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1 Introduction

The Radio-Magnetotelluric (RMT) method is a geophysical near-surface imaging technique
with a broad range of possible applications. In 2020, the German Research Centre for
Geosciences (GFZ) has acquired a newly developed horizontal magnetic dipole transmit-
ter that allows the usage of the RMT method even in regions with an insufficient coverage
of radio transmitters which normally serve as source signal. First controlled-source RMT
measurements were conducted in Chile in 2020. Further measurements were conducted in
Ireland end of 2022. As we are able to store the raw time series, we have full control over
the subsequent data processing. The processing tools at GFZ consist of the modular pro-
cessing suite EMERALD (Ritter et al., 1998; Weckmann et al., 2005), which was originally
designed for magnetotelluric (MT) processing, but has recently been adapted for RMT
data. One main difference is that in RMT the transmitter data is considered as signal,
while in natural source MT this would be regarded as (near-field) electromagnetic noise
that needs to be removed using automated robust statistical approaches. However, pro-
cessing the entire time series in an automated manner has a large drawback: The different
emitted frequencies are transmitted in a sweep implying that only a smaller fraction of the
time series contains the required signal for a particular target frequency and leading to an
unfavourable signal-to-noise ratio. Since the transmitter does not have a GPS time base,
synchronising the data logger and the transmitter with an accuracy of a few nanoseconds
required for an automated detection scheme is difficult. Usually, several Gigabytes of raw
time series are collected during field measurements, making manual editing and supervi-
sion of the time series virtually impossible. However, a careful selection of appropriate
time segments is essential for the success of the data processing. To address the challenge,
machine learning algorithms have a high potential to solve both problems. So far, we can
only use the RMT data from Chile for the training of a suitable machine learning algo-
rithm. Initial experience was gained with a recurrent neural network approach in order
to identify suitable time segments (Patzer & Weckmann, EMTF 2021 — conference con-
tribution and personal communication). This small feasibility study demonstrated, that
machine learning algorithms are in general suitable for detection of transmitter signal in
RMT time series. However, many questions remained open, e.g. the amount of training
data which is necessary for a sufficient training of the machine learning algorithms and
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if a trained algorithm is applicable to new data sets. We investigated both points by (i)
increasing the amount of training data significantly and (ii) applying the trained network
to new data measured in Ireland.

2 RMT measurements in Chile

In 2020, controlled-source RMT data were measured at three different locations in Chile
(see Fig. 1) in the framework of the DFG funded EarthShape project.

90°W 60°wW
ﬂifow 300y
30°

60°

Figure 1: Map from South America displaying the three measuring locations of the
controlled-source RMT field experiment in Chile in 2020. SAG = Santa Gracia;
LAC = La Campana; NAH = Nahuelbuta

In total, RMT data were recorded at 166 stations along six profiles (two profiles in Santa
Gracia with 34 and 32 stations, three profiles in Nahuelbuta with 33, 29 and seven stations
and one profile with 31 stations in La Campana). At most stations data were recorded
twice for 10 s with a sampling rate of 524 kH z using a Metronix ADU-08 data logger, the
Metronix high frequency induction coil triple SHFT-02 and four spear electrodes from the
Geophysical Instrument Pool Potsdam (GIPP). The horizontal magnetic dipole transmit-
ter (see Fig. 2) was used to continuously emit eight different frequencies between 1kHz
and 128 kHz in a sweep, whereas single each frequency was emitted for 0.2 s per sweep.
The two loops of the bidirectional coil antenna emit the different frequencies independent
of each other.

The data were processed using the EMERALD processing suite (Ritter et al., 1998; Weck-
mann et al., 2005). It was originally designed for MT processing, but has recently been
adapted to process RMT data. However, processing the entire time series in an automated
manner leads to poor quality transfer functions due to the poor signal-to-noise ratio. As
the different emitted frequencies are transmitted in a sweep, only a smaller fraction of the
entire time series contains the required signal for a particular target frequency. Since it
is technically very difficult to have the same time base for the data logger and the trans-
mitter with an accuracy of a few nanoseconds, an automated detection scheme is required
to find time segments that contain the transmitter signal. Due to the high amount of
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Figure 2: Horizontal magnetic dipole transmitter developed and build by Radic Research
and the GFZ.

raw time series normally collected during RMT field measurements, a manual selection
of time segments is virtually impossible. However, a careful selection of appropriate time
segments is essential for the success of the data processing. To address the challenge,
machine learning algorithms have a high potential to solve both problems. During the
processing the data were band-passed filtered into two different frequency bands. Both of
these frequency bands contain four target frequencies (1 —8kHz and 16 — 128 kHz). Un-
fortunately, the quality of the data measured in La Campana is poor due to high ground
contacts resistances of the electrodes with the hard ground. However, 541 data files from
Santa Gracia and Nahuelbuta are available, which potentially can be used for the training
of a machine learning algorithm.

3 First feasibility study

A first feasibility study was conducted using a very small training data set in order to
evaluate if supervised machine learning algorithms are in general suitable for detection
of transmitter signal in RMT time series. We trained a recurrent neural network, as
this specific type of neural networks is very powerful for sequential or time series data.
However, there exist several other possible machine learning algorithms, e.g. support
vector machines, random forests and logistic regression, which could probably used for
the task of automated signal and noise separation. The network was build with four
bidirectional long short-term memory (LSTM) layers and one dense layer at the end using
the TensorFlow library. The input layer consists of 26 nodes. The network was trained
with 100 epochs and a learning rate of 0.01 using a cross-entropy loss and the accuracy as
metric. As input features we used the 25 auto- and cross-spectra of the spectral density
matrix for each single event as well as the frequency. This was motivated by the fact that
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at least in some cases the signal of two loops of the transmitter is characterised by much
higher power than the natural MT signal (see Fig. 3). The output layer consists of two
nodes, representing the likelihood if an event contains transmitter signal or MT signal.
The latter is regarded as noise in RMT.
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Figure 3: Manual selection of events, which contain transmitter signal for two examples.
The upper images show the auto-spectrum of one electric channel for all events
within the recorded 10s time series. In the lower images the manually selected
events are displayed in blue, whereas events not corresponding to transmitter signal
are displayed in grey.

For this feasibility study a very small training data set was used. It consists of only 44
data files using data from Santa Gracia and Nahuelbuta. The trained recurrent neural
network was applied to other data from Chile, which were not included in the training
data set. Despite the very limited size of the training data set, the trained network often
performed quite well reaching accuracy values greater than 90 %.

Fig. 4 shows exemplary the comparison of the selection of events done by the trained
recurrent neural network and the manual selection for one station. For the target frequency
of 128 kH z the network reached an accuracy of 98.1 % with only a small amount of false
positives (red rectangle) and false negatives (red dashed rectangle). We conclude from
this small feasibility study that machine learning algorithms can be used to automatically
identify transmitter signal in controlled-source RMT data. However, more work has to be
done to improve the quality of the trained network as the training data set was extremely
small and none of the hyperparameters has been properly tested. Furthermore, we neither
have tested other possible machine learning algorithms nor other possible input features, as
e.g. coherences, eigenvalues of the spectral density matrix, single event transfer functions
or polarisation values, yet. This will be done in the near future. The second example
in Fig. 4b demonstrate that the performance of the trained network can be much lower
(35.4% in this case) if e.g. the power of the transmitter signal is in a similar range as the
background noise. A first attempt to increase the performance of the network would be
to increase the amount of training data.

18



Platz et al., Smart data selection - First insights from using machine learning for controlled-source RMT data processing

R R b) 10
Trained RNN ] Trained RN.N

Q
—
—
[=]

&

S
2 .
]l ® % ] . % »

A

R
. .y . e,

LT )

L RO W 235
R SasnR DR T, E VS

‘. .. o o . .
hhmm&’ 7:‘ i 'é_' PR e ‘e ._;.‘

1012 1011
106

. ’-ﬂ . . .
d B
et

Auto-spectrum
[(mV/km)?]

—
[=]
&

Manual selection Manual selection

Auto-spectrum
[(mV/km)?]

oS
-,

”

»
-

L
-

¥ ]

W
y

e P A o i

1012 1011 T T T T
0 . 10 0 . 10
Time [s] Time [s]

Figure 4: Comparison of the selection of events done by the trained network of the
feasibility study (upper images) and manual selection (lower images) for one Chilean
station, which was not included in the training data set for the target frequencies

of a) 128 kHz and b) 4kHz. The selected events are displayed in blue. The red
rectangles show exemplary false positives and false negatives.

4 Results with increased training data set

To increase the size of the training data set, we labelled all of the 541 data files from Santa
Gracia and Nahuelbuta by manually selecting the events, which correspond to transmitter
signal. As we needed on average 40 — 45 minutes per station, this process was very time
consuming. Especially, as in 19 % of all files we could not identify the transmitter signal
at all and in another 22 % we could identify the signal only for some of the four target
frequencies. However, for 269 data files (50 %) we were able to identify the transmitter
signal for all four target frequencies with a very high accuracy. These 269 data files were
used as a new training data set. In contrast to the 44 files used for the first feasibility
study, the size of the training data set was increased by a factor of six. Furthermore,
the new data set is more balanced in terms of station locations and used frequency bands
as the originally training data set. 182 data files (67.7 %) were used for the training, 78
files (30 %) were used for the validation of the model and 9 files were used to compare
the performance of the trained network from the feasibility study and the retrained model
using the new data set. The retrained model was trained with the same parameters as the
original model, only the training data set was increased.

Fig. 5 shows the comparison of the selection done by the model of the feasibility study and
the retrained model for the same station as in Fig. 4 plotting the auto-spectrum of one
magnetic channel, the bivariate coherence and the magnetic polarisation direction. For
this extreme example the accuracy of the model could be increased from 35.4 % (model
from the feasibility study) to 92 % (retrained model). The average accuracy for the test
data set were increased from 81.8 % for the model from the feasibility study to 89.8 % for
the retrained model. Furthermore, the retrained model has for 33 of the 36 frequencies
and accuracy greater than 80%. This is a quite good result, especially as the training
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Figure 5: Comparison of the selection of events done by the trained network of the
feasibility study (upper images) and the retrained network (lower images) for the
same Chilean station as in Fig. 4, which was not included in the training data set
for the target frequency of 4 kH z displayed for three different physical parameters:
auto-spectrum of one magnetic channel (left), bivariate coherence (middle), magnetic
polarisation direction (right). The selected events are displayed in blue.

data set of the retrained model is still very limited. This test clearly demonstrates, that
the performance of the trained model can be increased by using more training data. To
increase the amount even further new data have to be measured and can be combined
with synthetic data.

5 Application to new RMT data from Ireland

The retrained model was applied to RMT data measured in Ireland end of 2022 to test
if a trained model can be successfully applied to new data sets. Almost all measuring
parameters are different in comparison to the data from Chile as the Ireland field campaign
was focused on an MT study. In theory, this should not be a problem as the trained model
should be independent of these parameters. Besides the new location, a different data
logger, magnetic sensors and other electrodes have been used. Furthermore a different
sampling rate and a completely different transmitting scheme were applied. In contrast
to Chile, where the transmitter emitted continuously, the transmitter made a short break
after each cycle in Ireland and each frequency was emitted for 2 — 2.5 s instead of the
0.2 s used in Chile. Nonetheless, the retrained network reached accuracy up to 85.4 %.
This indicates that a trained model can probably applied to new data sets. One the
other side, it becomes visible, that the model has a bias. Many false positives during
times, where the transmitter did not emit, hint that the model ”learned” the continuously
transmitting scheme. This is highly undesirable as the model should work independent of
the used transmitting scheme. As the model was trained with data, which all has the same
transmitting scheme, this behaviour can be explained. To avoid such bias, new training
data are needed, which have a high variability in the different parameters as e.g. the
transmitting scheme, used sensors and sampling rates.

20



Platz et al., Smart data selection - First insights from using machine learning for controlled-source RMT data processing

6 Summary and outlook

We trained a recurrent neural network with a very small training data set from Chile
to identify events which contain transmitter signal for controlled-source RMT data. A
first feasibility study showed that machine learning algorithms (models) are in general
suitable to perform this task. We got acceptable results even with a very limited training
data set of 44 files. Furthermore, we demonstrated that the accuracy of the trained
model can be increased by increasing the amount of training data. The application of
the trained model to new data measured under complete different conditions showed, that
a trained model can probably successfully applied to new data. However, this test also
demonstrates that the model has to be trained with data, which cover a higher variability
in e.g. the transmitting scheme, to avoid bias. Our next steps would be to measure new
data to increase the amount and the variability of the training data. Furthermore the
training data set can be complemented by synthetic data. Another import step will be
the identification of appropriate input features. So far, we used the single event auto-
and cross-spectra. However, there exist many other possible input features as e.g. the
transfer functions, coherences, polarisation directions or the eigenvalues of the spectral
density matrix. We will use unsupervised clustering methods to detect an optimal set
of input features. These input features will then be used to train and evaluate different
supervised machine learning algorithms as support vector machines, logistic regression,
neural networks and random forests in order to find one algorithm with a general high
accuracy to perform the identification of transmitter signal in an automated manner in
future. The final model will be tested by applying it to several new data sets.
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