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S U M M A R Y 

To gain new insights into ground-motion phenomena in New Zealand (NZ), we apply the 
non-parametric generalized inversion technique (GIT) in the Fourier domain to isolate the 
systematic source, path, and site ef fects from 20 813 seismo grams, recorded b y 693 sensors at 
439 unique locations, from 1200 shallow crustal events ( M w 

> 3) during the period 2000–2021. 
From the inverted source spectra, we derive Brune’s stress parameter, �σ , which is found to 

follow a lognormal distribution with a lo g 10 standard de viation of 0.36 or equi v alentl y 0.83 

in natural log unit. �σ slightly increases with focal depth and is practically independent 
of earthquake size (i.e. self-similar), but displays a statistically significant spatial clustering. 
Based on the inverted attenuation, a trilinear geometric-spreading function, and a distance- 
dependent quality-factor Q ( f ) model are found to well describe the attenuation in NZ; though 

a single Q ( f ) model is also obtained for the whole distance range: Q ( f ) = 149 . 1 f 0 . 62 . Using 

the site response decomposed from GIT, we find that the soil classification scheme specified in 

NZ seismic code, NZS1170.5, has a limited capability in discerning the site-specific frequency- 
dependent amplification functions in comparison to a non-parametric clustering with the same 
number of discrete classes. The potential use of the spatial variation in source parameters from 

this GIT analysis in region-specific physics-based simulations is discussed. 

Ke y words: Earthquak e ground motions; Earthquake source observations; Seismic attenua- 
tion; Site effects. 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/238/1/364/7667943 by Bibliothek des W

issenschaftsparks Albert Einstein user on 03 June 2024
1  I N T RO D U C T I O N  

New Zealand (NZ) is one of the most seismicall y acti ve and seismo- 
tectonicall y di v erse countries in the world (Re yners 1989 ; Ristau 
2008 ). Opposing subduction zones between the Pacific plate and 
the Australian plate exist at the margins of the North and South Is- 
lands, with an intense band of shallow seismicity diffuse over much 
of the country (e.g. Ristau 2008 ). During the NZ National Seismic 
Hazard Model 2022 update (NSHM22, Gerstenberger et al. 2024 ), a 
plethora of seismograms has been collected from a national seismo- 
graph network and processed (GNS Science 2022 ; Hutchinson et al. 
2024 ). This new data set creates an opportunity to better understand 
ground motions and to improve their predictions. 

One way to advance our understanding of ground motions is via 
gaining insights into the systematic effects governing them, that 
is, the effects of fault rupture, propagation path and near-surface 
geology on ground shaking, respectively. A commonly employed 
method to decompose ground motions into their constituent compo- 
nents is the generalized inversion technique (GIT, Andrews 1986 ). 
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GIT has been applied to many seismically active regions with a 
dense recording network, for example, Japan, California, Europe 
and China (e.g. Castro et al. 1990 ; Kawase & Matsuo 2004 ; Shearer 
et al. 2006 ; Drouet et al. 2008 ; Edwards et al. 2008 ; Fu et al. 2023 ).

In NZ, GIT has only been applied to specific earthquake se- 
quences. Oth & Kaiser ( 2014 ) decomposed 2415 accelerograms 
from 205 events of the 2010–2011 Canterbury earthquake sequence 
(Bradley & Cubrinovski 2011 ; Kaiser et al. 2012 ) and then focused 
on the stress release and source scaling. They reported a median 
value of 5 MPa for stress parameter which was nearly indepen- 
dent of earthquake size but varied laterally throughout Canterbury. 
Ren et al. ( 2018 ) systematicall y anal ysed the source, path, and site 
effects of the 2016 M w 7.8 Kaik ōura earthquake sequence (e.g. 
Bradley et al. 2017 ) via spectral decomposition of 2445 recordings 
from 148 events recorded by 126 strong-motion stations. Brune 
stress parameters (Brune 1970 ) were found to have a geometric 
mean value of 1.25 MPa, which is lower than that of the Canter- 
bury sequence (Oth & Kaiser 2014 ), and exhibited no dependence 
on earthquake magnitude, which is consistent with Oth & Kaiser 
ress on behalf of The Royal Astronomical Society. This is an Open Access 
s Attribution License ( https://creati vecommons.org/licenses/b y/4.0/ ), which 
 any medium, provided the original work is properly cited. 
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 2014 ). Though carefully analysed, results of the two prior inves-
igations may be unique to the studied earthquake sequences and
e gions. To rev eal, for instance, nationally consistent spatial patterns
n parameters controlling ground shaking, it entails a comprehensive
tudy on the national level, which is lacking in NZ. 

In this research, we aim to gain a comprehensive understand-
ng of the systematic source, path, and site effects of ground

otions observed throughout NZ. To this end, we decompose
he Fourier amplitude spectra (FAS) of ground-motion record-
ngs compiled during NSHM22 using a nonparametric GIT. In
he following sections, we first describe our data and method,
ollowed by results on source, path and site components. Then
e discuss potential directions for more in-depth analysis in the

uture and the use of results in region-specific ground-motion
imulations. 

 DATA  

e start with the raw waveforms recently compiled by Hutchinson
t al. ( 2024 ), which contains 247 501 acceleration time-series, and
hen compute FAS after applying additional screening criteria and
ndertaking proper data processing. We focus on crustal events with
oment magnitude M w ≥ 3, hypocentral distance R ≤ 300 km,

nd focal depth D ≤ 30 km. We then exclude recordings labelled
s clipped and with multiple w ave trains. We onl y keep records
rom either strong-motion (HN and BN: high and low sample-rate
ccelerometers, respecti vel y), and seismolo gical (HH and EH: high
ample-rate broad-band and extremely short-period seismometers,
especti vel y) channels (GNS Science 2022 ). Fur ther more, we only
etain records with peak ground acceleration, PGA ≥ 0.0002 g, to
 xclude e xcessiv ely weak signals and PGA ≤ 0.2 g to avoid any
ignificant impacts of soil non-linearity. 

P arri v als are determined in this study using PPHASEPICKER
Kalkan 2016 ). We extract the signal section with a time-window
ength corresponding to 20–80 per cent of the cumulative integral
f the squared acceleration (D S20-80 ). Though there are other com-
only used duration metrics (e.g. D S05-75 and D S05-95 , Trifunac &
rady 1975 ), we choose D S20-80 since it is better correlated with

he duration of significant S waves than D S05-75 and D S05-95 (Boore
 Thompson 2014 ), as illustrated in Fig. 1 . In addition, we im-

ose a minimum and maximum window length of 10 and 40 s,
especti vel y. The minimum length is to ensure the low-frequency
tability of FAS down to 0.3 Hz (at least three wavelengths for each
scillator frequency); and the maximum window length is chosen
onsidering the specialty of our dataset which includes ground mo-
ions from large events, for example, the 2016 M w 7.8 Kaik ōura
arthquake. 

A noise window with up to the same duration as the signal is also
xtracted from the pre-event section of each record when possible.
ach extracted acceleration waveform (both signal and noise) is then

ransformed to FAS after mean removal, tapering (5 per cent cosine
aper to both ends) and zero-padding. FASs are then smoothed
sing the Konno & Ohmachi ( 1998 ) function with a smoothing
oefficient b = 40. For each FAS, we only utilize its values at (a)
 ≥ 3/D S20-80 (i.e. at least three wavelengths for each frequency),
b) f ≤ 0.8 ∗Nyquist frequency (accounting for different sampling
ates) and (c) with a spectral signal-to-noise ratio (SNR) ≥ 3. We
ote that, in the computation of SNR, we use duration-scaled FAS
o consider cases where the noise and signal durations differ (Perron
t al. 2018 ). The two horizontal components (NS and EW) of each
ecording are processed independently and are then combined by
heir root mean square: 

H 

( f ) = 

√ 

1 

2 

[
FAS NS ( f ) 

2 + FAS EW 

( f ) 2 
]
. (1) 

We impose further screening to enhance data quality. We exclude
AS of which usable frequency range is narrower than 0.5–19 Hz.
his criterion ensures identical path coverage at each frequency in

his range. Further, we only keep the events and stations with at least
hree records passing all the aforementioned screening criteria. 

Our final data set contains 20 813 ground motions from 1200
rustal e vents, recorded b y 693 sensors at 439 unique locations
Figs 2 and 3 ). Among the 439 sites, 184 sites are equipped with
wo sensors, and 35 sites with three sensors. We treat each sensor as
n independent ‘site’ in the subsequent inversion which allows for
xamination of any dependence on instrument type, as discussed
urther subsequently. The M w versus D , and M w versus R distribu-
ions of the ground-motion data set are depicted in Fig. 2 . We note
hat many events have integer depths provided. The maximum num-
er of records per site and per event are 298 and 150, respecti vel y,
nd 90 per cent of sites and 85 per cent of ev ents hav e at least five
ecordings ( Fig. S1 , Supporting Information ). Our data set has a
easonably good geographic path coverage (Fig. 3 ), which is critical
or non-parametric GIT used in this study (e.g. Shible et al. 2022 ). 

 M E T H O D  

.1. Non-parametric generalized inversion 

or a surface ground-motion recording during earthquake i at site j ,
he combined FAS of the two horizontal components, H i,j ( f ), can be
epresented as the combination of terms for the source E i ( f ), path
 i,j ( f ) and site S j ( f ) in the natural logarithmic unit (ln): 

n H i, j ( f ) = ln E i ( f ) + ln P i, j ( f ) + ln S j ( f ) . (2) 

For a data set with multiple recordings per event and station, and
ith interconnected ray paths (i.e. no isolated region), the above

ystem of linear equations over i and j can be solved as a general
nverse problem in the least-squares sense (Andrews 1986 ; Castro
t al. 1990 ). We adopt a non-parametric one-step inversion approach
n which source, path and site terms are completely described by
ata (Bindi et al. 2009 ; Oth et al. 2011 ), rather than rely on pre-
efined functional forms as in parametric methods (e.g. Kawase &
atsuo 2004 ; Drouet et al. 2008 ; Edwards et al. 2008 ; Fu et al.

023 ). Gi ven suf ficient data, non-parametric schemes are advanta-
eous over parametric ones (Shible et al. 2022 ). Ho wever , in either
pproach, the path attenuation ( P i,j in eq. 2 ) is often assumed to
e homogeneous and isotropic, only depending on the scalar mea-
ure of distance (in 2 km bins) without explicitly considering the
-D anelastic attenuation, and M w -dependent near-source geomet-
ic spreading. We discuss the potential impact of some of these
ssumptions on our results subsequently. 

Additional constraints are needed to minimize significant trade-
ffs among the three terms (eq. 2 ) from the non-parametric GIT. For
nstance, it would still be self-consistent even if one subtracts (in
n unit) an arbitrary function of frequency from site responses ( S i )
nd adds it to the source spectra ( E i ). Therefore, various inversions
chemes impose different constraints/assumptions to minimize the
rade-offs. For example, the global EGF (empirical Greens’ func-
ion) fitting technique, proposed by Shearer et al. ( 2006 ), makes
ssumptions on the source spectral shape. 

In this research, we apply two constraints. One is on attenuation,
ssuming ln P ( f, R ref ) = 0 , where R ref is the reference hypocentral

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae163#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae163#supplementary-data
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Figure 1. Comparison of window length D S2080 used in this study with D S0595 (event: 1 825 324, station: WHZ, channel: HH). I a denotes Arias intensity, 
which is related to the integral squared acceleration. 

Figure 2. Ground motions selected in this study. 
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distance. We use R ref = 2 km, which is approximately the minimum 

distance of our data set. This constraint leads to ‘shifted’ source 
spectra at R ref = 2 km, which will be accounted for in subsequent 
interpretation of inversion results. The other constraint is on site 
response, assuming no site response at reference site(s), that is, 
ln S ref ( f ) = 0 . The inverted site response at all other sites will then 
be relative to this reference condition, making the selection of ref- 
erence sites non-trivial. The reference site(s) should be ideally free 
of site effects in the frequency range of interest, but it is challenging 
to identify good reference site(s) in reality (Steidl et al. 1996 ). 
To identify proper reference site(s), as free of site effects as 
possible, we carried out a preliminary GIT calculation in which the 
mean site response over all sites in our data set was utilized as the 
reference. We then selected sites with (i) more than 20 records, (ii) 
site response varying smoothly with frequency (i.e. no significant 
peaks or troughs) and (iii) V S 30 > 600 m s −1 , where V S 30 denotes the 
time-averaged shear wav e v elocity in the topmost 30 m. After a few 

iterations, we select HUNS, RPZ and MRZ as reference sites (Fig. 3 ) 
which have V S 30 values of 680, 1000 and 800 m s −1 , respecti vel y 
(Wotherspoon et al. 2024 ). While V S 30 = 680 m s −1 at HUNS is 

art/ggae163_f1.eps
art/ggae163_f2.eps
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Figure 3. Path coverage of the 20 813 selected ground motions from 1200 crustal events (filled circles with colours indicating focal depth) recorded by 693 
sensors at 439 unique locations (triangles). Lines represent simplified seismic ray paths, and blue triangles denote the three reference stations (from left to 
right: RPZ, HUNS and MRZ). 
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eemingly low for a reference site, it is derived from a regional
 S 30 map (Foster et al. 2019 ) and therefore has a relati vel y large
ncertainty compared with that possible by direct measurement. 

.2. Parametrization of GIT results 

.2.1. Source parametrization 

n our non-parametric inversion, each term is completely con-
trained by data. To obtain relevant source parameters, we
arametrize the inverted acceleration source spectra in post-
rocessing by fitting the ω 

−2 source model (Brune 1970 , 1971 )
s illustrated in Fig. S2 ( Supporting Information ) The Brune model
s generally considered to provide an appropriate representation of
he source spectrum of small and moderate earthquakes (e.g. Izutani
 Kanamori 2001 ) which dominate our data set. Due to the trade-

ff between source and site terms, improper reference sites could
ystematically bias source spectra, especially at high frequencies.
o investigate this potential, we apply a κsource filter to quantify the
eviation of the inverted source spectra E ( f ) from the ω 

−2 model
t f > f k , where f k indicates the frequency from which the filter is
pplied. We set f k = 10 Hz to be well beyond the corner frequency
ange of the events (Oth & Kaiser 2014 ). If there is any systematic
mplification or de-amplification at the reference sites, it will be

art/ggae163_f3.eps
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae163#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae163#supplementary-data


368 C. Zhu et al . 
D

ow
nloaded from

 https://academ
ic.oup.com

/gji/article/238/1/364/7667943 by Bibliothek des W
issenschaftsparks Albert Einstein user on 03 June 2024
mapped into source spectra, and results in a large mean value of 
κsource . 

The theoretical source model used herein, E( f ) , consists of both 
the standard ω 

−2 model and a κsource filter: 

E 

( f ) = 

( 2 π f ) t 
R θ∅ V F 

4 πρβ3 R ref 

M 0 

1 + 

(
f 
f c 

)2 
e −πκsource ( f − f k ) , (3) 

where t = 0, 1, or 2 for displacement, velocity, or acceleration spec- 
tra, respecti vel y; R θ∅ = 0.55 is the azimuthally averaged radiation 
pattern of S waves (Boore & Boatwright 1984 ); V = 1/ 

√ 

2 is the 
partition of S -wave energy into two horizontal components; F = 2 
is the free-surface effect for vertically propagating SH waves; ρ = 

2700 kg m 

−3 and β = 3700 m s −1 are the density and S -wave veloc- 
ity at the source, respecti vel y, deri ved from a 1-D velocity model 
used by Lee et al. ( 2022 ); R ref = 2 km is the reference distance; M 0 

(N ·m) is the seismic moment; and f c (Hz) is the corner frequency. 
For events with M w > 5.0, f c and M 0 may not be reliably determined 
simultaneously due to bandwidth limits (i.e. f c may be lower than 
the lowest usable frequency of 0.5 Hz). Thus, M 0 is anchored to 
the associated moment magnitude M w from the reference catalogue 
(Hutchinson et al. 2024 ), rather than freely inverted. 

Assuming a circular fault rupture, the Brune stress parameter, 
�σ (unit: Pa), can be computed from M 0 and f c (Eshelby 1957 ; 
Keilis-Borok 1959 ; Brune 1970 ): 

�σ = 

7 

16 
M 0 

(
f c 

kβ

)3 

, (4) 

where k is a constant, depending on the assumed rupture model, and 
is set to 0.37 for S wave (Brune 1970 , 1971 ). Inverted and theoretical 
source spectra, as well as source parameters for each event are 
provided in Supporting Information ‘ Source parameters.xlsx ’ and 
‘ DataSet Source ’ (Data and Resources). 

3.2.2. Path parametrization 

We parametrize the non-parametric attenuation from GIT via re- 
gression analyses using the following equation: 

ln P 

( f, R 

) = ln G 

( R 

) + ln A 

( f, R 

) , (5) 

where P ( f, R ) represents the total path attenuation, and G ( R) and 
A ( f, R ) denote the parametric geometric spreading and anelastic 
attenuation functions, respecti vel y. A ( f, R ) is described as follows: 

ln A 

( f, R 

) = 

−π f ( R − R ref ) 

Q 

( f ) β
, (6) 

where Q ( f ) is the frequency-dependent quality factor modelled as 
Q ( f ) = Q 0 f α , Q 0 is the reference value of Q at f = 1.0 Hz, and α
is an empirical coefficient. An iterative procedure (Bindi & Kotha 
2020 ) is adopted to parametrize G ( R) and then A ( f, R ) . 

4  R E S U LT S  

Using the non-parametric one-step GIT, we obtain the non- 
parametric acceleration source spectrum for each event, attenuation 
against distance, and site response at each site (Fig. 4 ). In Fig. 4 (a), 
the inverted source terms are highlighted for three example events 
with M w = 4.0, 4.7 and 5.0, respecti vel y. The theoretical source 
model in eq. ( 3 ) captures the non-parametric source terms of the 
three e vents reasonabl y well. Fig. 4 (b) illustrates the distance and 
frequenc y dependenc y of path attenuation. High-frequency compo- 
nents tend to attenuate faster with distance than low-frequency ones. 
At relati vel y low frequencies, a flattening of attenuation rate appears 
in the distance range from ∼60 to 100 km, commonly attributed to 
post-critical reflections from the Moho discontinuity (e.g. Burger 
et al. 1987 ; Atkinson & Mereu 1992 ). In Fig. 4 (c), each curve is the 
average site response over all events available at a given site and is 
relative to the selected reference sites (black lines). The coloured 
lines in Fig. 4 (c) correspond to sites CCCC ( V S 30 = 234 m s −1 , 
Wotherspoon et al. 2024 ) and WTYS ( V S 30 = 230 m s −1 , Foster 
et al. 2019 ) in Christchurch and Wellington city centres, respec- 
ti vel y. The azimuth coverage at each site is illustrated in Fig. S3 
( Suppor ting Infor mation ). 

To examine the stability of the inversion, we carried out residual 
anal yses (observ ation minus prediction from eq. 2 using the three 
terms from GIT, as exemplified in Fig. S4 , Supporting Information ). 
But we found no systematic bias against earthquake magnitude and 
hypocentral distance. This indicates that the systematic source, path 
and site effects are well captured. In the following, we elaborate on 
each constituent component. 

4.1. Source effects 

4.1.1. Source parameters 

Fig. 5 (a) illustrates the distribution of κsource (eq. 3 ) for the 1152 
events for which source parameters are successfull y deri ved. κsource 

is normally distributed with a mean of −0.002 s and a standard 
deviation of 0.013 s. The small mean value of κsource demonstrates 
that our reference sites do not significantly bias the source spectra at 
high frequencies ( f > 10 Hz), and that the inverted source spectra, 
on average, follow the Brune circular model at high frequencies. 
The variability of κsource among individual events are attributable to 
factors, for instance, near-source attenuation and radiation energy 
effects (e.g. Bindi & Kotha 2020 ). 

In addition to high frequencies, our reference site selection also 
does not appear to significantly bias the computed source spectra at 
relati vel y low frequencies which affect the inverted M w . Fig. 5 (b) 
compares the M w from GIT with the centroid moment tensor solu- 
tions from the reference catalogue. For larger events ( M w > 5.0), 
M w (or M 0 ) is anchored to the catalogue values in the spectral fitting 
due to bandwidth limits. Ho wever , for smaller events ( M w < 5.0), 
the inverted M w is also consistent with the catalogue M w with a neg- 
ligible offset (e.g. the zero axis lies within the uncertainty bound for 
most magnitude bins), and specifically the difference has a mean 
of 0.016 and standard deviation of 0.187. This confirms our source 
and site terms are not significantly biased at low frequencies either. 
Besides, using the catalogue M w for large events will not introduce 
inconsistency in the M 0 –f c scaling between large and small events, 
as investigated in Section 4.1.2. 

Fig. 6 (a) depicts the histogram of the stress parameter, �σ , for the 
1152 crustal events. �σ follows a lognormal distribution (quantile–
quantile plot in Fig. S5 , Suppor ting Infor mation ) with a log 10 stan- 
dard deviation of σ log �σ = 0.36, or σ ln �σ = 0.83 in ln unit. This 
�σ variability is consistent with those reported in other regions, for 
instance, Japan (e.g. σ log �σ = 0.42 in Baltay et al. 2013 ; 0.34–0.36 
in Nakano et al. 2015 ; 0.48 in Oth et al. 2017 ), California (e.g. 
0.31–0.45 in Trugman & Shearer 2017 ) and Southern Kansas (0.35 
by Trugman et al. 2017 ). Besides, we examine the distribution of 
�σ values for subsets of the 2010–2011 Canterbury sequence and 
the 2016 Kaik ōura sequence included by Oth & Kaiser ( 2014 ) and 
Ren et al. ( 2018 ), respecti vel y. Our results (Fig. 6 a) indicates that 
the 2010–2011 Canterbury sequence has a mean �σ higher than the 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae163#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae163#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae163#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae163#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae163#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae163#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae163#supplementary-data
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Figure 4. Inverted Fourier source, path and site terms. (a) Acceleration source spectra for 1200 crustal events. Colour lines are the non-parametric (solid 
lines) and parametric (dashed lines) source spectra for three example events: M w 4.0 ‘2 825 685’, M w 4.7 ‘1 797 520’ and M w 5.0 ‘2 626 467’; and shaded 
areas represent the uncertainty via bootstrapping. (b) Path attenuation as a function of frequency and distance. (c) Site responses for 693 sites, including three 
reference sites (black lines), and two example non-reference sites CCCC and WTYS (colour lines) in Christchurch and Wellington city centres, respecti vel y. 

Figure 5. (a) Histogram of source kappa, κsource , and (b) comparison between moment magnitudes from inversion, M 

GIT 
w , and centroid moment tensor 

catalogue, M 

cat 
w . Since M w for larger events ( M w > 5.0) is anchored to the catalogue value during the inversion, thus the comparison is limited to M w ≤ 5.0. 
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Figure 6. (a) Histogram of Brune’s stress parameter, �σ , for crustal events examined in this study as well as subsets of the 2010–2011 Canterbury and the 
2016 Kaik ōura sequences, and (b) comparison of the standardized stress parameter, �σ , with those from Ren et al. ( 2018 ) and Oth & Kaiser ( 2014 ) for 
common events. 
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national average whereas the 2016 Kaik ōura sequence has a lower 
mean �σ . The σ log �σ values for the Canterbury and Kaik ōura se- 
quences are 0.25 and 0.28, respecti vel y, both of which are smaller 
than the variability on the national level. 

Because of the widel y reco gnized v ariability in computing �σ

values due to, for instance, model-specific assumptions (e.g. Pen- 
nington et al. 2021 ; Shible et al. 2022 ), we focus on the relative pat- 
tern in �σ , rather than its absolute value, to compare trends between 
different studies. Ren et al. ( 2018 ) and Oth & Kaiser ( 2014 ) previ- 
ousl y anal ysed the 2010–2011 Canterbury and the 2016 Kaik ōura 
Earthquake Sequences, respecti vel y. We thus compare �σ v alues 
for common events within these different studies after standardiza- 
tion within each data set: 

�σi = 

ln �σi − μln �σ

σln �σ

, (7) 

where �σi denotes the stress parameter for event i , and μln �σ and 
σln �σ are the logarithmic mean and standard deviation of �σ , re- 
specti vel y , for a given data set. The intention of standardization via 
eq. ( 7 ) is that systematic deviations in �σ values across studies, 
as high as 1–2 orders of magnitude (Shible et al. 2022 ), would be 
significantly reduced. 

There is a reasonably good agreement in �σ values between our 
study and Oth & Kaiser ( 2014 ) (Fig. 6 b), as indicated by a Pear- 
son’s correlation of r = 0.76 (with an associated p = 8 e −18). The 
correlation with Ren et al. ’s ( 2018 ) results is lower with r = 0.49 
( p = 5 e −7). While it is known that �σ depends on the choice of 
rupture model (e.g. circular, or elliptical crack model) and the value 
assumed for the high-frequency fall-off n , -for example, n = 2 in 
( f/ f c ) 

n (Trugman 2020 ), all three studies (this work, Oth & Kaiser 
2014 ; Ren et al. 2018 ) use a Brune-type circular rupture model. 
The lower correlation with Ren et al. ’s ( 2018 ) results (Fig. 6 b) may 
be attributed to the different modelling of the high-frequency decay 
in source spectra. Specifically, Ren et al. ( 2018 ) utilized the f max 

model, expressed as [1 + f/ f 8 max ] 
−1 / 2 

, whereas this study and Oth 
& Kaiser ( 2014 ) adopted the κsource model (eq. 3 ). Other potential 
reasons for the scatter include dif ferent S -w ave window length (e.g. 
Bindi et al. 2023 ). There are ongoing efforts, for example, the Com- 
munity Stress Drop Validation Study (Baltay et al. 2021 ) to bench- 
mark absolute �σ estimates. Ho wever , as illustrated in Fig. 6 (b), 
�σ values across studies are still highly correlated. Therefore, we 
emphasize on the relative pattern in �σ values in the following 
analyses and interpretation. 
4.1.2. Source scaling 

One topic of general interest to earthquake source physics is whether 
and how �σ scales with earthquake size (e.g. Oth 2013 ). For the 
shallow crustal events examined here, �σ displays a very slight 
increasing trend with M w with a Pearson’s r = 0.06 ( p = 0.04) for 
the whole dataset (Fig. 7 a). Though statistically significant (at the 
common 5 per cent threshold), such a low r value only suggests 
a negligible practical correlation (Schober et al. 2018 ). Thus, the 
practical independence of �σ on earthquake size supports self- 
similarity (Aki 1967 ), which is also the case using the 2010–2011 
Canterbury and 2016 Kaik ōura earthquake sequence subsets of 
events. 

The near self-similarity can also be confirmed in terms of the M 0 –
f c scaling (Fig. 8 ). Kanamori & Rivera ( 2004 ) proposed a parameter 
ε in M 0 ∝ f −( 3 + ε ) 

c , where ε = 0 indicates self-similarity (Aki 1967 ). 
In this study, we find ε = 0.09 ± 0.12, suggesting we cannot reject 
ε = 0 (i.e. self-similarity) at a 95 per cent confidence interval. This 
is consistent with other results in NZ using the ω 

−2 model, that is, 
Oth & Kaiser ( 2014 ) for the 2010–2011 Canterbury earthquake 
sequence ( ε = 0.16 ± 0.17), and Ren et al. ( 2018 ) for the 2016 
Kaik ōura earthquake sequence ( ε = 0.02 ± 0.08). For regions other 
than NZ, Oth et al. ( 2010 ) reported ε = 0.12 ± 0.12 for crustal 
events in Japan. In contrast, deviations from self-similarity have 
been reported in Italy (e.g. Wang et al. 2019 ) and California (e.g. 
Trugman 2020 ; Bindi et al. 2023 ). 

Stress parameter, �σ , increases with focal depth, D , when a con- 
stant velocity is used in eq. ( 4 ) (Fig. 7 b). The Pearson’s correlation 
between �σ and D is r = 0.22 ( p = 2 e −14), indicating a weak 
correlation. The increasing trend of �σ with D could be caused by 
the increase in M 0 (eq. 4 ), but we rule this out since M 0 decreases 
slightly with D , with a Pearson’s r = −0.13 ( p = 2 e −05, Fig. S6 ,
Suppor ting Infor mation ). Ho wever , Abercrombie et al. ( 2017a ) and 
Ren et al. ( 2018 ) found no depth-dependence of �σ in 176 sub- 
ducting earthquakes and the 2016 Kaik ōura earthquake sequence, 
respecti vel y, in NZ. Whether �σ increases with source depth is still 
a subject of debate (e.g. Abercrombie et al. 2021 ). We thus further 
discuss the potential impact of our assumptions on the results in 
Section 5. 

4.2. P ath atten uation 

Path attenuation is well constrained by data in the distance range 
considered herein. This is illustrated in Fig. 9 (a) which depicts 
the FAS (at f = 5 Hz) corrected for source and site effects, 
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Figure 7. Dependence of Brune’s stress parameter, �σ , using a constant velocity model on (a) inver ted ear thquake magnitude, M 

G I T 
w , and (b) focal depth, D . 

r and p are the Pearson’s correlation coefficient and corresponding p- value, respectively. 

Figure 8. M 0 –f c scaling. Dashed lines represent the theoretical relationship 
between M 0 and f c for various levels of �σ . Solid line is the linear fit to data 
from this study. ε is the parameter proposed by Kanamori & Rivera ( 2004 ) 

in M 0 ∝ f −( 3 + ε ) 
c , and its value is derived based on results in this study. 
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n H i, j ( f ) − ln E i ( f ) − ln S j ( f ) , against hypocentral distance. In
he following, we parametrize the data-driven attenuation functions.

.2.1. Geometric spreading 

o parametrize, in a simple manner, the non-parametric attenuation
rom GIT (Fig. 9 a), geometric spreading, G ( R) , is assumed to be
requency independent in this study. We first consider f = 1 Hz in eq.
 6 ) to determine the geometric spreading. To boost the robustness of
he results, the attenuation curves over frequencies 0.5 < f ≤ 1.23 Hz
re fitted to represent that at f = 1 Hz. A simple nonlinear least-
quares regression is performed by adopting the following hinged
rilinear function: 

ln G 

( R 

) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

s 1 ln 
R 

R ref 
R ≤ R 1 

s 1 ln 
R 1 

R ref 
+ s 2 ln 

R 
R 1 

R 1 < R ≤ R 2 

s 1 ln 
R 1 

R ref 
+ s 2 ln 

R 2 
R 1 

+ s 3 ln 
R 
R 2 

R > R 2 , 

(8) 

here slope values and hinge distances are obtained in the re-
ression as [ s 1 , s 2 , s 3 ] = [ −0.31, −1.09, −0.33] and [ R 1 , R 2 ] =
7.57, 59.62] km. Fig. 9 (b) illustrates that eq. ( 8 ) well captures the
istance-dependent geometric spreading. 

The first hinge distance R 1 is devised to capture the near-source
aturation effects, which can be observed in Fig. 9 (a). The saturation
ffects are known to be magnitude dependent (e.g. Yenier & Atkin-
on 2014 ). Ho wever , the sparsity of our data set at close distance
rom large events prevents us reliably modelling its magnitude-
ependence in a full y data-dri ven manner. Thus, we use the first
inge R 1 to capture the distance saturation effects on average (across
ifferent M w bins). 

The second hinge distance R 2 is to model the attenuation rate
hange in the distance range of ∼60 to 100 km (Fig. 9 b). The rate
hange is potentially caused by the significant arrivals of S waves
ostcritically reflected at the Moho discontinuity. Such a variation
n attenuation has long been observed in other regions, for exqmple,
orth America (e.g. Burger et al. 1987 ; Atkinson & Mereu 1992 ),
ut its distance range depends on the focal depth, crustal thickness,
nd the crustal velocity gradient, and thus varies across regions
Burger et al. 1987 ). 

.2.2. Anelastic attenuation 

fter parametrizing the apparent geometric spreading, we then
arametrize the anelastic attenuation. First, we correct the inverted
ath attenuation for the apparent geometric spreading effects using
q. ( 8 ). The non-parametric spreading-corrected attenuation, that is,
n P ( f, R ) − ln G ( R) , are illustrated in Fig. 9 (c). The slopes of the
on-parametric anelastic cur ves var y with distance intervals, and
hus we model the trend using the following piecewise function for
ifferent distance ranges with a break point at R h : 

ln A 

( f, R 

) = 

{ −π f ( R−R ref ) 
Q 1 ( f ) β−π f ( R−R ref ) 

Q 1 ( f ) β
+ 

−π f ( R−R h ) 
Q 2 ( f ) β

R ≤ R h 

R > R h , 
(9) 

here Q 1 ( f ) = Q 0 , 1 f α1 and Q 2 ( f ) = Q 0 , 2 f α2 describe the qual-
ty factors for distances smaller and larger than R h , respecti vel y.
he fitted values of the parameters are obtained as [ Q 0 , 1 , Q 0 , 2 ]
 [369.44, 98.27], [ α1 , α2 ] = [0.11, 0.95] and R h = 94.49 km.
hese estimated values of quality factor suggest that at distances
 > R h the entire attenuation function becomes independent of fre-
uency with α2 = 0.95. This does not mean that the attenuation is
ndeed frequency independent because most of the frequency de-
endence of the attenuation (over the entire distance range) comes
rom distances R ≤ R h , and the slope of distance decay for R > R h 

s conditioned on the intercept at R = R h (eq. 9). Moreover, it is
orth mentioning that at larger distances the trade-off between ap-
arent geometric spreading and quality factor becomes difficult to
esolve (e.g. Edwards et al. 2008 ). Fig. 9 (d) demonstrates that our
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Figure 9. (a) Path attenuation with data at f = 5 Hz in which LOWESS denotes ‘locally weighted scatterplot smoothing’, and parametrization of (b) geometric 
spreading, G ( R ) (eq. 8), (c) anelastic attenuation, A ( f , R ) (eq. 9) and (d) combined path attenuation, P ( f , R ) (eq. 5 ). 
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parametric equations (eqs 8 and 9 ) can well model the distance- and 
frequency-dependence of attenuation from the inversion. 

In addition to the distance-dependent Q model (eq. 9 ), we also 
fit a single Q model (eq. 6 ) over the entire distance range, as shown 
in eq. ( 10 ), to facilitate comparisons with Ren et al. ( 2018 ) who 
presented a single Q model. While the single Q(f) model appears 
simple, the distance-dependent Q(f) model fits better the spreading- 
corrected attenuation curves, as shown in Fig. S7 in the Supporting 
Information : 

Q 

( f ) = 149 . 1 f 0 . 62 . (10) 

We compare our single Q(f) model (eq. 10 ) with that of Ren et al. 
( 2018 ) who obtained Q ( f ) = 130 . 87 f 1 . 07 for the souther n Nor th
Island and nor theaster n South Island of NZ. Our Q 0 values are 
comparable, but difference is evident in the frequency dependence 
of Q (i.e. α in eq. 6 ). The difference in α values is due to different 
modelling assumptions and target regions. First, Ren et al. ( 2018 ) di- 
rectly adopted the geometric spreading model of Atkinson & Mereu 
( 1992 ) for southeastern Canada, which follows R 

−1 for R < 37.5 km, 
while we use eq. (8) with coefficients obtained specifically for NZ 

data. Due to trade-offs between geometric spreading and anelastic 
attenuation (e.g. Edwards et al. 2008 ), differences in the former 
will results in deviation in the latter. In addition, trade-offs between 
attenuation and other effects may also contribute to the difference in 
attenuation across studies, as reported in the GIT benchmark study 
by Shible et al. ( 2022 ). Fur ther more, Ren et al. ’s ( 2018 ) model 
w as deri ved for the southern North Island and northeastern South 
Island while our eq. ( 10 ) is for the entire NZ. Thus, the difference 
in Q ( f ) is also attributable to the lateral variations in attenua- 
tion within the crust in NZ, as revealed by Eberhart-Phillips et al. 
( 2015 ). Nonetheless, herein we only provide simple parametrized 
attenuation functions, and examination of depth-, magnitude-, and 
region-dependence of attenuation will be left for future studies. 

4.3. Site response 

The observational dataset of FAS-based site responses from GIT 

(i.e. Fig. 4 c) enables us to examine important questions regard- 
ing site effects in an NZ context. Since there are colocated sen- 
sors at some sites, we only use one site-response curve at each 
unique location (total no.: 439), adopting the preferential system: 
HN > BN > HH > EH. In addition, to avoid any potential im- 
pact of instrument response removal on data from seismometers, 
we only utilize the 319 available strong-motion channels in the sub- 
sequent analyses and interpretations. Site-response data (mean, and 
uncertainty quantified via bootstrapping) at each site, and its corre- 
sponding azimuth coverage are provided in Supporting Information 
‘ Amp mean uncertainty.xlsx ’ and ‘ DataSet Amp ’ (Data and Re- 
sources). 
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.3.1. Data-driven clustering 

urrent seismic codes account for local site effects by differen-
iating elastic design spectra for different site categories in many
ountries ( NZS1170.5 in NZ ; Eurocode 8 in Europe ). These discrete
ategories are known to be a simplistic representation of the com-
lex and location-specific nature of site ef fects. Ne v ertheless, the y
re still a step forward relative to completely ignoring the impacts
f surface geology, or the cr ude binar y distinction of soil versus
ock used in the past ( Fig. S8 , Supporting Information ). None the
ess, site categories in current seismic codes are based on proxies
f site response (e.g. V S 30 ), rather than site response itself. One im-
ortant question is how ef fecti ve the current site classification code
n NZ (i.e. NZS1170.5 ) is in discerning differences in observed
mplification. 

We assess the performance of the current NZ site classification
ode against a data-driven approach. In the data-driven method, mu-
uall y exclusi ve clusters in the high-dimensional site-response data
re recognized via an unsupervised technique, k -means clustering
MacQueen 1967 ). k is set to five primarily considering the number
f site categories (i.e. five) in NZS1170.5. It is also appropriate to
et k at 5 based on the metric of within-cluster sum of distances and
ilhouette criterion values ( Fig. S9 , Supporting Information ). 

Each k -means cluster is distinctly separated as can be ob-
erved in their distributions in the first two dimensions from prin-
ipal component analysis (PCA, Fig. 10 a). Individual curves in
ach cluster are presented in Fig. S10 ( Supporting Information ).
he spatial distribution of each cluster is depicted in Fig. S11
 Suppor ting Infor mation ) for all sites in NZ, while Fig. 11 specifi-
ally illustrates sites in the Canterbury region for a better visualiza-
ion. 

Site clusters recognized by k -means clustering are also broadly
onsistent with independent geological information. For instance,
luster 2 exhibits the largest amplification among the five clus-
ers at f < ∼ 2 Hz, followed by a significant decay in ampli-
ude with the increase in frequency (Fig. 10 b), a typical fea-
ure of sites underlain by deep soft sediments. Sites from the
hristchurch CBD, filled by Holocene river deposits (GNS Sci-
nce 2012 ), are in this cluster (Fig. 11 ). Cluster 4 features a high-
requency resonance, which suggests a formation of thin soft lay-
rs on top of stiffer soils or rocks, for example, some sites in the
anks Peninsula (volcanic rocks), Southeast of the Christchurch
BD. 
Besides the significant differences in mean site response, dis-

ersion in the site-response data is also reduced by more than 35
er cent by k -means clustering. Specifically, within-cluster standard
eviations are 36, 41, 47, 35 and 42 per cent (average over the
 xamined frequenc y range) smaller for cluster 1–5, respectiv ely,
elative to the entire data set (Fig. 10 c and Table 1 ). The reduction
s more pronounced at lower frequencies ( f < ∼ 4 Hz) at which
he standard deviation is approximately σ ln S = 0.4. Ho wever , for
igh frequencies, especially f > 10 Hz, the standard deviation still
ncreases. We attribute this increase to the between-site variability
n κ0 (Anderson & Hough 1984 ; Hough & Anderson 1988 ), and it
s a global challenge to ef fecti vel y capture the high-frequency vari-
bility in forward predictions with existing approaches (e.g. Zhu
t al. 2022 , 2023 ). 

In contrast to the k -means clustering results, the NZS1170.5 soil
lassification scheme is far less ef fecti ve in dif ferentiating site
esponses. Figs 10 (d)–(f) illustrate the result for the same data
et grouped by NZS1170.5 subsoil class which is obtained from
a

otherspoon et al. ( 2024 ). Among these 319 sites, 49 per cent (or
57) of sites are in class D, 29 per cent (or 94) in class B, and 18
er cent (or 57) in class C (Table 1 ). Classes A and E have less
han 10 samples, and consequently within-class statistics are thus
ot presented. As illustrated in Fig. 10 (d), site-response curves in
ach NZS1170.5 class are not distinctly separated. The reductions
n standard deviation are 4, 4 and 15 per cent for classes B, C and D,
especti vel y (Fig. 10 f and Table 1 ), which are significantly smaller
han those achieved by k -means clustering (i.e. 35–47 per cent). The
ithin-class standard deviation for the class B is even higher than

he whole data set at f > ∼4 Hz, suggesting the inef fecti veness of
he NZS1170.5 classification for this cate gory. Ov erall, our results
ndicate a rather limited discerning power of the NZS1170.5 soil
lassification scheme. 

.3.2. Towards end-to-end classification 

hough k -means clustering is very ef fecti ve in differentiating site
esponses, the approach is not directly useful in forward classifica-
ion in which observed site responses at target sites are generally
na vailable. Thus, w e still need to rely on parametrized classifica-
ion. Ho wever , these k -means clusters can be utilized to develop new
arametrized classification schemes (e.g. Kotha et al. 2018 ) which
e refer to as ‘end-to-end’ classification herein. To this end, we ex-
mine the metadata distribution of the k -means clusters, specifically
 S 30 and the site period T 0 based on values in Wotherspoon et al.
 2024 ), as illustrated in Fig. 12 . In examining trends, it is important
o note that 81 per cent of V S 30 and 18 per cent of T 0 data are inferred
alues. 

Differences in V S 30 and T 0 values among k -means clusters can
n average be clearly observed (Fig. 12 and Table 2 ). There is an
ncreasing trend in the median values of V S 30 from cluster 2, 1, 3, 4
o 5, and a decreasing trend in median T 0 accordingly (due to their
orrelation seen in Fig. 12 a). Cluster 2 has the lowest median V S 30 

f 264 m s −1 and the highest median T 0 of 1 s, thus corresponding
o soft soil sites. In contrast, cluster 5 has the largest median V S 30 of
00 m s −1 and the lowest median T 0 of 0.05 s, corresponding to stiff
oil or rock sites. This agrees with the shape of average amplification
urves for these clusters shown in Fig. 10 (b). Since V S 30 and T 0 are
n overly simplified characterization of the high-dimensional site
esponses, and have uncertainties of their own, there are overlaps
n the 25th–75th percentile V S 30 or T 0 values between neighbouring
lusters (Table 2 ). 

Including more site parameters, for example, depth to a
.0 km s −1 velocity horizon Z 1.0 , can more exclusi vel y define each
luster. Ho wever , this requires a larger sample size, that si, the
urse of dimensionality (e.g. Zheng & Casari 2018 ). In addition,
here are studies questioning the use of simple site parameters in
ite classification. Yaghmaei-Sabegh & Rupakhety ( 2020 ) and Ji
t al. ( 2022 ) utilized more informative site data, that is, horizontal-
o-vertical spectral ratio (HVSR) curves to separate different site
lasses. Ho wever , in future w orks, the inherent clusters in site-
esponse data (e.g. the k -means clusters in Fig. 10 a) can be utilized
s the g round tr uth (or labels in a machine learning context), rather
han those specified by current seismic provisions. From these in-
erent clusters, one can ‘reverse engineer’ new parameter-based site
lassification schemes (e.g. Kotha et al. 2018 ), or train data-driven
lassification models using a variety of site information as fea-
ures, for example, microtremor HVSR, geological age and terrain

ttributes. 
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Figure 10. (a)–(c) K -means clustering versus (d)–(f) NZS1170.5 subsoil classification of site-response curves with frequency (Fig. 4 c). (a) Five clusters by 
k -means clustering (an unsupervised machine learning) in the first two PCA dimensions, (b) within-cluster means and (c) standard deviations of site responses 
for each cluster. Panels (d)–(f) are similar to (a)–(c) but by NZS1170.5 subsoil classification. 

Figure 11. Spatial distribution of sites in each k -means cluster in the Canterbury region as an example. The spatial distribution for the whole of NZ is depicted 
in Fig. S11 ( Supporting Information ). 
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Table 1. Statistics of site clustering/classification. 

Cluster/Class Count Per cent Reduction in std 

K -means cluster 1 59 19 36 per cent 
2 95 30 41 per cent 
3 87 27 47 per cent 
4 42 13 35 per cent 
5 36 11 42 per cent 

NZS1170.5 class A 8 3 –∗
B 94 29 4 per cent 
C 57 18 4 per cent 
D 157 49 15 per cent 
E 3 1 –

∗Mean and standard deviation for NZS1170.5 classes A and E are not 
presented due to small sample size ( < 10). 
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 D I S C U S S I O N  

.1. Impacts of de pth-de pendent Vs and Q 

s shown pre viousl y in Fig. 7 (b), stress parameter �σ slightly
ncreases with focal depth D when a constant velocity, β, is assumed
n eq. ( 4 ). Ho wever , when a 1-D velocity model (Lee et al. 2022 ) is
onsidered, the trend in �σ with D weakens (Fig. 13 a). For D < ∼
 km, �σ decreases with D and then remains constant for larger D .
he correlation between �σ and D becomes much weaker with r =
0.07 ( p = 0.02). Therefore, if a depth-dependent velocity model

s used, deeper events, which tend to have larger β, would have a
ower �σ , thus ‘absorbing’, to a certain degree, the increasing trend
f �σ with D resulting from a constant velocity model. 

In addition to a depth-dependent v elocity, S -wav e quality factor
 also varies with depth (Eberhart-Phillips et al. 2015 ), which is
ot explicitly considered in this study (only implicitly accounted for
ia the use of hypocentral distance). This could potentially bias the
erived source spectra and associated parameters. To e v aluate the
mpacts of depth-dependent Q , we re-ran GIT on two data subsets,
ne for 705 events with focal depth D ≥ 8 km, and the other for 716
vents with D ≤ 10 km. 232 events with 8 ≤ D ≤ 10 km are shared
y both subsets. Other conditions (e.g. reference sites) remain the
ame. 

Fig. 13 (b) illustrates that, at a given hypocentral distance, deeper
vents tend to attenuate faster than shallower ones, particularly at
igh frequencies. This variation in attenuation will lead to different
ource spectra for a given event, as shown in Fig. 13 (c) (an event
hared by both subsets). Deeper events tend to have higher source
pectral amplitudes at high frequencies, and accordingly higher f c 
dashed vertical line in Fig. 13 c) and �σ . The comparison of f c is
rovided for all events common to both data sets in Fig. S12 in the
uppor ting Infor mation . Our assessment on the impact of depth-
ependent attenuation on source parameters is consistent with that
f Bindi et al. ( 2021 ). They reported that �σ for events deeper than
 km can double, on average, when depth is explicitly introduced in
ttenuation model. 

Introducing depth-dependent velocity and attenuation exerts
pposite effects on the depth-dependency of �σ . The depth-
ependence of �σ (Fig. 7 b) initially absorbed by considering depth-
ependent velocity (Fig. 13 a) could be re vi ved b y explicitl y includ-
ng depth-dependent attenuation (Figs 13 b and c). It is worth noting
hat, even though consistent with Bindi et al. ( 2021 ), the finding that
eeper events tend to attenuate faster than shallower events (with the
ame hypocentral distance) appears to be counter intuitive, which
e are yet to reconcile as of writing. Whether �σ increases with
ource depth is still debatable (e.g. Abercrombie et al. 2021 ). Ul-
imately addressing this question may require simultaneously con-
idering the 3-D variations of velocity and Q , which is out of scope
f this study. Ho wever , we consider the overall pattern of �σ is not
ignificantly biased by using a constant velocity model. 

.2. Implications on broad-band ground-motion 

imulations 

t has long been recognized that dynamic properties of earthquake
ource, such as �σ , control the between-event variability in the
edian ground motions (e.g. Cotton et al. 2013 ). Here, we inves-

igate the connection between �σ and δB e of hybrid broad-band
round-motion simulations, building on prior studies of �σ and δB e 

btained from parametric empirical ground-motion models (e.g.
rugman & Shearer 2018 ). 
Recently, Lee et al. ( 2022 ) validated the predictions from hy-

rid broadband simulations (Graves & Pitarka 2010 , 2015 ) against
bservations for 479 small magnitude ( M w 3.5–5.0) active shal-
ow crustal earthquakes in NZ. The hybrid approach combines
 comprehensive approach to 3-D modelling at low frequencies
 f < 1.0 Hz) with a simplified-physics-based simulation at high fre-
uencies ( f > 1.0 Hz). Lee et al. ( 2022 ) then partitioned the total
esidual between observation ( y es ) and prediction ( f es ) using a par-
ially crossed linear mixed-effects regression algorithm (Stafford
014 ; Bates et al. 2015 ): 

ln y es − ln f es = a + δB e + δS2 S s + δW S es (11) 

here y es and f es are the ground-motion observation and prediction,
especti vel y, in the form of FAS for event e at site s ; a is the overall
rediction bias (fixed effect); δB e is the between-event residual;
S2 S s is the event-corrected systematic residual at site s and δW S es 

s the remaining residual. δB e , δS2 S s and δW S es are zero-mean,
andom variables with orthogonal normal distributions (e.g. Stafford
014 ). Subscripts e and s correspond to i and j , respecti vel y, in eq.
 2 ), and are adopted here to comply with commonly used notation
or residual analysis (Al Atik et al. 2010 ). In the following, we
nvestigate the correlation patterns between δB e from Lee et al.
 2022 ) and source parameters derived in this study. 

Fig. 14 (a) depicts the high-frequency decay in the source spec-
rum, κsource (eq. 3 ), against δB e for PGA and FAS ( f = 18.5 Hz).

source is ne gativ ely correlated with δB e at high frequencies. Their
orrelation has also been reported for δB e of parametric ground-
otion prediction models (e.g. Bindi et al. 2017 ; Morasca et al.

023 ). For f > 10 Hz, the correlation between κsource and δB e be-
omes stronger with the increase in frequency, though still weak
n absolute terms (F ig. 14 b), w hich resemb les the correlation pat-
ern between κ0 (Anderson & Hough 1984 ) and site response. For
orward ground-motion prediction, we examine the dependence of

source on earthquake magnitude and source depth but find no asso-
iation ( Fig. S13 , Supporting Information ). 

Stress parameter �σ is positi vel y correlated with δB e at relati vel y
igh frequencies (Fig. 15 a), which is consistent across studies (Oth
 Kaiser 2014 ; Ren et al. 2018 ). This correlation is not surprising

ince a constant �σ was assumed for all events in the simulations
Lee et al. 2022 ) due to the unavailability of event-specific values
or forward prediction. Readers should interpret the results of Ren
t al. ( 2018 ) and Oth & Kaiser ( 2014 ) with caution due to their
uch smaller sample size and sequence-specific nature. This study

epicts a more complete picture for crustal events across NZ. 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae163#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae163#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae163#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae163#supplementary-data
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Figure 12. Distribution of V S 30 and T 0 for the five k -means clusters. Box plots indicate the median, the 25th and 75th percentiles with the whisker extending 
to the minimum and maximum values that are not outliers. 

Table 2. Statistics of V S 30 and T 0 in each k -means cluster. 

Cluster ID Count Per cent V S 30 (m s −1 ) T 0 (s) 
Median 25th–75th Median 25th–75th 

1 59 19 298 [261 497] 0.75 [0.28 1.18] 
2 95 30 264 [202 363] 1 [0.61 2.48] 
3 87 27 500 [323 706] 0.3 [0.05 2.63] 
4 42 13 600 [400 800] 0.12 [0.05 0.3] 
5 36 11 800 [602 1000] 0.05 [0.05 0.05] 
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The positive correlation between δB e and �σ increases with 
frequency till f = ∼ 6 Hz and then flattens out at approximately 
r = 0.56 (Fig. 15 b). The small r values at relatively low frequencies 
are due to the weak dependence of �σ on Fourier amplitudes for 
f < f c . Ho wever , the relati vel y large r v alues for f > ∼ 6 Hz con-
firms the potential to reduce between-e vent v ariability at relati vel y 
high frequencies in ground-motion predictions by accounting for 
variations in �σ (e.g. Oth et al. 2017 ; Bindi et al. 2018 ; Trugman 
& Shearer 2018 ; Lee et al. 2022 ; Morasca et al. 2023 ). 

Since �σ is generally unknown for a future scenario, one can only 
utilize its dependence on other source properties, and/or spatial- 
temporal variation patterns, if any, in forward predictions. As dis- 
cussed in the prior Section 4.1.2, we only found a negligible to weak 
association of �σ with earthquake magnitude and depth. Thus, we 
further investigate its spatial v ariation. Gi ven the dif ficulty in ob- 
taining the absolute values of �σ , we only identify regions with 
stress parameter lower or higher than the national average. 

Stress parameter exhibits a statistically significant spatial de- 
pendence (Fig. 16 a). Global Moran’s I test (Moran 1950 ) gives a 
Moran’s I Index of 0.31. The I Index ranges between −1.0 and 
1.0 with a positive I value indicating a tendency toward clustering, 
while a ne gativ e I value for a tendency toward dispersion. Statistical 
significance measures, z -score = 2.46 and p = 0.01, reject the null 
hypothesis (the values associated with features are randomly dis- 
tributed). Many prior studies (e.g. Allmann & Shearer 2007 ; Zhang 
et al. 2022 ) have also reported the spatial dependence of �σ , which 
cannot be explained as an art ēfact of varying rupture velocity (e.g. 
Abercrombie et al. 2017b ). 

It is intriguing as to how/whether the spatial pattern extracted 
from historical data can improve forward predictions of even small- 
to-moderate e vents. Gi ven the distinct pattern of �σ in space, we 
then utilize a spatially constrained clustering to detect spatially 
contiguous groups in �σ . Based on Fig. 16 (a), we set the number 
of clusters at eight. Clustered data are shown in Fig. 16 (b). The 
lateral variation pattern of �σ is consistent with that of δB e for PGA 

(fig. 13 in Lee et al. 2022 ). The central region of the South Island, 
which has an overprediction of PGA (negative δB e ) as reported by 
Lee et al. ( 2022 ), is detected as Cluster 2 which has a lower-than- 
average �σ (Fig. 16 c). This is consistent with the overprediction 
of PGA in this area (Lee et al. 2022 ). Likewise, the higher-than- 
average �σ in the Canterbury region (i.e. Cluster 8) is consistent 
with the underprediction of PGA (positive δB e ) for events in this 
area. 

Spatial clustering can capture a sizable portion of the variability 
in �σ . Within-cluster standard deviation σ ln �σ for Cluster 1–8 
is 0.69, 0.55, 0.77, 0.62, 0.52, 0.67, 0.42 and 0.56, respecti vel y 
( Fig. S14 , Suppor ting Infor mation ), corresponding to a reduction 
of 17, 33, 8, 25, 37, 19, 49 and 32 per cent relative to Cluster 0 
(the entire data set, i.e. 0.83). Noting that Cluster 7 has relati vel y 
smaller sample size (no.: 19, Fig. S14 , Supporting Information ) 
and thus has a higher uncertainty in the estimate of its standard 
deviation and corresponding reduction (i.e. 49 per cent). Ho wever , 
it is unequivocal that variance in �σ can be partially explained 
by its lateral variation for crustal events in NZ. A future line of 
study is to quantify to what extent the portion of �σ variability 
explained via spatial clustering can be translated to improvement in 
ground-motion prediction. While we have briefly illustrated here a 
spatial clustering analysis, application-orientated models could also 
be framed using conventional geostatistical approaches. 

6  C O N C LU S I O N S  

To gain new insights into the ground-motion phenomenon, we de- 
compose two decades of seismicity data from shallow crustal events 
from 2000 to 2021 in NZ via a non-parametric GIT. From the in- 
verted source spectra, we derive Brune’s stress parameter, �σ , 

art/ggae163_f12.eps
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Figure 13. (a) Focal depth dependence of �σ considering depth-dependent velocity via a 1-D velocity model. (b) Path attenuation at a distance of R = 182 km 

inverted from two subsets, one containing 705 events with focal depth D ≥ 8 km, and the other consisting of 716 events with D ≤ 10 km, and 232 events with 
8 ≤ D ≤ 10 km are shared by both subsets. (c) Corresponding source spectra for one example event (id = ‘3 366 499’) considering depth-dependent attenuation 
in panel (b). 

Figure 14. (a) Between-event term, δB e , of 3-D simulations (Lee et al. 2022 ) for PGA and FAS ( f = 18.5 Hz) versus κsource inverted herein, and (b) Pearson 
correlation between κsource and δB e at different frequencies. 
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hich is found to follow a lognormal distribution with a log 10 stan-
ard deviation of 0.36 or equivalently 0.83 in natural log unit. �σ

lightly increases with focal depth and is practically independent of
arthquake size (i.e. self-similar), but exhibits a statistically signif-
cant spatial clustering, which can explain a sizable portion of its
ariability. Based on the inverted attenuation curves, a multisegment
pparent geometric-spreading function and a distance-dependent
uality-factor Q ( f ) model are found to best describe the attenua-
ion on average in NZ, though a single Q ( f ) is also obtained for
he whole distance range: Q ( f ) = 149 . 1 f 0 . 62 . Further, using the
ite response from GIT, we find that the soil classification scheme
pecified in NZ seismic code, NZS1170.5, has a limited capability

art/ggae163_f13.eps
art/ggae163_f14.eps
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Figure 15. (a) Between-event term, δB e , of 3-D simulations (Lee et al. 2022 ) for FAS ( f = 18.5 Hz) versus Brune’s stress parameter , �σ , in verted in this 
study, and (b) Pearson correlation between �σ and δB e at different frequencies (open circles represent those with p > 0.05). 

Figure 16. Spatial distribution of stress parameter, �σi (MPa), for crustal events, (a) continuous data, and (b) clustered data (no colour scale). (c) Statistics of 
stress parameters, ln �σi , within each cluster (b) where Cluster ID = 0 corresponds to the whole data set without clustering. 
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in discerning the site-specific frequency-dependent amplification 
functions. 

This paper reveals the general trends and patterns in observations 
of past shallow crustal events in NZ. Despite this, it is important to 
keep in mind the necessity of probing some more subtle physical 
processes, for example, 3-D anelastic attenuation, M w -dependent 
near-source geometric spreading, the temporal variation in �σ , and 
nonlinear soil effects during strong shaking, and other event-specific 
effects in site response at sites with 3-D features. Specifically, a 
refined attenuation model affects the computed site response and 
source parameters from the inv ersion. Nev ertheless, the insights 
gained here from historical data on the properties of fault regions 

art/ggae163_f15.eps
art/ggae163_f16.eps
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nd the propagation media can capture the first-order phenomena
nd potentially lead to better predictions of ground shakings during
uture events. 
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he ground-motion database (GMDB, v3.0, Hutchinson et al.
024 ) for New Zealand was downloaded at: https://osf.io/q9yrg
?view only=05337ba1ebc744fc96b9924de633ca0e (last accessed
n 2022-11-14). Data processing, k -means clustering and corre-
ation analyses were carried out in MATLAB. Esri ArcGIS Pro
 www.esri.com/sof twar e/ar cgis ) was utilized for spatial cluster-
ng of source stress parameter, PyGMT ( https://doi.org/10.528
/zenodo.4592991 ) was used to produce some geospatial plots.
upplemental materials include one word file ‘ Supplement S1 ’.
e adhere to the FAIR data principles. Other resources can

e accessed online via https://figshare.com/s/1a007b399856d743
407 . These online resources include inverted source spectra
nd parameters for each event, as well as site-response func-
ion for each stie: ‘ Source parameters.xlsx ’, ‘ DataSet Source ’,
 Amp mean uncertainty.xlsx ’ and ‘ DataSet Amp ’. Among them,
 Source parameters.xlsx ’ contains source parameters for each event
hile plots of inverted and theoretical source spectra are provided in
 DataSet Source ’. ‘ Amp mean uncertainty.xlsx ’ contains inverted
ite-response functions (mean with uncertainty estimate and site
etadata) at each of the 319 strong-motion stations (HN and BN)

resented in the ‘Site Response’ section. ‘ DataSet Amp ’ provides
lots of site-response curves at each site, and its corresponding
zimuth coverage. 
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