by Whitehead (1961)
and Axford and Cunnold (1966). This theory suggests that vertical shears in the horizontal wind, combined with
the Earth's magnetic field, result in the convergence of metallic ions (such as Fe+, Na+, and Ca+) in the
ionospheric dynamo region, generating thin layers of enhanced ionization. The main source of metal species in the
atmosphere is the ablation of meteoroids that globally occur between approximately 80 and 100 km (e.g.,
Vondark et al., 2008). Metallic ions are created through various chemical processes (e.g., Feng et al., 2013;
Langowski et al., 2015).

Over the years, studies of Es have utilized various measurement techniques, including ionosonde recordings,
incoherent and coherent scatter radars, and in situ measurements with rockets, all extensively discussed in review
papers (Haldoupis, 2011; Mathews, 1998; Whitehead, 1989). With the advancement of GPS radio occultation
technology in the past two decades, satellite observations have gained popularity in studies of Es layers for their
capability to provide global data coverage (Arras et al., 2008; Igarashi et al., 2001; Wu et al., 2005). Recent
studies employing global satellite observations, such as those by Yamazaki et al. (2022) and Sobhkhiz‐Miandehi
et al. (2022), have affirmed the wind shear theory as the primary mechanism for Es formation and its associated
tidal variation.

RESEARCH ARTICLE
10.1029/2024EA003757

Key Points:
• Spatial‐temporal analysis of FOR-

MOSAT‐7/COSMIC2 & Spire radio
occultation data shows influence of
planetary waves on Es layer formation

• Westward propagating planetary
waves, particularly the 6‐day and 4‐day
wave (wavenumber 1 and 2), impact Es
layer intensity at low latitudes

• The study reveals the involvement of
eastward propagating ultrafast Kelvin
waves also play a role for low‐
latitude Es

Correspondence to:
S. Sobhkhiz‐Miandehi,
sahar@gfz-potsdam.de

Citation:
Sobhkhiz‐Miandehi, S., Yamazaki, Y.,
Arras, C., Miyoshi, Y., Shinagawa, H., &
Jadhav, A. P. (2024). Planetary wave
signature in low latitude Sporadic E layer
obtained from multi‐mission radio
occultation observations. Earth and Space
Science, 11, e2024EA003757. https://doi.
org/10.1029/2024EA003757

Received 16 MAY 2024
Accepted 4 OCT 2024

Author Contributions:
Conceptualization: Y. Yamazaki
Data curation: C. Arras, Y. Miyoshi,
H. Shinagawa, A. P. Jadhav
Formal analysis: S. Sobhkhiz‐Miandehi
Investigation: S. Sobhkhiz‐Miandehi
Project administration: Y. Yamazaki
Resources: C. Arras, H. Shinagawa
Supervision: Y. Yamazaki
Validation: S. Sobhkhiz‐Miandehi
Visualization: S. Sobhkhiz‐Miandehi
Writing – original draft: S. Sobhkhiz‐
Miandehi
Writing – review & editing:
Y. Yamazaki, C. Arras, Y. Miyoshi,
A. P. Jadhav

© 2024. The Author(s).
This is an open access article under the
terms of the Creative Commons
Attribution‐NonCommercial‐NoDerivs
License, which permits use and
distribution in any medium, provided the
original work is properly cited, the use is
non‐commercial and no modifications or
adaptations are made.

SOBHKHIZ‐MIANDEHI ET AL. 1 of 13

https://orcid.org/0000-0002-8668-9042
https://orcid.org/0000-0002-7624-4752
https://orcid.org/0000-0003-0010-8954
https://orcid.org/0000-0003-4974-0651
mailto:sahar@gfz-potsdam.de
https://doi.org/10.1029/2024EA003757
https://doi.org/10.1029/2024EA003757
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


At low and mid‐latitudes, atmospheric tides, including solar and lunar tides with periods corresponding to a solar
or lunar day and their harmonics, induce vertical shears of zonal wind. Several studies have explored the tidal
structures in the Es layer. Studies from the 1970s revealed diurnal and semidiurnal tidal variations in Es
occurrence rate (Harris & Taur, 1972; Mathews & Bekeny, 1979; Tarpley & Matsushita, 1971). Christakis
et al. (2009) emphasized that the tidal signature in Es layer is observed at various altitudes depending on the local
time and season. Observational studies have identified various migrating (sun‐synchronous) tidal components,
including diurnal, semidiurnal (Arras et al., 2009; Haldoupis et al., 2004; Oikonomou et al., 2014), terdiurnal, and
quarterdiurnal (Fytterer et al., 2013, 2014; Jacobi et al., 2019), in the occurrence of the Es layer. Recent radio
occultation observations have also demonstrated non‐migrating tidal signature in Es occurrence rates (Sobhkhiz‐
Miandehi et al., 2022).

Numerous studies have utilized wind models, comparing them with radio occultation measurements of Es to
demonstrate the correspondence of neutral wind shear with Es (e.g., Chu et al., 2014; Liu et al., 2018; Qiu
et al., 2019, 2023; Yeh et al., 2014). Comparisons between Es observations and local wind measurements have
confirmed the presence of tidal signature in Es layers (Arras et al., 2009; Fytterer et al., 2013; Jacobi &
Arras, 2019; Yamazaki et al., 2022). Shinagawa et al. (2017) used GAIA (Ground‐to‐topside model of Atmo-
sphere and Ionosphere for Aeronomy) model simulations to calculate the vertical ion convergence rate, revealing
geographical and seasonal variations in vertical wind shears that are necessary for the Es formation. Andoh
et al. (2020) simulated the day‐to‐day variability of Es at mid‐latitudes, employing a numerical model of metallic
ions driven by winds from the GAIA model. Additionally, some numerical studies focused on the role of at-
mospheric diurnal and semidiurnal tides for the Es formation (Andoh et al., 2023; Resende et al., 2017).

In addition to atmospheric tides, planetary waves significantly influence the vertical wind shear in the lower
thermosphere (Haldoupis & Pancheva, 2002). Planetary waves represent global‐scale oscillations in atmospheric
parameters such as temperature, pressure, density, and neutral winds. They are commonly observed in the
mesosphere and lower thermosphere (MLT) region with periods typically ranging from 2 to 20 days (For-
bes, 1995; He et al., 2024; Salby, 1984). Commonly observed westward‐propagating planetary waves with zonal
wavenumber 1 have periods of approximately 5–7 days, 9–11 days, and 14–16 days, known as the quasi‐6‐day
wave (Q6DW; Forbes & Zhang, 2017; Gan et al., 2018; Qin et al., 2021), quasi‐10‐day wave (Q10DW; Forbes &
Zhang, 2015; Yamazaki & Matthias, 2019), and quasi‐16‐day wave (Q16DW; Fan et al., 2022; Day et al., 2011),
respectively. Additionally, there are westward‐propagating waves with a zonal wavenumber of 2 and a period of
about 4 days, known as the quasi‐4‐day wave (Q4DW; Yamazaki et al., 2021; Ma et al., 2020). Equatorial Kelvin
waves, on the other hand, are eastward‐propagating global‐scale waves that are trapped equatorially and excited
by tropical convective processes (Forbes, 2000). Among Kelvin waves, ultra‐fast Kelvin (UFKW) waves with a
zonal wavenumber of 1 and a period of about 3 days are frequently detected in theMLT region (Davis et al., 2012;
Forbes et al., 2009; Liu et al., 2019).

Linear wave theory (Chapman & Lindzen, 2012; Forbes, 1995; Longuet‐Higgins, 1968) forms the foundation for
understanding these atmospheric waves. The theory utilizes linearized equations to describe atmospheric wave
motions, assuming a simplified atmosphere without dissipation and zonal mean winds. It is predicted that the
Earth's atmosphere can support a series of normal‐mode oscillations. Westward‐propagating Q6DW, Q10DW,
Q16DW and Q4DW in theMLT region are often regarded as manifestations of (1,1), (1,2), (1,3), and (2,2) normal
modes, respectively, predicted by the linear wave theory. Observed wave characteristics, however, show some
deviations from theoretical predictions, because of simplifications employed in the theory (Salby, 1981a, 1981b).
For instance, the phase of theoretical normal modes does not vary with height, while observed Q6DW, Q10DW,
Q16DW, and Q4DW have finite vertical wavelengths on the order of tens of kilometers in the MLT region. Since
their phases are altitude dependent, they can contribute to the vertical shear of neutral winds, which would affect
Es (Salby, 1981a).

Numerous studies have examined long‐period oscillations in the ionospheric D (e.g., Cheng et al., 2021; Jacobi
et al., 1998; Luo et al., 2000; Pancheva et al., 1991), E (e.g., Kishore et al., 2004; Shalimov & Haldoupis, 2002),
and F regions (e.g., Altadill & Apostolov, 2003; Forbes et al., 2018; Laštovička, 1997; Laštovička et al., 2003;
Yue et al., 2021), attributing them to planetary waves.

In the late 20th century, research findings indicate that planetary waves play a role in the formation of the Es layer
(Tsunoda et al., 1998; Voiculescu et al., 1999). Tsunoda et al. (1998) and Voiculescu et al. (1999) were the first to
provide evidence linking Es occurrences to planetary waves. They observed modulations in planetary waves
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activity in the E region coherent backscatter, as detected by HF and VHF radars. Confirming the influence of
planetary waves on Es, Voiculescu et al. (2000) extended their study using the data of a longer period. Shalimov
et al. (1999) proposed a physical mechanism for Es formation driven by planetary waves, and later, Shalimov and
Haldoupis (2002) introduced a theoretical model explaining how the large‐scale accumulation of mid‐latitude E
region, driven by horizontal wind shear due to planetary waves, leads to Es layer formation. Haldoupis and
Pancheva (2002) presented the first experimental evidence for the involvement of planetary waves in Es layer
formation using foEs measurements from various ionosonde stations across different longitudinal sectors. Their
results revealed a 7‐day wave oscillation in Es layer occurrence. Moreover, Pancheva et al. (2003) demonstrated
that Es layers are indirectly influenced by planetary waves through the nonlinear interaction of diurnal and
semidiurnal tides with planetary waves. Haldoupis et al. (2004) expanded on this, developing a methodology to
quantify the impact of tidal and planetary waves periodicities on sporadic E. Additionally, some ground‐based
studies employing wavelet analysis have shown quasi 6‐day oscillations in Es occurrence (Pignalberi
et al., 2015; Zuo &Wan, 2008; Zuo et al., 2009). Despite these studies indicating the impact of different types of
planetary waves on the formation of the Es layer, our understanding remains incomplete. This is because previous
research has mainly relied on ground‐based observations, without considering the zonal structure (i.e., zonal
wavenumber) and propagation direction (i.e., eastward or westward) of the wave. This paper addresses this gap by
analyzing radio occultation measurements from two different satellite missions and identifying planetary wave
signatures in Es based on the Fourier‐wavelet analysis introduced by Yamazaki (2023). Unlike previous studies,
this method can provide information not only on the period of oscillation but also on the zonal wavenumber and
the direction of propagation (i.e., eastward or westward). We mainly focus on the low latitude region, where the
radio occultation data are most abundant, and planetary wave signatures in Es are found to be prominent.
Additionally, we analyze the geopotential height (GPH) measurements of the Microwave Limb Sounder on the
Aura satellite (Aura/MLS), enabling a comparison between the planetary wave signatures in the Es layer and
those in MLT dynamics represented by GPH.

2. Data and Method
For many years, studies on the Es layer primarily relied on ground‐based observations such as ionosondes
(Piggott, 1972;Wakai et al., 1987;Whitehead, 1989). Ionosondes remain in use due to their ability to provide high
temporal resolution at specific locations. However, in the last two decades, GNSS radio occultation (RO)
technique has emerged as a groundbreaking tool not only for Es layer studies but also for probing the atmosphere‐
ionosphere system (Arras et al., 2022; Jacobi et al., 2023; Qiu et al., 2019; Yu et al., 2022). Distinguishing itself
from ground‐based techniques, GNSS radio occultation offers global coverage and improved spatial resolution
(Sobhkhiz‐Miandehi et al., 2023). This technique relies on receiving GNSS signals transmitted through the
Earth's atmosphere via a low Earth orbiting (LEO) satellite. Atmospheric refraction causes a bending in GNSS
signals, and the measurement of this bending angle is crucial. It contains valuable information on various at-
mospheric parameters, including electron density, temperature, pressure, and water vapor profiles (Hajj
et al., 2002).

An increasing number of satellites are now equipped with GNSS RO receivers. For this research, we utilized data
from two satellite missions in the year 2022, including a total of 3,919,329 RO profiles. The first data set is
derived from the FORMOSAT‐7/COSMIC2 mission (Schreiner et al., 2020), involving six LEO satellites
launched in June 2019. These satellites operate in inclined orbits of 24° at the altitude of 550 km and provide
around 6000 RO profiles daily. Alongside tracking GPS signals, they also capture GLONASS signals. Addi-
tionally, our data set incorporates measurements obtained from satellites launched by the commercial company
Spire in autumn 2021. The Spire constellation operates in inclination angles of 51.6°, 83°/85°, and 37° at the
altitude of 500 km. Presently, it delivers around 4,000 RO profiles daily on a global scale. These satellites are
designed to receive signals from various GNSS constellations, including GPS, Galileo, and GLONASS
(Bowler, 2020; Masters et al., 2019).

The primary cause of scintillation in the signal‐to‐noise ratio (SNR) at E‐region heights is generally attributed to
the plasma density gradient resulting from the presence of Es. Previous studies have employed various methods to
extract SNR and Es occurrence information from radio occultation profiles (Arras & Wickert, 2018; Chu
et al., 2014; Gooch et al., 2020; Niu et al., 2019; Yu et al., 2022). Additionally, research has established a cor-
relation between the S4 index, derived from radio occultation SNR data, and the Es layer observed by ionosondes
(Arras & Wickert, 2018; Resende et al., 2018; Sobhkhiz‐Miandehi et al., 2023; Wang et al., 2021). In this study,
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we have used the S4 index of each RO profile, which is defined as the normalized ratio of the standard deviation of
signal intensity fluctuations to the mean signal intensity.

We employed the Fourier‐wavelet method described by Yamazaki (2023) to extract eastward‐ and westward‐
propagating wave components of the S4 index and GPH with various zonal wavenumbers. The Fourier‐
wavelet analysis involves a Fourier analysis in longitude and a wavelet analysis in time, providing amplitude
spectra for eastward‐ and westward‐propagating waves with different zonal wavenumbers. It requires uniformly
gridded data as a function of time and longitude at a given latitude. To apply the Fourier‐wavelet analysis, the data
have been divided into grids of 10° latitude by 15° longitude, with a 6‐hr time step. As illustrated in Figure 1, the
number of observations is reduced at high latitudes due to the limited latitudinal coverage of FORMOSAT‐7/
COSMIC2, with the best coverage concentrated between 50° north and south. Therefore, our analysis is limited
within this latitude range.

Aura is an ongoing NASA satellite mission in a sun‐synchronous low Earth orbit, launched in July 2004. The
Microwave Limb Sounder (MLS) onboard the Aura satellite (Schwartz et al., 2008; Waters et al., 2006) provides
measurements of several atmospheric parameters, including GPH, temperature, and water vapor, across pressure
levels ranging from 1,000 hPa (near Earth's surface) to 0.00001 hPa (∼129 km). This study utilizes the Level 2
Version 4.2 GPH data at the pressure level of 0.001 hPa, corresponding to an altitude of approximately 95 km, to
examine planetary wave activity in theMLT region. Previous studies have shown that Aura/MLSGPH data at this
height can resolve various types of planetary waves (e.g., Qin et al., 2024; Yamazaki, 2018), which potentially
affect higher altitudes, that is, the ionosphere. Our Aura/MLS data analysis procedure follows that in Jadhav
et al. (2024).

3. Results
Applying Fourier‐wavelet analysis on the average S4 values calculated over each 6‐hr interval within each 10°
latitude by 15° longitude grid, we obtained spectra of westward/eastward propagating wave components with a
specific zonal wavenumber at different periods. The chosen altitude range for S4 analysis in this study is
105 ± 5 km, typically corresponding to the altitude of maximum Es occurrence and high‐intensity Es (Haldoupis
et al., 2006). At these altitudes, vertical shear of the zonal wind plays a leading role for the formation of Es, and
vertical shear of the meridional wind plays only a secondary role.

Figure 1. The total number of observations at each grid (10°Latitude × 15°Longitude) during one sample epoch of 6 hr.
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Figure 2 compares Fourier‐wavelet spectra obtained from GPH and S4 for the westward‐propagating wave
component with zonal wavenumber 1 (W1). Figures 2a and 2c show W1 amplitudes in GPH at northern and
southern mid latitudes, respectively, at an altitude of ∼95 km. W1 activity at a period of ∼6 days is relatively
strong, which can be attributed to the Q6DW. While the amplitude of the Q6DW in GPH is known to be largest at

Figure 2. Temporal variations in the westward component of (a) GPH (derived from Aura/MLS observations) at the altitude of ∼95 km and latitude of 30°–50° north,
(b) S4 values (derived from radio occultation observations of F7/C2 and Spire) at the altitude of 105 ±5 km and latitude of 10° south–10° north, and (c) GPH (derived
from Aura/MLS observations) at the altitude of ∼95 km and latitude of 30°–50° south, with a zonal wavenumber of 1, during the year 2022.
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mid latitudes, its amplitude in the zonal wind peaks at the equator (e.g., Miyoshi & Yamazaki, 2020). Thus, the
influence of the Q6DW on Es might be observed at equatorial latitudes. Figure 2b presents the W1 amplitude in
S4 over the equator. Enhanced W1 activity with a period of ∼6 days observed in S4 during February and
December aligns with Q6DW events in GPH in the Southern Hemisphere. Similarly, W1 in S4 with a ∼6‐day
period during May and June is also evident in GPH in the Northern Hemisphere. The consistency between Q6DW
activity in low‐latitude S4 and mid‐latitude GPH is notably observed in both hemispheres during March and
September, which indicates the modulation of Es by Q6DW.

Figure 3 is the same as Figure 2 except for the westward‐propagating component with zonal wavenumber 2 (W2).
In the low latitude region, the S4 spectrum shown in Figure 3b reveals persistent W2 activity at periods of 3–
6 days. Sometimes concurrent W2 activity is observed in GPH at mid latitudes (Figures 3a and 3c) at a period of
∼4 days, indicating the Q4DW and its influence on Es. The latitudinal structure of Q4DW is known to be similar
to that of Q6DW (Yamazaki et al., 2021). That is, the amplitude in GPH is largest at mid latitudes, while the
amplitude in the zonal wind peaks at the equator.

To examine Kelvin wave signatures in Es, we conducted a similar analysis to that presented in Figures 2 and 3
except for eastward propagating wave components around the equatorial region. Unlike the Q6DW and Q4DW,
the amplitude of equatorial Kelvin waves is largest at the equator in both GPH and zonal wind (e.g., For-
bes, 2000). Thus, we compare Fourier‐wavelet spectra of GPH and S4 over the equator. In Figure 4a, temporal
variations of the eastward propagating wave component with zonal wavenumber 1 (E1) in S4 reveal the highest
amplitude for waves with periods around 3 days, indicating a potential sign of UFKW in Es. Additionally, the E1
amplitude in GPH at the equator also exhibits relatively high wave activity with a period of around 3 days, as
shown in Figure 4b. This suggests that the presence of 3‐day E1 waves in Es is a result of the UFKW from the
MLT region, as observed in GPH data. The temporal variations of the eastward propagating wave component with
zonal wavenumber 2 (E2) in S4 were also compared with those in GPH; however, these results are not shown here
as they did not demonstrate high correlation.

The findings indicate a distinct quasi 6‐day wave oscillation with zonal wavenumber 1 and a quasi 4‐day wave
oscillation with wave number 2 in equatorial S4 values and mid‐latitude GPH variations. Additionally, a UFKW
is evident in both parameters at the equator. To enhance our understanding of the latitudinal variations of these
wave components in Es and GPH, we present in Figure 5 latitude versus period plots of Fourier‐wavelet spectra
averaged over the time period January–December 2022. The quasi 6‐day and quasi 4‐day wave oscillations,
evident in S4 as shown in Figures 5a and 5c reach their maximum amplitude at low latitude regions. In contrast,
the 6‐day wave component in GPH, depicted in Figure 5b, increases around mid‐latitude regions. In Figure 5d,
4‐day wave component of GPH is not clear due to the transient nature of this wave. Since Figure 5d shows an
annual average, it makes the 4‐day wave difficult to distinguish. Furthermore, Figures 5e and 5f highlight the
presence of Ultra‐Fast Kelvin Waves (UFKW) in both the GPH and S4 values, particularly around the equatorial
region.

4. Discussion
The results reveal the presence of global‐scale wave components in both S4 and GPH. Overall, the consistency
between the wave components in S4 and those in GPH suggests the involvement of Q6DW, Q4DW, and UFKW
in the formation of the Es layer.

Observations indicate that both Q6DW and Q4DW typically exhibit a vertical wavelength of 60–70 km (Forbes &
Zhang, 2017; Gu et al., 2014; Yamazaki et al., 2021). This is comparable with the vertical wavelengths of various
diurnal and semidiurnal tides (approximately 40–90 km) that propagate from the lower atmosphere to the
ionospheric dynamo region (Oberheide et al., 2011). These tides are known to play a significant role in modu-
lating the vertical convergence of metallic ions, thus influencing Es layers at low and middle latitudes (Sobhkhiz‐
Miandehi et al., 2022). Thus, it can be expected that the vertical wind shears associated with Q6DW and Q4DW
also play a role in modulating Es layers.

Equatorial Kelvin waves are typically generated by latent heating from tropical convection. They are eastward‐
propagating, with their strongest zonal wind amplitudes observed around the equator (Forbes, 2000). Kelvin
waves in the lower thermosphere typically have a period of 2 and 3 days (e.g., Forbes et al., 2009; Lieberman &
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Riggin, 1997) as longer period waves are prone to dissipation before reaching the thermosphere. The vertical
wavelength of Kelvin waves with zonal wavenumber 1 and a period of 2 and 3 days is typically ranges from 35 to
45 km (Davis et al., 2012; Yamazaki et al., 2020), comparable to that of migrating diurnal tides. Therefore, it's
possible that the vertical wind shears associated with UFKWs can effectively influence Es layers.

Figure 3. Temporal variations in the westward component of (a) GPH (derived from Aura/MLS observations) at the altitude of ∼95 km and latitude of 30°–50° north,
(b) S4 values (derived from radio occultation observations of F7/C2 and Spire) at the altitude of 105 ±5 km and latitude of 10° south–10° north, and (c) GPH (derived
from Aura/MLS observations) at the altitude of ∼95 km and latitude of 30°–50° south, with a zonal wavenumber of 2, during the year 2022.
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According to the wind shear theory, the vertical convergence of metallic ions due to the vertical shear of the zonal
wind is most effective when the magnetic inclination angle is small. However, the exception lies at the magnetic
equator, where inclination angle is zero but Es layers cannot form due to the presence of the vertical electric field
(Arras et al., 2022). Given that Q6DW, Q4DW, and UFKW exhibit maximum zonal wind perturbations at the
equator, where the magnetic inclination angle is small, it's likely that their influence on Es layers is particularly
efficient.

5. Conclusions
In this study, we explored the influence of planetary waves on Es layer using RO data from the FORMOSAT‐7/
COSMIC2 and Spire missions, comparing them with GPH data from the Aura/MLS satellite. Our investigation
involved Fourier‐wavelet analysis applied to S4 and GPH to assess the presence of different global‐scale wave
components. Here are the main findings:

1. We observed westward propagating wave components with zonal wavenumber 1 and a period of ∼6 days and
those with zonal wavenumber 2 and a period of ∼4 days, in both S4 and GPH. This robust presence confirms
the role of quasi 6‐day and quasi 4‐day planetary waves in the formation of the Es layer.

2. Eastward propagating wave components of zonal wavenumber 1, with a period around 3 days, were identified
in both S4 and GPH. This consistent presence supports the involvement of UFKW in Es layer formation.

Figure 4. Temporal variations in the eastward component of (a) GPH (derived from Aura/MLS observations) at the altitude of ∼95 km, and (b) S4 values (derived from
radio occultation observations of F7/C2 and Spire) at the altitude of 105±5 km and latitude of 10° south–10° north with a zonal wavenumber of 1, during the year 2022.
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Data Availability Statement
MATLAB and Python software for the Fourier‐wavelet analysis are available in Yamazaki (2023b). Radio
occultation data used in this study are the conPhs data product that can be accessed via UCAR website for both

Figure 5. Latitudinal variations in the westward wave component with zonal wavenumber = 1 of (a) S4 at 105 ±5 km, (b) GPH at ∼95 km, westward wave component
with zonal wavenumber = 2 of (c) S4 at 105 ±5 km, (d) GPH at ∼95 km, eastward wave component with zonal wavenumber = 1 of (e) S4 at 105 ±5 km, (f) GPH at
∼95 km averaged over the whole year 2022.
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Spire (Spire Repository, 2024) and F7/C2 (F7/C2 Spire Repository, 2024). Aura MLS GPH data has been made
available by Goddard Earth Sciences Data and Information Services Center (Schwartz et al., 2008) and can be
accessed in their website (GES DISC, 2024).
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