
Geosci. Model Dev., 17, 2783–2828, 2024
https://doi.org/10.5194/gmd-17-2783-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odeldescription

paperREHEATFUNQ (REgional HEAT-Flow Uncertainty and aNomaly
Quantification) 2.0.1: a model for regional aggregate heat flow
distributions and anomaly quantification
Malte Jörn Ziebarth1,2 and Sebastian von Specht3

1GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
2Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
3Institute of Mathematics, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany

Correspondence: Malte Jörn Ziebarth (ziebarth@gfz-potsdam.de)

Received: 10 February 2023 – Discussion started: 2 May 2023
Revised: 4 February 2024 – Accepted: 6 February 2024 – Published: 15 April 2024

Abstract. Surface heat flow is a geophysical variable that is
affected by a complex combination of various heat genera-
tion and transport processes. The processes act on different
lengths scales, from tens of meters to hundreds of kilometers.
In general, it is not possible to resolve all processes due to a
lack of data or modeling resources, and hence the heat flow
data within a region is subject to residual fluctuations.

We introduce the REgional HEAT-Flow Uncertainty
and aNomaly Quantification (REHEATFUNQ) model, ver-
sion 2.0.1. At its core, REHEATFUNQ uses a stochastic
model for heat flow within a region, considering the aggre-
gate heat flow to be generated by a gamma-distributed ran-
dom variable. Based on this assumption, REHEATFUNQ
uses Bayesian inference to (i) quantify the regional aggregate
heat flow distribution (RAHFD) and (ii) estimate the strength
of a given heat flow anomaly, for instance as generated by a
tectonically active fault. The inference uses a prior distribu-
tion conjugate to the gamma distribution for the RAHFDs,
and we compute parameters for a uninformed prior distribu-
tion from the global heat flow database by Lucazeau (2019).
Through the Bayesian inference, our model is the first of its
kind to consistently account for the variability in regional
heat flow in the inference of spatial signals in heat flow data.
Interpretation of these spatial signals and in particular their
interpretation in terms of fault characteristics (particularly
fault strength) form a long-standing debate within the geo-
physical community.

We describe the components of REHEATFUNQ and per-
form a series of goodness-of-fit tests and synthetic resilience

analyses of the model. While our analysis reveals to some
degree a misfit of our idealized empirical model with real-
world heat flow, it simultaneously confirms the robustness of
REHEATFUNQ to these model simplifications.

We conclude with an application of REHEATFUNQ to the
San Andreas fault in California. Our analysis finds heat flow
data in the Mojave section to be sufficient for an analysis and
concludes that stochastic variability can allow for a surpris-
ingly large fault-generated heat flow anomaly to be compat-
ible with the data. This indicates that heat flow alone may
not be a suitable quantity to address fault strength of the San
Andreas fault.

1 Introduction

Surface heat flow is an important geophysical parameter. It
plays an important role in the global energy budget of the
solid Earth (Davies and Davies, 2010) and has implications
for the exploitability of geothermal energy as a renewable
energy source (e.g., Moya et al., 2018). It is also intimately
connected to the crustal temperature field which has the po-
tential to control the crustal elastic properties (Peña et al.,
2020) and is hence vital for the understanding of seismic and
aseismic crustal deformation. Furthermore, measurements of
the surface heat flow have been indicative of the frictional
strength of the San Andreas fault (SAF) by constraining the
heat production rate on the fault surface (Brune et al., 1969;
Lachenbruch and Sass, 1980).
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Global patterns of surface heat flow have been investigated
in multiple works (e.g., Pollack et al., 1993; Goutorbe et al.,
2011; Lucazeau, 2019). The models therein usually assign
an average heat flow to each point of Earth’s surface, for in-
stance by dividing the surface into a grid. We denote this as
the “background heat flow” qb, which might follow from the
two main sources of crustal heat flow, mantle heat transmis-
sion and radiogenic heat generation (Gupta, 2011). As data
accumulated, the additional information was used in later
works to improve the spatial resolution of qb models.

Alas, even at the finer resolution of newer works, the
models of global heat flow do not perfectly describe the
heat flow measurements due to fluctuations. Goutorbe et al.
(2011) observe that a residual variation of 10 to 20 mW m−2

remains between heat flow measurements not further than
50 km apart. One potential cause of this variation is the vary-
ing concentration of radiogenic elements within the upper
crust, which has been observed to change by a factor of 5
within a couple of tens of meters (Landström et al., 1980;
Jaupart and Mareschal, 2005).

Whatever the cause, the magnitude of the variation ob-
served by Goutorbe et al. (2011) and its spatial extent are
similar to some anomalous signals generated by processes
that one might wish to investigate and distinguish from the
background qb. The fault-generated heat flow anomaly dis-
cussed by Lachenbruch and Sass (1980) regarding the SAF,
with a peak heat flow less than about 27 mW m−2, is an
important example. The magnitude similarity between the
residual variation and the queried signature implies that it
is difficult to establish bounds on the latter.

In this article, we introduce the REHEATFUNQ model
(REgional HEAT Flow Uncertainty and aNomaly Quantifi-
cation), which aims to

1. quantify the variability within regional heat flow mea-
surements and

2. identify how strong the surface heat flow signature of
a deterministic process, e.g., fault-generated heat flow,
can be given a set of heat flow measurements in the
study area.

REHEATFUNQ approaches these goals by aggregating heat
flow measurements in a region of interest (ROI) into a
location-agnostic distribution of heat flow. It considers the
heat flow within the region as the result of a stochastic pro-
cess and hence the aggregate distribution as the probabil-
ity distribution of a random variable. In a Bayesian work-
flow, this distribution is inferred from the regional heat flow
data and from prior information. Processes such as the fault-
generated surface heat flow can be quantified by supplying
the impact of the process onto each data point and inferring
the posterior distribution of a process strength parameter.

The REHEATFUNQ model is an empirical model. In this
study, we have performed a number of analyses of the New
Global Heat Flow (NGHF) database by Lucazeau (2019)

to inform the model. Synthetic computer simulations based
on the REHEATFUNQ model assumptions have been per-
formed to test the model performance on ideal data. We also
perform a resilience analysis based on a number of alterna-
tives to the model assumptions which are also compatible
with the NGHF database.

The paper starts with a description of the (heat flow) basis
data of the REHEATFUNQ model in Sect. 2. The methodol-
ogy section (Sect. 3) continues with a physical motivation for
the REHEATFUNQ model before it transitions to a technical
description of the model’s capabilities. Section 4 bundles sta-
tistical analyses of the performance of the REHEATFUNQ
model and is rather technical. It starts out by assessing how
well the model assumptions are reflected in real-world data,
uses stochastic computer simulations to investigate whether
known imperfections inhibit REHEATFUNQ’s usefulness,
and discusses physical limitations of the model. Section 5
then illustrates how to apply the REHEATFUNQ model by
means of the San Andreas fault in Southern California before
Sect. 6 concludes this work. As a reference for the applica-
tion of the REHEATFUNQ model, Appendix A summarizes
all analysis steps mentioned throughout the paper in a work-
flow cheat sheet.

2 Heat flow data

This work is fundamentally built on the analysis of surface
heat flow measurements, that is, point measurements of the
flow of thermal energy from Earth’s interior through the out-
ermost layer of the crust into the atmosphere. Heat flow has
units of energy divided by time and area; integrated over an
area of Earth’s surface, it gives the power at which thermal
energy transfers from the inside to the atmosphere.

Heat flow is typically estimated from temperature mea-
surements at varying depths within a borehole. From these
measurements, the temperature gradient is estimated which,
multiplied with the heat conductivity of the surrounding
rock, leads to the heat flow estimate (e.g., Henyey and
Wasserburg, 1971). For more details, we refer the reader,
for instance, to Henyey and Wasserburg (1971), Fulton et al.
(2004), and Sass and Beardsmore (2011).

Measuring heat flow is a difficult task. Each measurement
requires a borehole and sufficient time to establish temper-
ature equilibrium at the sensors (Henyey and Wasserburg,
1971). Furthermore, the temperature profile close to Earth’s
surface might not be linear with depth, as would be imposed
by a constant heat flow. The causes for these perturbations
can include topography, erosion, climate, and water circu-
lation (Lucazeau, 2019), the latter as advection or convec-
tion. These perturbations have to be corrected for to estimate
the crustal heat flow component of the measured temperature
profile. Otherwise crustal heat flow estimates will be biased
or uncertain.
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Heat flow data are multidimensional, spanning most
prominently the heat flow as well as the spatial dimensions.
Within the REHEATFUNQ model, the heat flow data are ag-
gregated within the region of interest (ROI) and investigated
without regard for the further spatial distribution. We call
this data set, reduced to the heat flow dimension only, the re-
gional aggregate heat flow distribution. Formally, given a set
{(xi,qi) : i = 1, . . .,N} of heat flow measurements within a
ROI, one may write the regional aggregate heat flow distri-
bution as result of the mapping:

{(xi,qi) : i = 1, . . .,N} → {qi : i = 1, . . .,N}. (1)

2.1 Data used and general filtering

In this work, we build upon a global database of heat flow
measurements compiled by Lucazeau (2019), the NGHF.
This data set, a continuation of the effort of Pollack et al.
(1993), is a heterogeneous collection of 69 730 heat flow
measurements from a variety of studies. It covers the time
period from 1939 to 2019 and covers the globe on multiple
spatial scales from repeat measurements at the same location
up to the largest nearest-neighbor distances of ∼ 1200 km.
We will use both the global coverage as well as the specific
region of Southern California in this work. Due to the hetero-
geneous spatial coverage and quality of the data, we apply a
number of data filters beforehand.

We use only a quality-filtered subset of the NGHF in all
our following analyses. Lucazeau (2019) compiled heat flow
data from a wide range of sources, spanning decades of tech-
nological improvements in instrumentation and combining
various work on perturbation correction and uncertainty esti-
mation. To obtain more homogeneous data quality, we fol-
low the quality assessment described by Lucazeau (2019)
and discard data points of the lowest quality rankings of C
to F and those from earlier than 1990 (marking an increase
in data quality). We furthermore remove negative heat flow
values.

Since we will consider a continental scenario, we further-
more remove data points not marked as continental crust
(i.e. not keys A to H in field “code1”). Finally, we discard
data points categorized as possibly geothermal following Lu-
cazeau (2019), that is, those exceeding 250 mW m−2. The re-
maining data set has 5974 entries. The global aggregate heat
flow distribution of this remaining data set is shown in Fig. 1.

The filtering steps described in this section are an exam-
ple of what is subsumed as step 1 of the workflow listed in
Appendix A.

3 Methodology: a stochastic model of regional
aggregate heat flow

3.1 Physical basis

Surface heat flow is the result of heat, generated in Earth’s
interior, being transported to the surface by diffusive, ad-
vective, and convective processes. The main sources of heat
within Earth are the thermal energy from its planetary gene-
sis and the decay of radioactive elements (Christensen, 2011;
Mareschal and Jaupart, 2021). Within the crust, heat produc-
tion due to the friction on faults can be large enough to cause
measurable local disturbances of the temperature field (e.g.,
Kano et al., 2006) and could potentially also lead to signifi-
cant disturbances in the surface heat flow field if the frictional
strength of the fault were large (Brune et al., 1969; Lachen-
bruch and Sass, 1980).

After generation, three modes of steady transport can be
available to bring the heat to the surface. Heat diffusion oc-
curs throughout Earth’s interior. Advection can occur with
the tectonic movement of rock or by means of gravitationally
driven pore water movement (Molnar and England, 1990;
Fulton et al., 2004). Convective processes range from magma
convection in the mantle through crustal pore water convec-
tion (Bercovici and Mulyukova, 2021; Hewitt, 2020).

Both generation and transport of heat within Earth are sub-
ject to a number of unknowns such as material composition
in terms of heat generation and conduction, the geometry of
convection cells, and the existence of groundwater flow (e.g.,
Morgan, 2011). Some of these parameters are difficult to de-
termine, and typically residual fluctuations remain in thermal
models even if those models take into account a multitude of
available information (e.g., Cacace et al., 2013; Fulton et al.,
2004). That is, even though the principles underlying the full
surface heat flow field are known, the incomplete knowledge
of the specific crustal processes and material properties defin-
ing a specific region’s surface heat flow, in combination with
measurement uncertainties, makes it generally impossible to
model the exact surface heat flow that is measured.

Our approach is to acknowledge that a model is unlikely to
capture the full surface heat flow signal simply because the
input data do not capture all relevant features of the subsur-
face or because the measurement is uncertain. The concept
of REHEATFUNQ is then to abstract these unknowns into a
black-box stochastic model of surface heat flow within a re-
gion. The stochastic model condenses the spatial distribution
of heat flow into a single probability distribution of heat flow
q, γ (q), for the whole region, agnostic to where heat flow
is queried within. This way, unknowns about the parameters
that control surface heat flow are captured by the amount and
variance of the measurement data. If a region is characterized
by uniform heat flow – that is, it is independent and identi-
cally distributed following a single distribution γ (q) – and
sufficient data have been collected, a statistical analysis will
yield a precise result. Variability in the heat flow controlling
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Figure 1. New Global Heat Flow (NGHF) database (Lucazeau, 2019) and random regional heat flow samples. The map shows data points
from the NGHF used in this study, corresponding to positive continental heat flow values with a quality ranking of “A” to “B” and not
exceeding 250 mW m−2. The set of random global R-disk coverings (RGRDCs) used in Sect. 3.3.2 to determine the estimates of the prior
distribution parameters is illustrated by thinly outlined disks. The algorithm to distribute the disks is described in Appendix B. The analysis
regions used in Sect. 5 for the SAF are shown in a thicker blue outline. Inset (b): empirical distribution function and histogram of the same
global heat flow data.

parameters reflects in a wider spread of the inferred distribu-
tion instead.

The arguments that motivate the REHEATFUNQ ap-
proach are related to the spatial variability in heat flow.
Surface heat flow exhibits variability on a large range of
scales. Long-wavelength contributions follow from the diffu-
sion from deep heat sources. The diffusion up to the crustal
surface smoothes the lateral pattern of heat flow from these
sources with a characteristic length of 100 km (Jaupart and
Mareschal, 2005, 2007). If the resulting signal does not vary
significantly within the extent of the ROI, we label it the lo-
cally uniform background qb. In our later analysis, the extent
will be ∼ 160 km, but this is not a hard constraint on the re-
gion size.

The surface heat flow also contains signals of a smaller
spatial scale, say 50–100 km and below. We label the sur-
face heat flow that varies spatially within the ROI with qs(x).
Examples of these short-wavelength effects include radio-
genic heat production from the tens-of-meters to kilometer
scale (Jaupart and Mareschal, 2005) or recent tectonic his-
tory through movement of heated mass or friction on faults
(Morgan, 2011).

One type of short-wavelength signal is topographic effects.
Since they are more readily corrected for Blackwell et al.
(e.g., 1980) and Fulton et al. (2004), we list them separately
as qt(x). Topographic effects act on the scale of hundreds
of meters to multiple kilometers (see, e.g., the extent of the
mountains listed by Blackwell et al., 1980) if the boreholes
are not sufficiently deep (that is, shallower than 75–300 m de-
pending on temperature gradient and topographic variability;
Blackwell et al., 1980).

Finally, the heat flow might also be influenced by random
measurement error qf. This includes all kinds of difficulties
inherent to the process of drilling, measuring temperature,
and evaluating heat flow gradients. These effects are inde-
pendent of location.

All these unknown contributions to the surface heat flow
complicate the inference of a known constituent of the heat
flow signal from the data. For instance, one might have good
knowledge about the location of an underground heat source
and its heat transport to the surface and hence be able to accu-
rately model the spatial surface heat flow signature qa(x) that
the heat source generates but might not know about the heat
source’s strength and hence the magnitude of the signature.

Geosci. Model Dev., 17, 2783–2828, 2024 https://doi.org/10.5194/gmd-17-2783-2024
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The quantification of fault-generated heat flow anomalies on
the San Andreas fault is a paragon of this problem (Brune
et al., 1969; Lachenbruch and Sass, 1980; Fulton et al., 2004)
and is the inspiration behind the name qa (“anomaly”). Be-
cause the surface heat flow is influenced by many unknown
effects – unknown but evident due to the variability that is not
perfectly fit by the model’s signature – it is not trivial to infer
the magnitude of the model’s heat source. This applies par-
ticularly if the magnitude of the signature generated by the
actual heat source is on the order of or less than the spread
due to the unknown constituents.

REHEATFUNQ aims to solve this issue through the
stochastic model of the unknown constituents of surface heat
flow and consequently to help researchers calibrate models of
specific surface heat flow constituents. The surface heat flow
field q(x) is separated into the modeled heat flow qa(x) and
the unknown contributions qb, qs(x), qt(x), and qf. The mag-
nitude of the modeled heat flow qa(x) is expressed in terms
of the power PH of the heat source (an example is given later
in Sect. 3.4.1), and a Bayesian inference of this parameter is
performed using heat flow measurements qi , that is, samples
of the unknown stochastic constituents transformed to q(x)
when combined with qa(x). Before the following sections
discuss the stochastic model and the inference of the magni-
tude of qa, we discuss the separation of qa from the unknown
constituents and, equivalently, how the stochastic model and
the modeled heat flow relate to the heat flow measurements.

If heat transport in the crust is linear, which is the case for
conduction and advection, the heat flow q(x) is a superposi-
tion of the five constituents:

q(x)= qb+ qs(x)+ qt(x)+ qf︸ ︷︷ ︸
qu(x)

+ qa(x) . (2)

Here, we have collected all these unknowns into qu(x). If
heat transport is nonlinear, for instance in the case of nonlin-
ear convection, a superposition like this would not be pos-
sible. Instead, q(x) would be a nonlinear function of the
sources of qb, qs, qt, qf, and qa. If the heat source that causes
the anomaly qa is itself a driver of the convection, REHEAT-
FUNQ as developed in this paper cannot be applied (with one
technical exception mentioned further down in Appendix G,
whose applicability is unclear). This might not be a signifi-
cant restriction, however: if the heat source that generates the
anomaly qa is strong enough to drive convection on signifi-
cant length scales (that is, the 1–10 km scale), the resulting
surface heat flow signature is probably large enough (that
is, more than 50–100 mW m−2) for the separation from the
“background noise” (the undisturbed heat flow) to be less
challenging.

However, if the magnitude of qa is small (that is, less than
about 50–100 mW m−2), the need for a statistical method,
such as REHEATFUNQ, is essential. In the case of a small qa
with a crustal heat source, the source will be similarly small
and likely not be a driver of convection. Then, if some of the

other heat sources, underlying qb, qs, qt, and qf, drive non-
linear convective transport, a linearization of the heat trans-
port equation similar to the one performed by Bringedal et al.
(2011) can be performed, which would again separate qa as
a linear constituent of q(x) from the unknown:

q(x)= qu(x)+ qa(x) . (3)

Illustratively, the nonlinear convection due to other sources
would act as an advective term for the diffusion advection of
the anomalous heat source.

Equation (3) shows the extent of separation that is required
for REHEATFUNQ to be applied. It enables the linear sepa-
ration of the model output from the unknown heat flow which
is treated by the stochastic approach. But what motivates the
stochastic approach, describing qu as a probability distribu-
tion γ (qu)?

For the error term qf, the treatment as a random variable is
straightforward. To treat the other terms stochastically is less
evident since the surface heat flow field should in principle be
deterministic and accessible through a precise measurement
given enough effort. Here we can consider the random loca-
tion sampling of a deterministic qu landscape as a stochastic
source of the qu random variable. Figure 2 illustrates this ap-
proach. The surface heat flow field acts like a random vari-
able transform of the spatial random variable to the random
variable q. The probability density of q derives from the level
set of the heat flow field.

The approach illustrated in Fig. 2 highlights why it can
be important to prevent spatial clustering within the data. If
qs(x) is indeed a significant source of randomness within
q(x), data independence depends significantly on the inde-
pendence of sample locations, which is highly questionable
if heat flow measurements cluster, e.g., around a geothermal
field. What is more, clustered sampling point sets have a high
level of discrepancy, so they could additionally lead to less
accurate deterministic integration properties of the underly-
ing heat flow distribution (Proinov, 1988). The minimum-
distance criterion, effectively creating a Poisson disk sam-
pling, can potentially trade discrepancy (Torres et al., 2021)
and bias for data set size.

Nevertheless, clusters may also contain variability due to
the measurement error term qf. This information would be
lost if clusters would be reduced to single points through the
minimum-distance criterion. REHEATFUNQ mitigates clus-
ters while preventing this data loss by considering data points
which exclude each other due to the dmin criterion as alter-
native representations of the cluster. Each alternative is then
considered in the likelihood. Section 3.2 and 3.3.1 detail this
process.

3.2 Mitigating spatial clustering of heat flow data

To date, the spatial distribution of heat flow data is inhomo-
geneous. In particular, spatial clusters exist around the points
of interest of past or contemporary explorations in which the
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Figure 2. The stochastic model of regional aggregate heat flow from a deterministic surface heat flow field: an artificial illustration. (a) An
artificial one-dimensional surface heat flow field generated from artificial underground heat sources. The underground heat sources (200 km
wide, 80 km deep grid with 201× 151 cells, not shown) have been optimized from random initial values such that the surface heat flow they
generate fits a target heat flow distribution whose aggregate distribution is close to a gamma distribution (details in Appendix F). The blue
dots illustrate heat flow measurement {qi} at random locations xi (dashed gray lines). The set {qi} is a sample of the regional aggregate
heat flow distribution (RAHFD), the projection of the measurements to the heat flow dimension q (solid gray lines). Panel (b) shows, in a
sideways view, the empirical cumulative distribution function (CDF) of the RAHFD. The aggregation process is illustrated by the horizontal
gray lines connecting this panel to panel (a). Furthermore, the target RAHFD (derived from the continuous target heat flow distribution of
panel a) is shown as well as a maximum likelihood estimate from the sample data. Combined, the two panels show how random spatial
sampling of a deterministic heat flow field yields a stochastic RAHFD.

heat flow data were measured (e.g., The Geysers geother-
mal field in Sect. 5, Fig. 18). This property can be problem-
atic for our stochastic model of regional aggregate heat flow
(Sect. 3.1). If a significant part of the stochastic nature of re-
gional aggregate heat flow is due to the random sampling of
an unknown but smooth spatial heat flow field as described
in the previous section, sampling in clusters that are too nar-
row might lead to correlated data. The statistical methods we
develop in the following section, however, assume indepen-
dence of the data.

To mitigate the potential bias of spatial clustering, we en-
force a minimum distance dmin between data points, using
only one data point of pairs that violate this distance crite-
rion. This realizes a more uniform spatial data distribution.
In Fig. 3 we compare analytical expressions for the neighbor
density under a uniform distribution (Appendix E) with the
distance distribution between points of the filtered NGHF.
The comparison leads us to choose a minimum distance of
20 km,

dmin = 20km, (4)

between selected data points as a trade-off between uniform
distribution and sufficient sampling.

Using only one data point of close pairs raises the ques-
tion of which data point to choose. Ignoring the other data
point ensures that the dependency between the data points is
avoided, but it also results in loss of information about any
spatially independent noise component. To retain the best of
both worlds, we introduce a latent parameter that iterates all

possible ways to select dmin-conforming subsets from the
set of heat flow measurements in a region. Each value of
the latent parameter therefore corresponds to a data set that
we consider independent data within our model assumption
and we can evaluate posterior distributions as described in
Sect. 3.3.1 and 3.4. Figure 4 illustrates the generated subsets
for a simple example.

Choosing the parameter dmin, whether according to our
value of 20 km or based on the data density within the ROI,
is step 2 of the workflow listed in Appendix A.

3.3 Model description

3.3.1 A combined gamma model

The disaggregation of the heat flow measurements, Eq. (2),
into different components is the basis for our model of re-
gional aggregate heat flow. In particular, we consider the un-
known heat flow qu as a random variable. To yield useful
results, this requires a model, that is, a probability distribu-
tion for qu. In deriving a model for qu, we make the following
assumptions.

I. The sum qb+ qf is an independent and identically dis-
tributed (i.i.d.) gamma random variable.

II. The sum qs(x)+ qt(x) is an i.i.d. gamma-distributed
random variable if x is the random variable that is de-
rived from the spatial distribution of the heat flow data
after applying the minimum-distance criterion (that is,
successive point removal) in the right order.

Geosci. Model Dev., 17, 2783–2828, 2024 https://doi.org/10.5194/gmd-17-2783-2024
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Figure 3. Spatial uniformity of heat flow measurements from the NGHF within disks with a radius of 80 km when varying the minimum
inter-point distance dmin. Each graph shows neighbor distributions within disks with a radius of 80 km as a function of inter-neighbor distance
d , that is, the number of neighboring data points at distance d from a data point within the disk, averaged over all points within the disks.
The dashed lines show the expected distribution for a uniform distribution of points within the disks (derived in Appendix E). Deviations
from the dashed lines indicate a non-uniform distribution of points within the disk. The solid blue lines show the empirical neighbor density
obtained from disks with a radius of 80 km randomly distributed over Earth and selecting the NGHF data points within. The difference
between the three panels lies in enforcing different minimum distances between NGHF data points. If two data points within a disk are closer
together than the indicated dmin, a random one of them is removed. As dmin is increased, the neighbor distributions approach uniformity
but fluctuations due to small number of remaining points within the disks increase. In this work, we choose dmin = 20 km as a compromise
between the two effects.

Figure 4. Selecting subsets of heat flow data when data point pairs violate the minimum-distance criterion. The circles in panel (a) indicate
the radius dmin which is violated by the two marked point pairs. Panels (b) to (e) show the data point subsets that would be used in the
handling of spatial data clusters: of each conflicting pair, a maximum of one data point is retained (fewer if the violations occur in clusters).
In this simple scenario, panels (b) to (e) list all possible permutations. The REHEATFUNQ code approximates this permutation procedure
stochastically for large sample sizes.

III. The right order follows the uniform distribution of per-
mutations of the ordering of the heat flow data.

When both qb+ qf and qs(x)+ qt(x) are gamma distributed,
the resulting sum qu can be fairly well described by a gamma
distribution (Covo and Elalouf, 2014). The sum is exactly
gamma distributed when both qb+qf and qs(x)+qt(x) have
the same scale parameter (Pitman, 1993). Hence, conditional
on the right order, qu is assumed to be gamma distributed and
the likelihood of the remaining data points is the gamma like-
lihood. We can iterate the permutations of the ordering using
a latent parameter, the permutation index j ∈ {1, . . .,N !}. The

probability of j is P(j)= 1/N !. The full likelihood is then

L
(
j,α,β | {qi}

)
= φ(α,β)P (j)

∏
i∈I(j)

γ (qi |α,β), (5)

where φ(α,β) is the prior distribution of the gamma distribu-
tion; I(j)= {i}j is the set of indices of data points in permu-
tation j that are retained by the minimum-distance selection
algorithm (see Sect. 3.2); and

γ (qi |α,β)=
βα

0(α)
qα−1
i exp(−βqi) , (6)

with the gamma function 0(α), is the gamma distribution for
heat flow values qi > 0. Here we have used the parameteri-
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zation of the gamma distribution with shape parameter α and
rate parameter β. An alternative parameterization uses the
scale parameter θ = 1/β instead.

The likelihood in Eq. (5) warrants two comments on its
structure: first note that I(j) always contains at least one in-
dex, the start of the permutation, due to the iterative resolu-
tion of the minimum-distance criterion. Secondly, if there is
not a conflicting pair, I(j) always contains all data indices
and the j dimension trivially collapses to a uniform distribu-
tion. Otherwise, I(j) can be a fairly complicated set.

Assumptions II and III are chosen to be peculiarly spe-
cific so as to yield a simple expression for the likelihood
of the model. However, we can imagine a simple model of
human data acquisition that is closely approximated by this
likelihood. Imagine that a set of heat flow measurements is
generated by the following process: initial drilling operations
are distributed uniformly randomly over an area. Given that
the level set of the underlying heat flow field is gamma dis-
tributed (or can be closely approximated by a gamma distri-
bution), these initial drillings are gamma distributed as laid
out in Sect. 3.1. Some of the initial wells turn out to be points
of interest, for instance by identifying an oil or a geother-
mal field. Many of the following boreholes that lead to heat
flow measurements would then cluster around these points
of interest. This clustering, in turn, can lead to bias in the
regional aggregate heat flow distributions due to the spatial
correlation of qs(x). If we were to know the spatial extent of
the clusters (say, disks with a radius of dmin) and we assume
that a priori each point within a cluster is equally likely to
be the initial drilling, we could obtain the likelihood given
in Eq. (5). In Appendix C we confirm that this simple phys-
ically inspired sampling mechanism leads to estimation bi-
ases, and we find that the minimum-distance sampling used
in REHEATFUNQ is an effective counter measure.

Assumption I, the use of the gamma distribution, is moti-
vated by the general right-skewed shape of global heat flow
(see Fig. 1b), positivity of surface heat flow, and existence
of a conjugate prior distribution (which greatly reduces the
computational cost). Besides the aforementioned and rather
subjective criteria and to have an objective evaluation, we
performed goodness-of-fit tests (Sect. 4.1.3) that show that
the gamma distribution is at least as competitive as other sim-
ple probability distributions on the positive real line in terms
of describing the regional aggregate heat flow distributions.

We restrict the parameter α to a minimum value of αmin =

1 to prevent parameterizations with diverging densities at
q→ 0 (see Fig. 5a). At α = 1 the gamma distribution is an
exponential distribution. For a smaller α, the density has a
singularity at q = 0. Illustratively, this causes the PDF to
counter the effect of decreasing scale, and the mass decays
only slowly on log scales in q.

Over the course of this paper, we will use the mean q̄ and
standard deviation σq of the gamma distribution. Parameter-

ized by α and β, they are given as (Thomopoulos, 2018)

q̄ =
α

β
and σq =

√
α

β
. (7)

For frequentist inference of α and β, the maximum likeli-
hood estimator will be used a couple of times in this work.
A Newton–Raphson iteration with starting values given by
Minka (2002) is used.

For a Bayesian analysis of both the regional aggregate heat
flow distributions and the fault-generated heat flow anomaly,
a prior distribution of the parameters α and β of the gamma
distribution model is required – even if it is just the implicit
improper uniform prior distribution. Using an informative
prior distribution instead (see, e.g., Zondervan-Zwijnenburg
et al., 2017) opens up the potential to include information
from outside sources in a regional analysis. Because the num-
ber of measurements in regional heat flow analysis is gener-
ally small – the R = 80 km RGRDCs created from NGHF A
quality data typically contain 31 disks with an average of 11
points per disk – additional information can be valuable.

Ideally, we would like the prior distribution we use to be
derived on physical grounds. We do not have any indepen-
dent physical criteria for constructing the prior distribution,
but our empirical gamma distribution model aims to capture
the predominant physics underlying regional aggregate heat
flow (we will later investigate how much so). Hence, a phys-
ical basis that can guide our prior distribution choice is the
implied physics captured by our gamma distribution model.
A prior distribution that is constructed from the gamma dis-
tribution is the empirically best choice to reflect these un-
derlying physics. This role is generally fulfilled by conjugate
prior distributions which arise from the associated probabil-
ity density functions and whose hyperparameters represent
aspects of the data that can become evident in the Bayesian
updating.

For the gamma distribution, a conjugate prior distribution
is given by Miller (1980), parameterized by the hyperparam-
eters p, s, n, and ν. Its probability density in gamma distri-
bution parameters (α,β) is

φ
(
α,β |p,s,n,ν

)
=
βνα−1pα−1 exp(−sβ)
0(α)n8(p,s,n,ν)

(8)

with gamma function 0(α) and

8(p,s,n,ν)=

∞∫
amin

dα
pα−10(να)

0(α)nsνα
. (9)

As in the previous section, we restrict the range of α from
amin = 1 to infinity to exclude probability densities that di-
verge at q→ 0 and place considerable weight on negligible
heat flow (say q < 10−2 mW m−2).

The conjugate prior distribution facilitates the computa-
tion of posterior distributions by means of Bayesian updat-
ing. The numerically expensive integrations over the param-
eter space of α and β that are involved in computing the
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Figure 5. Gamma distribution as a model for regional aggregate heat flow. Panel (a) shows the probability density functions (PDFs) of four
gamma distributions with a varying shape parameter α that all have the same mean 〈q〉 = 68.3 mW m−2 (the mean of A quality data as
estimated by Lucazeau, 2019). For α = 1, the PDF is finite for q→ 0. For α > 1, this limit is 0, and for α < 1, the PDF has a singularity
for q→ 0. Panel (b) shows the corresponding cumulative distribution functions (CDFs) with an emphasis on the asymptotics for small q
values. A linear slope is plotted for comparison, corresponding to the growth of a uniform density with an increasing integration interval.
The increased mass located in small q values in the case of α < 1 becomes evident.

posterior distribution are reduced to simple algebraic update
rules of the conjugate prior distribution’s parameters. Since
numerical quadrature has the most computational cost in RE-
HEATFUNQ and grows exponentially with the number of
quadrature dimensions, reducing the set of quadratures to the
computation of the normalization constant 8 of Eq. (9) sig-
nificantly benefits the performance.

The Bayesian updating of the prior distribution of Eq. (8)
given a sample Q= {qi : 1≤ i ≤ k} of k heat flow values is
(Miller, 1980)

p∗ = p
∏
i

qi, s
∗
= s+

∑
i

qi,

n∗ = n+ k, ν∗ = ν+ k. (10)

The posterior distribution of α and β is hence 8 of Eq. (8)
with the starred parameters given above.

Given a prior distribution parameterization (p, s, n, ν), the
probability density of heat flow within the region is the pre-
dictive distribution

ψ
(
q |p,s,n,ν

)
=

∞∫
αmin

dα

∞∫
0

dβ γ
(
q |α,β

)
φ
(
α,β |p,s,n,ν

)
=
8
(
pq, s+ q, n+ 1, ν+ 1

)
8(p,s,n,ν)

. (11)

Here, the final step utilizes the conjugate structure of the
prior distribution.

This expression can be translated to the likelihood of
Eq. (5) of the REHEATFUNQ model. The Bayesian update

leads to the following proportionality:

ψ
(
q |Q,p,s,n,ν

)
∼

m∑
j=1

∞∫
αmin

dα

∞∫
0

dβ γ
(
q |α,β

)
L
(
j,α,β | {qi}

)
. (12)

After some algebra used in Eq. (11), this resolves to

ψ
(
q |Q,p,s,n,ν

)
=

m∑
j=1

8
(
p∗j q, s

∗

j + q, n
∗

j + 1, ν∗j + 1
)

m∑
j=1

8
(
p∗j , s

∗

j , n
∗

j , ν
∗

j

) , (13)

where p∗j , s∗j , n∗j , and ν∗j are the parameters updated accord-
ing to Eq. (10) with heat flow data set I(j).

3.3.2 Minimum-surprise estimate

From a non-technical point of view, the purpose of the
gamma conjugate prior distribution in the heat flow analy-
sis is to transport universal information about surface heat
flow on Earth while at the same time not significantly fa-
voring any particular heat flow regime above other existing
regimes. In other words, the prior distribution should penal-
ize regions of the (α,β) parameter space that do not exist on
Earth but should be rather uniform throughout the parts of
(α,β) space that occur on Earth. The uniformity ensures that
all regions on Earth are treated equally a priori in terms of
heat flow, while the penalty adds universal information that
can augment the aggregate heat flow data of each region.
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In practice, a compromise between the uniform weighting
of existing aggregate heat flow distributions and the penaliz-
ing of non-existent parameterizations needs to be found. Our
choice in REHEATFUNQ is to put more weight onto the a
priori uniformity of regional characteristics, that is, less bias.
In parlance, we want to be minimally surprised by any of the
distributions of the RGRDCs if we start from the prior distri-
bution. One notion of the surprise contained in observed data
when starting from a prior model is the Kullback–Leibler di-
vergence (KLD)K from the prior distribution to the posterior
distribution (Baldi, 2002):

K(p(x),φ(x))=

∫
X

dnx p(x) ln
p(x)

φ(x)
, (14)

where X is the support of the parameters x. Baldi (2002) de-
fines p(x) to be the prior distribution and φ(x) the posterior
distribution given a set of observations.

The KLD is asymmetric, and Baldi and Itti (2010) note
that the alternate order of probability distributions “may even
be slightly preferable in settings where the ‘true’ or ‘best’
distribution is used as the first argument”. Here, we follow
the alternate order and assign the gamma conjugate prior
distribution to the role of φ(α,β). Furthermore, for the pur-
pose of estimating the gamma conjugate prior distribution’s
parameters we consider the “uninformed” prior distribution
(p = 1, s = n= ν = 0; Miller, 1980) updated to a regional
heat flow data set using the update rules of Eq. (10) to be the
“true” distribution p(α,β) within that region. In this order,
minimizing the KLD of Eq. (14) is also known as the “princi-
ple of minimum discrimination information” (MDI hereafter;
Kullback, 1959; Shore and Johnson, 1978), closely related
to the “principle of maximum entropy” (Shore and Johnson,
1978).

Applying this estimator to a set of regional aggregate heat
flow distributions leads us to the following cost function of
the minimum surprise which we aim to minimize. We enu-
merate the regional aggregate heat flow distributions of the
RGRDC by index i and the heat flow values within by in-
dex j with i-dependent range (Qi = {qj }i). We compute the
updated parameters p∗i , s∗i , n∗i , and ν∗i starting from p = 1,
s = n= ν = 0 for each Qi . Then, the cost function reads

(
p,s,n,ν | {Qi}

)
=max

i


∞∫

αmin

dα

∞∫
0

dβ φ
(
α,β |p∗i , s

∗

i ,n
∗

i ,ν
∗

i )

· ln

(
φ
(
α,β |p∗i , s

∗

i ,n
∗

i ,ν
∗

i )

φ
(
α,β |p,s,n,ν)

)}
. (15)

On an algebraic level, the ith KLD term emphasizes scale
differences between the prior distribution and the ith regional
data-driven distribution in parts of the (α,β) space which
the regional data favor, while other parts of the parameter
space are less important. Taking the maximum over the dis-
tributions {i} ensures that across distributions, the regions

in which probability mass is concentrated are equally ac-
curately represented. Another advantageous property of the
MDI estimator is that by taking into consideration the full
probability mass, it can be better suited for small sample
sizes than point estimators (e.g., Ekström, 2008).

An explicit expression for the numerical quadrature of
Eq. (15) is given in Appendix D1.1. For the purpose of opti-
mization, we substituted parameters

x =
(

lnp, s, ln
(n
ν
− 1

)
, ν
)

(16)

with boundaries

lnpmin ≤ x0 ≤ lnpmax, smin ≤ x1 ≤ smax,

ln(nv_surplus_min)≤ x2 ≤ ln(nv_surplus_max),
νmin ≤ x3 ≤ νmax .

With adjustable parameters

0< pmin < pmax, 0< smin < smax, 0< νmin < νmax, and

0≤ nv_surplus_min≤ nv_surplus_max,

this substitution ensures that the parameter bounds in p, s, n,
and ν are adhered to. Choosing to optimize the logarithm of
n
ν
− 1 has shown itself to lead to a gracious convergence to

the n= ν limiting case, and lnp is the standard expression of
the p parameter in the numerical back end (see Appendix D).

Before the global optimization of p, s, n, and ν, it is
helpful to determine some a priori bounds on the parame-
ters. One observation is that the minimum-surprise estimate
(MSE) should not introduce a strong bias to the regional re-
sults. Miller (1980) noted that the parameterization in which
the updated posterior distribution parameters are dependent
on the data only is the “uninformed” prior distribution p = 1,
s = n= ν = 0. This line of thought leads to heuristic bounds
on the parameters for the MSE. The posterior distribution
update rule for n and ν is an increment by the data count.
Hence, the prior distribution n̂ and ν̂ should be smaller than
or close to 1 for our desired MSE if we expect less than one
data point of “information”. For p the update rule is a prod-
uct with each heat flow value qi , and for s it is the sum with
qi . Hence, p̂ is expected not to be larger than 250k , with, say,
k ∼ 1 and ŝ not larger than 250k. We have chosen conserva-
tive bounds based on these estimates and use the parameter
bounds shown in Table 1.

To perform a global optimization of Eq. (15), we employ
the simplicial homology global optimization (SHGO) algo-
rithm implemented in SciPy (Endres et al., 2018; Virtanen
et al., 2020). This algorithm starts with a uniform sampling
of a compact multidimensional parameter space (we use the
simplicial sampling strategy). The cost function is evaluated
at the sample points, and a directed graph, approximating the
cost function, is created by joining a Delaunay triangulation
of the sample points with directions of cost increase. The key
step of SHGO is then to determine local minimizers of this
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Table 1. Parameter bounds used in the minimum-surprise estimate
optimization.

Parameter Value

pmin 1
pmax 105

smin 0
smax 103

νmin 2× 10−2

νmax 1
nv_surplus_min 10−8

nv_surplus_max 2

graph as starting points for further local optimization. The
power of the algorithm is that under the condition that the
cost function is Lipschitz continuous and the parameter space
has been sampled sufficiently (whereby the directed graph is
a sufficient representation of the cost function), the SHGO
algorithm generates exactly one such starting point per local
minimum. For the final iterative optimization of SHGO, we
use the Nelder–Mead simplex algorithm (Nelder and Mead,
1965; Virtanen et al., 2020).

By manual investigation, we have found that setting the
iteration parameter of SHGO to three, and using the bound-
aries previously defined, we obtain the optimum

p̂ = 2.52202, ŝ = 15.3730, n̂= 0.218477,

ν̂ = 0.218477 (17)

with a final cost of = 4.496. Two-dimensional slices of the
local neighborhood of this optimum are displayed in Fig. S1
of the Supplement.

The prior distribution φ(α,β) with our MSE parameters
is shown in Fig. 6. There, we also show the maximum like-
lihood point estimates (α̂, β̂) for each of the regional aggre-
gate heat flow distributions {Qi} from the RGRDC used in
the prior distribution parameter MSE. The shape of the prior
distribution in Fig. 6a does not follow the scatter of the (α̂, β̂)
estimates: while the (α̂, β̂) are, on logarithmic scales, within
a constant range of a linear slope across scales, the prior dis-
tribution widens on log scales with a decreasing α and β. The
picture changes when considering the estimate uncertainties
which also increase with respect to the scatter of estimates
for decreasing α and β (Fig. 6b). The prior distribution thus
captures the effects of the gamma distribution parameters and
the parameters’ sensitivities for different α and β values.

With respect to heat flow, this implies that the average heat
flow, as in Eq. (7), is fairly constant for any heat flow dis-
tribution. However, the sensitivity of the overall distribution
relative to the distribution parameters – and consequently the
uncertainty in the distribution estimates – changes with the
distribution parameters. This sensitivity is relatively lower at
smaller parameter values and vice versa. If a resulting dis-
tribution is less sensitive on the parameters, then in turn the

uncertainties in estimating the parameters of such a distribu-
tion will increase, as even a large change in parameters will
result only in a minor change of the resulting distribution.
The prior distribution reflects this behavior.

Equation (11) for the posterior predictive distribution of
regional heat flow can also be evaluated for the non-updated
prior distribution. Figure 7 shows the PDF and the CDF for
the prior distribution parameters of Eq. (17). The mode of
the PDF is close to the average heat flow of A quality data
within the NGHF, 68.3 mW m−2 (Lucazeau, 2019). The prior
predictive CDF follows the median CDF of the RGRDC sam-
ples fairly closely, with the exception of heat flow exceeding
about 100 mW m−2. The latter is linked to the heavy tail of
the PDF, which aggregates about 4.3 % probability, while the
data are cut at 250 mW m−2.

3.4 Bayesian inference of heat flow anomaly strength

We now turn to the quantification of the heat flow anomaly
qa(x). This signal qa(x) is the surface heat flow signal due
to a specific heat source that a researcher would like to in-
vestigate. It is implied that the surface heat flow field due
to the heat source can be computed. In this article, we will
use the heat flow signature of a vertical strike-slip fault with
linearly increasing heat production with depth (Lachenbruch
and Sass, 1980), but in principle REHEATFUNQ is agnostic
to the type of surface heat flow to separate from the regional
scatter. As noted in Sect. 3.1, the signal qa can be separated
from the regional undisturbed heat flow by means of Eq. (3)
if the heat source is weak enough not to incite nonlinear con-
vection.

In REHEATFUNQ, the heat flow anomaly signal qa(x) is
expressed by the total heat power PH that characterizes the
heat source and a location-dependent heat transfer function
c(x) that models the surface heat flow per unit power that is
caused by the heat source. This transfer function follows by
solving the relevant heat transport equation. Given a power
PH and a function c(x), the heat flow anomaly contribution
to the heat flow at measurement location xi is thereby

qa(x)= PHc(xi)= PHci . (18)

Providing the coefficients ci for each data point, by means
of whichever solution technique to the heat transport equa-
tion available, is thereby the “application interface” of the
REHEATFUNQ model for heat flow anomaly quantification.
This is step 4 of the workflow listed in Appendix A. Note
that while Eq. (18) requires the heat transport to be linear in
PH, in Appendix G we note a particular case of nonlinear-
ity in the heat transport with respect to PH that can still be
addressed by REHEATFUNQ.

We can now combine the stochastic model for qu and the
deterministic model for qa(PH). Treating PH as a model pa-
rameter, we perform Bayesian inference using the gamma
distribution model for qu. First, we transform the heat flow
measurements by removing the influence of the heat flow sig-
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Figure 6. Analysis of the global heat flow database in mW m−2 and parameter estimate of the gamma conjugate prior distribution of Eq. (8).
Each dot marks the maximum likelihood estimate (MLE) of the gamma distribution parameters (αi ,βi) for one of the randomly selected
disk regions shown in Fig. 1 with the selection criterion of Sect. 2 applied. The solid lines mark parameter combinations of equal mean heat
flow, and the dashed lines mark those with an equal standard deviation (after Thomopoulos, 2018). If the gamma distribution is assumed,
global heat flow – split into disks with a radius of 80 km – can typically be described within a band of the parameter space given by a
distribution average between 25 and 120 mW m−2 and standard deviation of 3 to 60 mW m−2. We capture this using the gamma conjugate
prior distribution of Eq. (8) as the background color. Its parameters of p̂ = 2.52202, ŝ = 15.3730, n̂= 0.218477, and ν̂ = 0.218477 stem
from the minimum-surprise estimate described in Sect. 3.3.2. (a) The global mean continental heat flow of 68.3 mW m−2 is the estimate of
Lucazeau (2019) from A quality data. Panel (b) shows a rotated and stretched section of the (α,β) parameter space such that the ordinate
axis coincides with the average heat flow levels. The data are the same as in panel (a). Additionally we show, for each MLE, the region of the
parameter space in which the corresponding likelihood is larger than 1/e times its maximum. This illustrates the uncertainty in the parameter
estimates.

nature:

q ′i = qi −PHci . (19)

The data q ′i are now data of the “unknown” or “undisturbed”
heat flow, for which we use the gamma model γ (qu) and its
conjugate prior distribution.

Assuming the heat flow anomaly to be generated by a
heat source implies the lower bound PH ≥ 0 (0 if the heat
flow data are not at all compatible with the anomaly). From
Eq. (19) an upper bound on PH follows. Since we consider
only positive heat flow,

P
(j)
H ≤ min

i∈I(j)

{
qi

ci

}
=: P

m,j
H (20)

for any heat flow sample iterated by j . Outside of these
bounds, we assume zero probability for this value of j . The

global maximum PH that can be reached across all j is

Pmax
H := max

1≤j≤m
min
i∈I(j)

{
qi

ci

}
. (21)

Assuming a uniform prior distribution in PH within these
bounds, the full posterior distribution of the REHEATFUNQ
anomaly quantification reads

f
(
PH,j,α,β |p,s,n,ν, {(qi,ci)}

)
∼ φ

(
α,β |p,s,n,ν

)∏
i∈Ij

γ
(
qi −PHci |α,β

)
. (22)

To quantify the heat power PH, REHEATFUNQ uses the
marginal posterior distribution in PH:
f
(
PH |p,s,n,ν, {(qi ,ci)}

)
=


1
F

m∑
j=1

∞∫
αmin

dα

∞∫
0

dβ φ(α,β)
∏
i∈Ij

γ
(
q ′i |α,β

)
: PH ∈ [0,Pmax

H ]

0 : otherwise.

(23)

Geosci. Model Dev., 17, 2783–2828, 2024 https://doi.org/10.5194/gmd-17-2783-2024



M. J. Ziebarth and S. von Specht: REHEATFUNQ 2.0.1 2795

Figure 7. Prior predictive distribution for regional aggregate heat flow. The gamma conjugate prior distribution is parameterized as described
in Eq. (17). Panel (a) shows the prior predictive PDF. The average value of A quality data from the NGHF (Lucazeau, 2019) is indicated.
Panel (b) shows the prior predictive CDF. The background color shows, for each pixel in the (q,F ) coordinates, the fraction of empirical
cumulative distribution functions computed from the RGRDC heat flow samples at heat flow q which exceed F .

In Appendix D2, we discuss how to compute the normaliza-
tion constant F .

If an upper bound on the heat power PH is the aim of the
investigation, the tail distribution (or complementary cumu-
lative distribution function)

F̄ (PH)=

∞∫
PH

dP f (P ) (24)

can be used. It quantifies the probability with which the heat-
generating power is PH or larger.

An illustration of the idea behind the approach in Eq. (23)
is shown in Fig. 8. Panel a shows a sample of undisturbed
heat flow qu drawn from a gamma distribution. This heat flow
is superposed with the conductive heat flow anomaly from a
vertical strike-slip fault (Lachenbruch and Sass, 1980). The
result is the sample of “measured” heat flow q. Undisturbed
data at the center of the heat flow anomaly are collectively
shifted to higher heat flow values, while those further away
from the fault are barely influenced. Within the regional ag-
gregate heat flow distribution, the most affected data will be
shifted towards the tail. This distortion of the aggregate heat
flow distribution is picked up by the likelihood with the result
that correcting for the heat flow anomaly of the right power
of PH = 140 MW (transforming the dots back to triangles in
panel a) is more likely than no anomaly (PH = 0 W) in the
right panel.

Figure 8 illustrates a core difficulty when identifying heat
flow anomalies within noisy data of small sample sizes. The
strength of the heat flow anomaly in this case is compara-
ble to the intrinsic scatter of the regional aggregate heat flow
distribution. This makes it difficult to identify the anomaly
shape within the data. If the variance of the undisturbed

heat flow is small compared to the actual magnitude of the
anomaly, it becomes more and more feasible to visually iden-
tify the correct anomaly strength. Especially if the sample
size is small, however, allowing for the occurrence of ran-
dom fluctuations can significantly alter the interpretation of
the data. The Bayesian analysis can capture all of this uncer-
tainty in the posterior distribution of PH, yielding a powerful
analysis method.

3.4.1 Providing heat transport solutions

As outlined in Sect. 3.1, steady crustal heat transport can
be conductive, advective, or convective. The REHEATFUNQ
model can be applied as long as the surface heat flow at the
data locations is linear in the frictional power PH on the fault.
The whole potentially complicated model of heat conduction
from the fault to the data points can then be abstracted to the
coefficients {ci}. At present, the task of computing these co-
efficients for use in REHEATFUNQ lies generally with the
user (step 4 of the workflow listed in Appendix A). Numer-
ical methods such as the finite element, finite difference, or
finite volume method as well as analytical solutions to sim-
plified problem geometries can be used to determine {ci} for
a given problem by solving the heat transport equation of
heat generated on the fault plane and dividing the surface
heat flow at the data locations by the total frictional power
PH on the fault.

We illustrate this process using the single solution to the
heat conduction equation that REHEATFUNQ presently im-
plements: the surface heat flow anomaly generated by a ver-
tical strike-slip fault. The solution stems from Lachenbruch
and Sass (1980) and assumes a vertical fault in a homoge-
neous half-space medium. Furthermore, the fault is assumed
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Figure 8. Sketch of the Bayesian analysis of the fault-generated heat flow anomaly strength. The analysis starts out in panel (a) with
heat flow measurements (dots) in spatial relation to a known strike-slip fault. The heat flow measurements within the investigated re-
gion fluctuate, and they are distributed according to a probability distribution p(q). Here we use a gamma distribution with α = 180 and
β = 2.6354319 mW−1 m2. These undisturbed fluctuations (triangles) are superposed by the fault-generated conductive heat flow anomaly
(dashed line) to yield the measurements. Both the undisturbed data and the anomaly’s strength are unknown to the researcher, but the
anomaly can be modeled as a function of average frictional power PH. Panel (b) shows the difference in aggregate cumulative distribution
of the undisturbed heat flow and the data superposed by the anomaly. This is how REHEATFUNQ “sees” the data. Panel (c) shows the result
of the REHEATFUNQ analysis. Our approach investigates the continuum of PH. Each PH corresponds to a heat flow anomaly of a different
amplitude, which leads to different corrected data (from circles to triangles in panel a). The likelihood of the corrected data is evaluated
against our proposed model of p(q), a gamma distribution, which leads to the posterior distribution of frictional power. In the case of this
synthetic gamma-distributed data, the actual anomaly strength (vertical dashed line) is well assessed.

to reach from depth d to the surface, and heat generation is
assumed to increase linearly with depth up to a maximumQ∗

at depth d. In the limit of infinite time, the stationary limit,
the anomaly then reads

qa(x)=
Q∗

π

(
1−

x

d
arctan

d

x

)
for t→∞. (25)

This shape of surface heat flow is shown in the sketch
of Fig. 8. In REHEATFUNQ, the anomaly is implemented
based on the surface fault trace. For each data point, the dis-
tance to the closest point on this fault segment string is com-
puted and inserted as x into Eq. (25). For an infinite straight
fault line in a homogeneous half space, this coincides ex-
actly with the analytic solution. In real-world applications,
the quality of this approximation depends on the straightness
of the fault and its length compared to depth and data dis-
tance from the fault, as well as the dip of the fault – shallow-
dipping faults lead to asymmetric heat flow instead.

The model of Eq. (25) leads to a heat production of Q̄d =
Q∗d/2 per unit length of the fault. We can balance this with
the total heat dissipation power PH on a fault segment of
length L within a region:

Q∗d = 2Q̄d = 2
PH

L
. (26)

This finally leads to the following expression of the coeffi-
cients ci as a function of distance to the surface fault trace:

ci =
qa(xi)

PH
=

2
πdL

(
1−

xi

d
arctan

d

xi

)
for t→∞. (27)

To use the surface heat flow signature of other heat sources
or to include advection, one would perform similar steps.
First, the heat transport equation needs to be solved. An an-
alytical solution like Eq. (25) will not often be available,
so numerical techniques can be used to directly compute
qa(xi) at the data locations for a given PH. Then ci , the in-
put values to the posterior distribution of Eq. (23), can be
computed by dividing the qa(xi) by PH. The Python class
AnomalyNearestNeighbor can then be used to specify
the ci for use in the REHEATFUNQ Python module.

3.4.2 Heat transport uncertainty

The model for heat transport will in general be uncertain. For
instance, in Eq. (26) one might be able to narrow down the
depth d only to within a certain range. Or one might have an
alternative model based on a different geometry and perhaps
another one that includes a small amount of groundwater ad-
vection. Such uncertainties in parameter values and model
selection can be accounted for in REHEATFUNQ.

The interface to do so is via the coefficients ci . The user
can provide a set

C=
{
(wk, {ci}k) : k = 1, . . ., K

}
(28)

of K solutions to the heat transport from source to heat flow
data points. Each set {ci}k should contain a number N of co-
efficients ci equal to the total number of heat flow data points
before applying the dmin sampling (effectively this is aK×N
matrix (cki)). The weights wk quantify the probability that
the user assigns to the heat transport solution k. In this way,
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k iterates a discretization of the N -dimensional probability
distribution of the coefficients ci .

Internally, REHEATFUNQ then uses a latent parameter
l ∈ {1, . . ., m×K

}
to iterate the combinations of the latent

parameter j with the index k (another latent parameter).
Then, in all previous equations, the index j is replaced with
k, the sets Ij are replaced with the set Ij (k) belonging to the
index j that k iterates, and the coefficients ci are replaced
with cki . This effectively adds the k dimension to the RE-
HEATFUNQ posterior distribution.

Since m×K is a possibly very large number – even j it-
self may be too large to iterate exhaustively and would hence
be Monte Carlo sampled – only a user-provided maximum
number of random indices l will be used in the sums.

4 Model validation and limitations

The previous methodology section described the idea behind
considering regional aggregate heat flow as a random vari-
able and set out straightforwardly to describe the REHEAT-
FUNQ gamma model and its prior distribution parameter es-
timation. Yet, no physical basis has been provided for the
choice of a gamma distribution besides a number of gen-
eral properties that the gamma distribution, among others,
fulfills. In this section, we provide a posteriori support for
this choice.

In Sect. 4.1.1–4.1.3, the NGHF (Lucazeau, 2019) will
be used to investigate whether the REHEATFUNQ gamma
model is suitable for the description of real-world heat flow
data. The analysis reveals a degree of misfit for which we
investigate possible causes. Finally, we compare the gamma
model to other two-parameter univariate probability distribu-
tions.

In Sect. 4.2 and its subsections, we analyze synthetic data,
allowing us to leverage large sample sizes. We investigate
how well REHEATFUNQ can quantify heat flow anoma-
lies both if the regional aggregate heat flow were gamma
distributed, that is, according to the model assumptions,
and if the regional heat flow were to follow some strongly
gamma-deviating mixture distributions found in the NGHF
in Sect. 4.1.1. Furthermore, we investigate the impact of the
prior distribution parameters on the anomaly quantification.

In Sect. 4.3 and its subsections, we discuss some physical
limitations of the REHEATFUNQ model.

4.1 Validation using real-world data

4.1.1 Goodness of fit: region size

Interpreting the regional heat flow as a stochastic, fluctu-
ating background heat flow introduces a potential trade-off
in the region size. On the one hand, considering heat flow
data points across a larger area increases the number of heat
flow measurements, which can increase the statistical signif-
icance of the analysis. In particular when investigating fault-

Figure 9. Distribution of relative error in the NGHF database for A
and B quality data. We show only A and B quality data accord-
ing to our data filtering described in Sect. 2.1. Panel (a) shows
the distribution of relative uncertainty for data records of A and
B quality, from the filtered NGHF database, for which an un-
certainty is specified. The dashed line shows a mixture distri-
bution of three normal distributions that approximates the rela-
tive error distribution of the A quality data. The parameters of
the mixture are means µ= (0.055,0.272,0.36), standard devia-
tions σ = (0.08,0.09,0.24), and weights w = (0.79,0.15,0.06).
Panel (b) shows a histogram of the number of data records of A
and B for which uncertainty is specified and which pass our data
selection criteria.

generated heat flow anomalies, data points further away from
the fault, say > 20 km (see Fig. 8), are less influenced by the
fault heat flow and can hence better quantify the background
heat flow that is not disturbed by the heat flow anomaly. On
the other hand, increasing the region size makes the analy-
sis more susceptible to capturing large-scale spatial trends.
These trends may introduce correlations or clustering be-
tween the data points which are not captured by the stochas-
tic model. Conversely, using smaller region extents will im-
prove the quality of approximating large-scale spatial trends
as uniform. We will now set out to find a compromise be-
tween these effects by finding a region size in which we can
hope to apply the gamma model for regional aggregate heat
flow distributions.

Our goodness-of-fit analysis by region size region is based
on RGRDCs (see Appendix B). For each regional aggregate
heat flow distribution, we investigate how well the sample
can be described by the gamma distribution. Control over the
radius R allows us to investigate the fit over various spatial
scales.

We performed tests based on the empirical distribution
function (EDF tests; Stephens, 1986) to investigate the good-
ness of fit. We have used the Kolmogorov–Smirnov (KS) and
Anderson–Darling (AD) test statistics, and we have applied
them for the case that both parameters α and β are unknown
(“case 3” of Stephens, 1986). We calculated critical tables
for the test statistics covering the sample sizes and maximum
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likelihood estimate shape parameters α̃ that we encountered
in the RGRDCs since the tables are independent of β as a
scale parameter (David and Johnson, 1948). The critical ta-
bles yield the values for both test statistics that are exceeded
at a certain rate if the data stem from a gamma distribution
(we chose a 5 % rejection rate). This rejection rate means
that if N samples of size M are drawn from a gamma distri-
bution with shape α, the KS test statistic exceeds the value
read from the KS critical table for that M and α in 5 % of
the samples. The same holds for the AD statistic and the AD
critical table. Hence if regional aggregate heat flow distribu-
tions were gamma distributed, we would expect 5 % of disks
to be rejected by the tests. Higher rejection rates (number of
rejected samples / number of samples) indicate that they are
not gamma distributed.

Figure 10 shows the results of the goodness-of-fit analy-
sis. Two R-dependent effects can be observed in Fig. 10: at
a small R of < 80 km, the scatter of small sample sizes be-
comes dominant. There are just too few regions remaining.
For an increasing R, the rate of rejecting the gamma distri-
bution hypothesis increases slightly.

A striking observation is that for all of the region sizes, the
rejection rate is larger than 5 % (centered at about 15 %) and
the fluctuations in rejection rates across different RGRDCs
do not alter that conclusion. Regional aggregate heat flow is
not generally gamma distributed.

This deviation is not due to known heat flow data uncer-
tainty. To test whether the heat flow data uncertainty might
be the cause of the elevated rate of rejections, we have per-
formed a synthetic analysis using synthetic RGRDCs gen-
erated by the algorithm in Appendix B1. After generating
gamma-distributed random values similar to RGRDC data,
relative error following the uncertainty distribution of A and
B data (shown in Fig. 9) is added to the data. The resulting re-
jection rates show a spread similar to that of the NGHF data,
but the bias is small (the median of the rejection rates across
synthetic RGRDCs never exceeds∼ 8 %). Consequently, un-
biased random error as specified for the heat flow data within
the NGHF is not sufficient to describe the ∼ 15 % rejection
rate of the gamma model.

The impact that this imperfect model of regional aggre-
gate heat flow has on the accuracy of the results is not im-
mediately clear. On the one hand, using a wrong model to
analyze the data suggests a detrimental impact on the accu-
racy. On the other hand, if the model is close enough, the
method might be accurate up to a desirable precision. Later
in Sect. 4.2.2 we investigate, using synthetic data, how well
REHEATFUNQ can quantify heat flow anomalies when re-
gional aggregate heat flow data is decidedly non-gamma dis-
tributed.

Before these synthetic investigations, the following sec-
tions investigate potential causes for the deviation from a
gamma distribution in Sect. 4.1.2 and test whether other
parsimonious models for the regional aggregate heat flow

distribution perform better than the gamma distribution on
RGRDCs of the NGHF data set in Sect. 4.1.3.

4.1.2 Goodness of fit: the level of misfit from mixture
models

Following the observation that the gamma distribution is not
a general description of regional aggregate heat flow distribu-
tions, we investigate potential causes for this misfit and how
large the deviation from a gamma distribution has to be to
produce the ∼ 15 % rejection rates of the previous section.

We find that the mismatch could be explained by mixture
distributions. Figure 11 shows the same RGRDCs Anderson–
Darling rejection rate as Fig. 10 and additionally the rejec-
tion rate computed for two mixtures of two gamma distribu-
tions each. The two mixture distributions are synthetic but
cover the range of typical heat flow values, and the samples
drawn from them have the sample size distribution as the
RGRDCs. One distribution (“mix 0”) has less overlap be-
tween the two peaks than the other and leads to large rejec-
tion rates of ∼ 80 %. The other, “mix 1”, has more overlap
between the peaks, and they are more equally weighted. This
mixture model matches the observed rejection rates across
the NGHF data RGRDCs very closely. Similar mixture mod-
els could hence be a possible cause for the observed rejection
rates across the NGHF if the heat flow were indeed gamma
distributed.

The mixture distribution can arise in the real heat flow data
if the disk intersects a boundary between two regions of dif-
ferent heat flow characteristics. Since radiogenic heat pro-
duction in the relevant upper crust can vary on the kilome-
ter scale (Jaupart and Mareschal, 2005), such an occurrence
seems plausible. The occurrence of a boundary intersection
mixture might be frequent and with a smaller difference be-
tween the modes (corresponding to mix 1), or it might be
infrequent but with a larger inter-mode distance (dashed line
in Fig. 11). Both cases are compatible with the statistics ob-
served in the NGHF data RGRDCs.

The match with the observed rejection rates is not conclu-
sive evidence that the heat flow data within the regions follow
gamma mixture distributions. It is likely that many different
distributions could be constructed that lead to similar rejec-
tion rates. However the match is a good indication of how
large the deviation between the underlying distribution and
the simple gamma model is. Somewhere between “gamma
mix 0” and “gamma mix 1” lies a critical point in terms of
mode separation beyond which the distribution would depart
further from a gamma distribution than what is observed in
the NGHF data RGRDCs.

At this point, we can summarize that heat flow in disks
with a radius of 60 to 260 km is not generally gamma dis-
tributed and this is not an artifact of data processing or un-
certainty. Mixtures of gamma distributions within the disks,
for instance representing variation on smaller scales below
the smallest radius we can investigate, could explain the mis-
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Figure 10. Investigating the fit of various probability distributions to the NGHF (Lucazeau, 2019) at different spatial scales. Both sides
analyze the same data sets using goodness-of-fit (GOF) tests for the gamma distribution (e.g., Stephens, 1986). First, we analyze RGRDCs
of the NGHF data set (defined in Appendix B). For each disk of a global covering, a GOF test is performed for the distribution of heat flow
within. The average rejection rate is the fraction of disks within a covering for which the gamma hypothesis is rejected at the α= 5 % level.
For sufficiently large samples from a gamma distribution, this rate would converge to 5 %. The black box plots show, for each indicated R,
the distribution of these rejection rates over 200 generated coverings. The gray box plots show the same distribution for synthetic gamma-
distributed global coverings (details in Appendix B1). Known processes affecting the used part of the NGHF data set (250 mW m−2 threshold,
discretization, and typical uncertainty) have been simulated. The box plots show the median (colored bar), quartiles (extent of the box), up
to 1.5 times the interquartile range (whiskers), and outliers thereof. The box plot shows a separation of the two rejection rate distributions,
indicating that there are patterns in the real heat flow data that cannot be explained by a gamma distribution and uncertainty. As R decreases,
the discrepancy decreases as well until at R . 80 km, the R disks contain too few data points to resolve the average rejection rate properly
(illustrated by the dashed line showing the average of 100 divided by the number of disks in a covering).

Figure 11. Exploring the misfit between the gamma distribution model of regional heat flow and the NGHF data. (a) Box plots show the
fraction of heat flow distributions from RGRDCs of the NGHF database for which the gamma distribution hypothesis is rejected at the 5 %
level (same data as Fig. 10b). The solid lines with dots show the same fraction of rejections computed for two sets of 10 000 samples each,
drawn from the two gamma mixture models shown in panel (b) (colors corresponding). Each sample from the mixture distributions has its
size drawn from an NGHF RGRDC of the corresponding R, replicating the sample size structure derived from the NGHF. The dashed line
in the left plot shows the case if 72 % of the samples were gamma distributed (5 % rejection rate, horizontal black line), while 28 % of the
samples were draft from mixture model 0. (b) The dotted lines indicate the two gamma distributions comprising each mixture. The parameters
are w0 = 0.2, k0 = 25, θ0 = 1 mW m−2, k1 = 50, and θ1 = 1 mW m−2 for 00 (where w0 is the weight of the zero-index component) and
w0 = 0.4, k0 = 128, θ0 = 0.57 mW m−2, k1 = 50, and θ1 = 1 mW m−2 for 01.
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match. Moreover, the mixtures indicate the level of mismatch
that would lead to the statistics observed in the real heat flow
data.

We proceed in Sect. 4.1.3 by investigating whether other
two-parameter univariate probability distributions perform
better in describing the real-world regional aggregate heat
flow distributions. Later in Sect. 4.2.2, we will investigate the
impact that the misfit of the gamma model has on the quan-
tification of heat flow anomalies. This will drive the model
despite the mismatch to observed data until a physics-derived
alternative becomes available.

4.1.3 Comparison with other distributions

We compare the performance of the gamma distribution with
a number of common probability distributions. This aims
to investigate whether the mismatch can be resolved by
choosing another simple probability distribution or whether
the gamma distribution performs well in terms of a simple
model.

The comparison is performed at the transition point be-
tween an insufficient sample size, as the radius decreases,
and increasing misfit, as the radius increases. The radius is
80 km. Even though the global heat flow database of Lu-
cazeau (2019) is large, the number of samples within a disk
of R = 80 km is rather small at a 20 km minimum distance
between the data points (typically 11). Therefore, we focus
our analysis on two-parameter models.

We generate samples from the NGHF using the RGRDCs
described in Appendix B. To each disk’s sample, we fit prob-
ability distribution candidates using maximum likelihood es-
timators and compute the Bayesian information criterion
(BIC; Kass and Raftery, 1995). The probability distribution
with the smallest BIC is the most favorable for describing the
subset, and the absolute difference 1BIC to the BIC of the
other distributions indicates how significant the improvement
is. In our particular case, 1BIC depends only on differences
in the likelihood since all investigated distributions are two-
parametric. We repeat the process 1000 times to prevent a
specific random regional heat flow sample selection skewing
the results (see Figs. S9–S11 in the Supplement for a conver-
gence analysis).

Due to the right-skewed shape of the global distribution
(see Fig. 1b), we test a range of right-skewed distributions
on the positive real numbers: the Fréchet, gamma, inverse
gamma, log-logistic, Nakagami’s m, shifted Gompertz, log-
normal, and two-parameter Weibull distribution (Bemmaor,
1994; Leemis and McQueston, 2008; Kroese et al., 2011;
Nakagami, 1960). The global distribution does not have to be
representative of the regional distributions, however. Since
the global distribution is a mixture of the regional distribu-
tions, only the weighted sum of the regional distributions
needs to have the right-skewed shape. Therefore, we addi-
tionally test the normal distribution (e.g., used by Lucazeau,
2019).

In Fig. 12c, the results of the analysis are visualized using
the rate of BIC selection, that is, the fraction of regional heat
flow samples for which the hypothesized distribution has the
lowest BIC. Furthermore in panel a, the distribution of1BIC
to the second-lowest scoring distribution is shown for the
samples in which each distribution is selected, and in panel b
the distribution of (negative) 1BIC to the selected distribu-
tion is shown for the samples in which each distribution is not
selected. The Weibull distribution has the highest selection
rate, followed by the Fréchet distribution. Combined, they
account for roughly 60 % of all selections. Together with the
normal distribution and one outlier of the log-logistic distri-
bution, they are the only distributions with occurrences of
1BIC> 2, which might be considered “positive evidence”
(Kass and Raftery, 1995, p. 777). However, these 1BIC> 2
instances occur only in less than 4.4 % of the total subsets
for each of the three distributions. Therefore, no distribution
is unanimously best at describing the regional heat flow.

The 1BIC for regions in which a distribution is not se-
lected leads to a different selection criterion: if a distribu-
tion is not the best-scoring distribution, how much worse
than the best is it? These differences are generally more pro-
nounced than the differences in the best to the second-best
fitting model. Especially the Fréchet and inverse gamma dis-
tribution perform much (strong evidence at 1BIC> 6, Kass
and Raftery, 1995, p. 777) worse than the better-fitting distri-
butions in more than 50 % of the cases in which they are not
selected. The generally least worst performing models are the
gamma, log-logistic, normal, Nakagami, and Weibull distri-
bution. Their negative 1BIC distributions have only minor
differences, and different ones perform better depending on
the quantile of the negative 1BIC investigated.

To conclude, the gamma distribution is among the best-
performing distributions in terms of a consistently good de-
scription of the data. There are no significant differences be-
tween the distributions in terms of fitting the data that would
favor any of the other distributions over the gamma distri-
bution. Up until the typical shape of the regional aggregate
heat flow distribution is derived from physical principles, the
choice among the set of the best-performing distributions re-
mains a modeling decision. Here, the gamma distribution is
the only distribution of the best-performing set that fulfills
all three of the following criteria: (1) it is defined by posi-
tive support; (2) it has a conjugate prior distribution for en-
abling costly computations; and (3) it is right-skewed, like
the global heat flow distribution, for all parameter combina-
tions. We hence choose the gamma distribution within RE-
HEATFUNQ.

4.2 Validation using synthetic data

In this section we analyze the performance of the complete
anomaly-testing model described in Sect. 3.4 using synthetic
data, that is, computer-generated samples {(x,y,q)i} of sur-
face heat flow. The purpose of this test is to investigate the
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Figure 12. Selection rates, as well as their significance, of different two-parameter probability distributions for modeling regional heat flow
distributions for global coverings of circles with a radius of 80 km. (c) Given an RGRDC (described in Appendix B), the selection rate
denotes the fraction of these regions for which the indicated distribution has the lowest BIC. (a) The box plots show the distribution of1BIC
conditional to the respective distribution being selected (that is, each time it has the lowest BIC). 1BIC is then computed as the distance of
this lowest BIC value to the second-lowest BIC value. In other words, it quantifies how much better than the best competition the distribution
performs if selected. Panel (b) shows in similar box plots the distribution of1BIC to the lowest scoring distribution among the regional heat
flow samples in which the indicated distribution is not selected. In other words, the bottom panel shows how much worse than the best-fitting
distribution each distribution is if it is not the best (values closer to 0 are better). The data of all three panels are aggregated from 100 random
global coverings.

impact of the conjugate prior distribution, the model’s cor-
rect identification of synthetic anomalies, and the impact that
the deviation of real-world data from the assumed gamma
distribution could have on the model’s performance.

In the following sections, a number N of artificial heat
flow values within a disk with a radius of 80 km are gen-
erated following a variety of distributions. To investigate the
impact of the sample size and potential convergence, N is
varied in the synthetic experiments. We note that in these
tests, the minimum distance of 20 km between data points
is not enforced. As a consequence, we can also investigate
data set sizes larger than 64 samples, which might be close
to the densest point packing within a circle with a ratio of
the minimum distance to the radius of 0.25 (Graham et al.,
1998), that is, the maximum our minimum-distance criterion
allows.

The minimum data set size we investigate is 10, corre-
sponding to a density of 5.0×10−4 km−2. The densest pack-
ing of 64 data points corresponds to a density of 3.2×
10−3 km−2, and the maximum sample size we investigate,

100, corresponds to a density of 5×10−3 km−2 inside a disk
with a radius of 80 km. When enforcing the 20 km mini-
mum distance, 100 samples would correspond to the most
densely packed circle with a radius of ' 100 km (López and
Beasley, 2011, Table 4, result minus 1) and again a density
of 3.2× 10−3 km−2.

4.2.1 Impact of the conjugate prior distribution

In this first of two tests, we investigate how well the method
is able to identify synthetic anomalies that have been su-
perimposed on artificial gamma-distributed heat flow val-
ues. Specifically, this aims to investigate the impact of the
prior distribution for small data sets. To this end, we com-
pare our choice of prior distribution parameters, in Eq. (17),
with an (improper) uninformed prior distribution of p = 1,
s = n= ν = 0, whose posterior parameters are determined
solely by the data.

In Fig. 14, the performance of the model is evaluated on
synthetic data generated from gamma distributions and su-
perposed with a synthetic anomaly of a vertical fault follow-
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Figure 13. Configuration of the synthetic heat flow data and fault in
the synthetic method tests (Sect. 4.2 and subsections). The configu-
ration is chosen to reflect both the random global R-disk coverings
used in Sect. 4.1.1 and the heat flow anomaly of the San Andreas
fault used in Sect. 5. The regions are disks with a radius of 80 km
in which the locations of synthetic heat flow measurements (dots)
are distributed according to a uniform probability density. A straight
fault (thick line) intersects the disk through its center. The dashed
lines show the distances x of the heat flow data from the fault trace,
which are used to determine the anomaly strength ci as a function of
frictional power PH dissipated on the fault segment. The anomaly
shape is in accordance with Eq. (25), following Lachenbruch and
Sass (1980), which is displayed in Fig. 8.

ing Lachenbruch and Sass (1980). The anomaly of Eq. (25)
is computed for a power of 10 MW and the spatial config-
uration shown in Fig. 13. Both using the prior distribution
with parameters of Eq. (17) and a flat prior distribution, the
marginal posterior distribution imposes correct bounds on the
anomaly strength with increasing precision as the sample size
increases.

The difference between the flat and the informed prior
distribution is most pronounced at small sample sizes and
standard deviations. There, the flat prior distribution places
a considerably tighter constraint on the anomaly strength. At
larger standard deviations, a region emerges in which this re-
lation is reversed and the informed prior distribution leads
to stricter constraints, albeit considerably less so (less than
10 % improvement on the 1 % tail quantile bound). This re-
gion coincides in part with the isolines of the prior density
(see Fig. 6). Since the region lies in a part of the (α,β) space
with a larger standard deviation, improvements in this area
can be helpful.

All in all, the impact of the informed prior distribution is
ambiguous. In a part of the (α,β) space that is densely cov-
ered by modes of the RGRDC likelihoods and which is hence
likely to cover the regional aggregate heat flow distribution
of a heat flow analysis, the prior distribution influences the
analysis positively. Yet, the improvement in these regions is
small compared to the large overestimation of the anomaly
(see panel c). In regions of the parameter space in which the
heat flow distributions have less scatter (large α and β), on

the other hand, the upper bounds on the anomaly magnitude
are significantly increased. This leads to a very conservative
estimate of the anomaly bound and the uncertainty.

As a rule of thumb, the prior distribution with optimized
parameters of Eq. (17) is rather beneficial at small sample
sizes (around 10 data points or less) for “typical” gamma
distribution parameters, that is, for those parameters whose
distributions resemble real-world heat flow data sets. This
prior distribution is accessible as the default prior distribu-
tion of the REHEATFUNQ model. If the variance of the data
is particularly low (for instance after removing known spatial
signals from the heat flow data), it might be preferable to use
the uninformed prior distribution. If sample sizes are large,
say 50–100 data points or more, the results might not differ
much due to the prior distribution being forgotten.

We close this section with a remark on a potential lead for
improved prior distribution parameter estimates. A potential
cause of the worse performance, compared to the flat prior
distribution, in parts of the (α,β) space could be the prior
distribution’s favoring of small β and α values which corre-
spond to larger variance. The prior distribution would result
in bias to larger variance. This prior distribution shape is, in
turn, likely a consequence of the higher concentration of like-
lihood modes of the random regional samples at a low α and
β (see the location of MLE (αi,βi) in Fig. 14).

4.2.2 Impact of non-gamma heat flow distributions

Section 4.1.1 shows that the gamma distribution does not
fully describe the RGRDCs. Thereafter, Sect. 4.1.2 illus-
trates that an overlapping mixture of two gamma distribu-
tions would produce a similar mismatch and is hence one
plausible explanation. Moreover, we were able to identify
a limit of the separation of the two mixture components
(Fig. 11) beyond which the mixture has departed further from
the unimodal gamma distribution than the observed distri-
butions in the RGRDCs. The question remains as to how
this moderate departure of p(qu) from our gamma model
will affect the identification of the fault-generated heat flow
anomaly power PH in Eq. (23).

To answer this question, we perform Monte Carlo simu-
lations. Regional aggregate heat flow distributions are drawn
from mixture distributions that mimic general patterns of the
RGRDC regional distributions from Sect. 4.1.1 for which the
gamma hypothesis is rejected. These general patterns are bi-
modal histograms and those which have a widespread base
level and a sharp peak.

We choose to model both patterns by a two component
Gaussian mixture, the first by two well-separated normal dis-
tributions (NDs) with a similar standard deviation and the
second by one ND with a large and one with a small stan-
dard deviation. Considering the small sample sizes (∼ 10
data points), this is likely overfitting, but it suits the analysis
of extreme deviations from the gamma distribution. Concep-
tually, these mixtures could represent a sharp separation of
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Figure 14. Performance of the anomaly testing with the posterior distribution of Eq. (23) for synthetic data. Heat flow data (N = 10) have
been generated from gamma distributions with α and β according to the position within the two-dimensional parameter space, and each data
point has been assigned a lateral distance between -80 and 80 km from a vertical fault segment of 14 km depth and 160 km length. Afterwards,
an anomaly with 10 MW according to the model of Eq. (25) has been added to the data, and quantiles of the posterior tail distribution (23)
have been computed. This background color has been computed from 1000 such synthetic data sets. It shows the median of the relative
difference between the 1 % tail quantiles (t.q.) computed from the informed (17) and a flat (p = 1, s = n= ν = 0) prior distribution. A
value below 0 (light-blue color) indicates that the informed prior distribution results in a lower 1 % tail quantile, that is, provides stronger
constraints. Such a point in the (α,β) parameter space is shown in inlay (c), corresponding to the black cross, where we have performed the
analysis for 100 000 synthetic data sets and different N values. A positive background color value in the (α,β) space indicates that the flat
prior distribution imposes a tighter constraint on the anomaly. Such a data point is shown in inlay (b), corresponding to the white cross. In
all points of the parameter space shown here, the median 1 % percentile of both prior distributions is larger than the actual anomaly; i.e. no
underprediction of the anomaly strength occurs. Top left and bottom right white parts of the parameter space are unlikely volumes of the
prior distribution (17) and have not been investigated.

two heat flow regimes within a circle with a radius of 80 km.
To ensure positivity, the mixture PDF is cut at 0 using sample
rejection.

In Fig. 15, we show three mixture distributions that
have been inspired by Kolmogorov–Smirnov-rejected sam-
ples from the RGRDCs of Sect. 4.1.1 (see Figs. S2 to S4 in
the Supplement for the histograms). The distributions have
been selected to sample both previously described types and
to sample a large range of heat flow levels from low (10–
50 mW m−2) to high (50–125 mW m−2) values. For these
three distributions the posterior quantiles of Eq. (23) are eval-

uated for different samples sizes using 1000 Monte Carlo
runs.

To ensure that the method works for all fault powers,
we have performed the analysis for fault powers of 10 and
271 MW (62 kW km−1 and 1.7 MW km−1 power per fault
length, respectively). The maximum power corresponds to a
15 km deep strike-slip fault segment (depth-averaged resist-
ing stress of R̄ ≈ 445 bar according to Lachenbruch and Sass,
1980, for Byerlee friction) of 160 km length at a slip rate of
8 cm yr−1. This slip rate is an upper limit and corresponds
to the fastest known continental shear zone, the Bird’s Head
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region of eastern Indonesia (Stevens et al., 2002), if it were
released on a single fault.

Figure 15 shows the median of the 1 %, 10 %, 50 %, and
90 % tail quantiles across 1000 samples from each distribu-
tion for a selection of sample sizes N between 10 and 100.
With an increasing N , the posterior distribution becomes in-
creasingly concentrated. In the case of the two bimodal distri-
butions, the true anomaly strength PH is captured within the
10 % and 90 % tail quantile for N > 50. For a small N , the
10 % tail quantile is an upper limit on the anomaly strength,
but the 90 % tail quantile (or equivalently 10 % quantile) is
biased to larger values for PH = 10 MW. In the case of the
unimodal distribution with longer tails, the true anomaly is
larger than the range which 10 % to 90 % quantiles converge
to at N = 100; that is, the power of the anomaly is underes-
timated. In all cases, the median 1 % tail quantile is an upper
bound across the investigated size of N ≤ 100.

If the anomaly is strong (1.7 MW km−1), its strength can
generally be well quantified. The median typically follows
the true anomaly strength closer than the width of the 80 %
symmetric quantiles. Even in the exceptional case of distribu-
tion D2 for N→ 100, the 80 % symmetric quantile is close
to the true frictional power.

If the anomaly is weak (62 kW km−1), the posterior dis-
tribution overestimates PH. Especially for 10≤N ≤ 20, the
true anomaly PH is located at or below the 90 % tail quantile.
In the case of D3, the median overestimates PH by a factor
of 10 at N = 10.

So far, the analysis has considered the median across the
synthetic simulation (1000 samples) for each N . This en-
semble view is useful to investigate the bias, but it does not
fully reflect the inference problem on a particular fault. When
considering the median of a tail quantile PH(t) across the
simulated set of samples, PH(t) will be smaller than this
median in 50 % of the cases. For instance, if the 10 % tail
quantile PH(10 %) straddles the strength of the anomaly at
PH = 271 MW for distribution D2, its use would underesti-
mate the anomaly with a 50 % chance if D2 were the true
regional heat flow distribution.

This warrants investigating the relationship between a cho-
sen tail quantile t and the resulting rate r of exceeding the
corresponding power PH(t). Figure 15d, h, and l show the
relation between t and r for the three distributions of D1,
D2, and D3 and for the two powers of 10 and 271 MW.

Depending on the actual power of the anomaly, two dif-
ferent behaviors can be observed. If the anomaly is low, the
rate of exceeding the tail quantile is lower than chosen, r < t .
Especially for D1 and D3, this effect is pronounced when
t . 50 %, where r = 0. This means that within the 1000 syn-
thetic samples, none exceeded the tail quantile. A similar al-
beit less pronounced effect can be seen for D2. Hence, the
small tail quantiles are hence a cautious estimate for a low
PH.

For a large PH, the opposite occurs. At small tail quan-
tiles, r > t and the size of the anomaly is underestimated.

Depending on the distribution, the maximum excess of r at
the 10 % tail quantile (t = 10 %) is 4 % to 18 %. That is,
there are 40 %–180 % more samples than desired in which
the anomaly is underestimated.

The severity of this underestimation can be expressed by
what we call the “bias” B. We define B to be the relative
under- or overestimate of the true power PH at the actual tail
quantile t . Formally, if we express with P̂h(t, i) the power of
the ith sample at the posterior tail quantile t and with P̂h(t)
the t th (smallest) quantile of P̂h(t, i) among the generated
samples, then we define B by

B =
P̂h(t)

PH
− 1 . (29)

The purpose of B is to indicate the bias of P̂h as an estimator
at the true rate of exceedance t . If B is negative, at a chance
t the anomaly power PH is underestimated by a fraction of B
or more. If B is positive, the rate at which PH exceeds P̂h is
actually smaller than t and there is an overestimation of the
power PH by a factor of at least B among the 1− t largest
P̂h(t, i) values (it would be 0 for the “unbiased” B = 0).

For small frictional power, B is positive through nearly
all of the range of t . At t ≈ 10 %, for instance, we find
B = 40 %–610 % for PH = 10 MW. At a large PH value, B
is negative and ranges from −4 % to −9 %. Conclusively,
there is a substantial margin for the quantification of small
anomalies and a small underestimation for large anomalies.

The two effects also occur for a purely gamma-distributed
heat flow sample, although they are less pronounced in un-
derestimating a large PH (in Fig. 16b, we find a maximum
of 5 % underestimation at the 10 % tail quantile within the
gamma distribution parameter space shown in Fig. 6).

To conclude, the tests yield posterior support for our
gamma model choice. The results derived from the three nor-
mal mixture distributions indicate that the frictional power
generating a heat flow anomaly can be constrained even if the
regional aggregate heat flow is not gamma distributed. Small
tail quantiles (e.g., 1 % or 10 %) are typically larger than ac-
tual power PH. If PH is small, the small tail quantiles have a
large margin to the actual power. This behavior occurs also
for gamma-distributed aggregate heat flow so that it is likely
an effect of the large ratio of heat flow standard deviation to
anomaly amplitude. If the frictional power is small, the small
tail quantiles might underestimate PH, but the amount of this
underestimation is relatively small.

Whether the posterior distribution can be used to quantify
the heat flow anomaly further than giving an upper bound on
its generating power depends on its amplitude and the sample
size. If the frictional power is large compared to the fluctu-
ation in the aggregate heat flow distribution – where in our
setting an example of “large” is the 271 MW anomaly – the
REHEATFUNQ model can quantify the heat flow anomaly
throughout the sample size range of 10–100. The posterior
distribution’s median is meaningful, and the posterior distri-
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Figure 15. Resilience of the posterior distribution of Eq. (23) to violations of the gamma model hypothesis. We investigate how well
REHEATFUNQ can quantify heat flow anomalies if the undisturbed regional aggregate heat flow follows a probability distribution that
deviates from the gamma model. (a, e, i) Each graph shows the Gaussian mixture models D1 to D3 of that row (µ denotes mean, σ means
standard deviation, and w means the weight of the mixture component). (b, f, j) Each graph shows quantiles of the posterior distribution
given the synthetic regional PDF of the same row and a synthetic anomaly as in Fig. 13 with 10 MW of power over a fault length of 160 km
(14 km depth). The anomaly profile follows Eq. (25). The quantiles are the median over a set of 1000 samples for each N . (c, g, k) The same
for a 271 MW anomaly. (d, h, l) For N = 24, the chosen tail quantile t is plotted against the rate r at which PH(t) exceeds the true power
PH of the anomaly within the 1000 samples. The r = t correspondence is indicated as a solid line; the 10 % tail quantile is a dashed line.
The marker fill color, corresponding to the color bar, indicates the difference in the t quantile (across the 1000 samples) of PH(t) relative to
the true power, that is, the bias at the actual exceedance rate t when using PH(t). Negative values show that the anomaly is underestimated;
positive values show that it is overestimated.

bution’s 80 % centered quantile clearly separates from 0. If
the frictional power is small compared to the fluctuations –
here 10 MW – the posterior distribution’s central quantiles
lose their significance as best estimates and overestimate in-
stead. This indicates that the bulk of the posterior distribution
can be used as a confident estimate of the frictional power
only if the heat flow anomaly is large compared to the heat
flow variability or if the sample size is exceptionally large.
Biases due to a differing distribution seem to have a relevant

impact on this conclusion only at unrealistically large sample
sizes (∼ 100 and beyond).

4.3 Physical limitations

Besides the statistical limitations discussed above, we dis-
cuss two physical limitations of the REHEATFUNQ model.
One concerns both the regional aggregate heat flow distri-
bution and the anomaly quantification, while the second is
relevant only to the quantification of heat flow anomalies.
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Figure 16. Bias B of the 10 % tail quantile for different gamma-distributed regional aggregate heat flow distributions. The bias (Eq. 29)
quantifies how much the location P̂h(t) of the tail quantiles of the posterior distribution f (PH), Eq. (23), interpreted as a frequentist ex-
ceedance interval, under- or overestimates the true anomaly power PH at the ensemble’s 10 % quantile of P̂h(t). A negative value indicates
that the anomaly is underestimated by at least that amount in 10 % of 1000 generated samples. A positive value indicates that the anomaly is
overestimated at the 10 % quantile of P̂h(t) and that the smallest estimate of PH in that quantile is larger than PH by the given amount of B.
A value of B = 0 indicates that the tail quantile coincides with the rate-t exceedance interval of the ensemble.

4.3.1 Regional aggregate heat flow distributions

The first limitation that affects both the inference of regional
aggregate heat flow distributions and the quantification of
heat flow anomalies is if the fluctuations are mostly due
to random sampling of a spatially varying heat flow field
(Fig. 2). The limitation is that the precision of the results
cannot be arbitrarily increased by increasing the number of
measurements (or at least this would not be obvious). As
more and more measurements are taken, the full spatial vari-
ability will eventually be explored. In combination with the
researchers’ spatial measurement strategy, which will likely
be systematic rather than random, all sources of “random-
ness” in the stochastic model of regional heat flow variability
would eventually be exhausted. This limit is particularly im-
portant for the anomaly quantification, where at some point
– read number of measurements – the ability to quantify an
anomaly will be limited by the ability to disentangle a fixed
spatial signal and not by a limited number of data.

The solution to these limitations is straightforward: first,
given that the fluctuations were mainly due to a randomly
sampled spatial field and a large number of heat flow mea-
surements were available, this field should be clearly dis-
tinguishable in the point cloud of heat flow measurements
(imagine adding 10 times more data points to Fig. 2). Hence
the effect would not be a hidden effect. To account for the
spatially varying field, geophysical modeling of the heat gen-
eration and transport can then help to detrend the data. This
latter part can of course also help reduce the uncertainty if
there are only few data points (see, e.g., Fulton et al., 2004).

4.3.2 Anomaly quantification

In Sect. 3.1, we have listed a number of possible origins of
the regional fluctuation in surface heat flow. While the dis-
tinction between these origins is not relevant for the deriva-
tion of a regional aggregate heat flow distribution, it is im-
portant for the quantification of heat flow anomalies. In par-
ticular, it is important whether the heat flow fluctuations are
due to inhomogeneous heat sources or transport that differs
from homogeneous conduction. In nature, both effects can be
relevant (e.g., Norden et al., 2020).

If the origin of the heat flow fluctuations is the heat source
distribution, heat flow anomalies are truly independent from
the stochastic process. This is the setting in which the ana-
lytical solutions to the heat flow problem based on simplified
assumptions (e.g., Brune et al., 1969; Lachenbruch and Sass,
1980), including Eq. (25), can be applied.

If the origin of the heat flow fluctuations is, even partly,
due to the heat transport, the separation of the heat flow
anomaly from the regional fluctuations is not possible with-
out taking this transport into account. Figure 17 illustrates
this with the synthetic example of heat conduction from a
buried strike-slip fault. The same spatially fluctuating heat
flow field of panel c is generated by varying conduction in
panel a and by varying thermal power density in panel b.
While the undisturbed heat flow is the same in both con-
figurations, the surface heat flow anomaly that is generated
by the buried strike-slip fault differs considerably in panel d.
While in the case of homogeneous conductivity the resulting
anomaly resembles the analytical solution by Lachenbruch
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and Sass (1980, Eq. A22b), the anomaly is asymmetrically
distorted by the inhomogeneous heat conduction. To infer
the fault-generating power in the case of panel a, the heat
conductivity field κ(x) needs to be known.

This is an application paradox: to separate a heat flow
anomaly from fluctuations that are caused by the transport
process, one would need detailed knowledge about this pro-
cess – which in turn renders modeling the fluctuations by
stochastic means unnecessary. The answer to this paradox
is that the application of REHEATFUNQ requires that the
heat transport equation is sufficiently known in the region of
interest and thereafter allows for the separation of heat flow
anomalies from the surface heat flow due to an unknown heat
source distribution.

5 Example: San Andreas fault

To demonstrate the REHEATFUNQ model, we apply it to
the San Andreas fault (SAF) system in California. The SAF
has a history of research regarding fault-generated heat flow
in context of the discussion of whether the fault is friction-
ally weak or strong (Brune et al., 1969; Lachenbruch and
Sass, 1980; Scholz, 2006). The argument brought forward
by Brune et al. (1969) and refined by Lachenbruch and Sass
(1980) starts with a comparison of the fault-lateral plot of
a fault-generated surface heat flow anomaly with heat flow
measurements close to the fault (up to ∼ 20–100 km dis-
tance). The lack of such an anomaly visible in the data is
then used to derive an upper bound on the strength of the
heat flow anomaly, that is, the frictional resistance at a given
long-term fault slip rate. Visual inspection of the anomaly
heat flow graphs are used to define a fuzzy upper bound on
the frictional resistance above which the generated anomaly
seems unlikely drawn against the data.

This discussion sparked the development of the REHEAT-
FUNQ model; hence our work aims to contribute to the anal-
ysis. REHEATFUNQ aims to explore the fluctuation using
a stochastic ansatz. The existence of a stochastic process
might have a considerable impact on the analysis since the
number of heat flow data in each of the regions investigated
by Lachenbruch and Sass (1980) is rather small (6–19) and
the fluctuations are on the order of the heat flow anomaly
magnitudes. Furthermore, REHEATFUNQ aims to quantify
the fuzziness of the assessment of which heat flow anomaly
strengths are compatible with the data by means of the pos-
terior distribution f (PH) of Eq. (23).

5.1 Regional aggregate heat flow

Figure 18 maps the regions investigated in this section, which
we denote by Mojave, Carrizo, Creeping, and North Coast.
The four regions can be understood as four distinct sections
of the SAF. There are 49 (Mojave), 51 (Carrizo), 8 (Creep-
ing), and 36 (North Coast) data points within the four sec-

tions. Figure 19 shows close-ups of the four regions. Therein,
heat flow data clusters can be seen, and a number of data
point pairs that violate the minimum-distance criterion can
be identified. The range of heat flow varies across the four
regions.

Figure 20 shows the posterior predictive distributions of
regional aggregate heat flow for the four regions. The Mo-
jave section in panels a and b is an example of a region that
has a rather uniform data distribution and sufficient data to
cover the regional aggregate distribution. The empirical CDF
(eCDF) for all aggregate data within the region runs close to
the center of the set of its random subsets that follow from en-
forcing the dmin = 20 km minimum-distance criterion to pre-
vent the pairwise clustering visible in Fig. 19a. Even though
this reduces the density of points, the regional aggregate dis-
tribution is not significantly impacted by the thinning. This
shows in the posterior predictive CDF in Fig. 20a and PDF
in panel b. In both cases, the posterior predictive distribution
closely follows the initial regional aggregate distribution.

In the Carrizo section, the effect of spatial clustering and
conversely of the exclusive treatment of the clusters’ mem-
bers stands out. The region contains a slightly larger number
of data points (51), but the dmin-enforced eCDFs in panel c
are more coarsely stepped than in the case of the Mojave sec-
tion (panel a). The cause becomes evident in Fig. 19b, which
shows that the data are concentrated mostly in two clusters,
one covering the fault trace and one southwest of it. Only
a few data points of each cluster are contained in each sub-
set. Note that the two clusters are comprised mostly of high
heat flow with respect to the remaining data points. As a re-
sult, the subsets’ eCDFs and consequently the combined pos-
terior predictive distribution are concentrated at lower heat
flow compared to the initial regional aggregate distribution.
Besides this thinning effect, the posterior predictive PDF in
Fig. 20d seems to be the average of a number of subset pre-
dictive PDFs that cover a well-dispersed configuration space.

This is in contrast with the remaining two regions. The
Creeping region, in panels e and f, contains only eight data
points. Four of these data points, clustered across the fault
trace, are pairwise within dmin. In particular, all four points
are within 20 km of the data point closest to the fault. If
this data point is contained in the subset, the remaining
three largest heat flow measurements are excluded. Since
the largest (pairwise exclusive) heat flow measurements are
equal, this leads to only two distinct eCDFs in panel e and
posterior predictive PDFs in panel f, both of which are con-
trolled only by the selection of a single data point.

A similar effect occurs in the North Coast region, in pan-
els g and h, with more data points (36). Many heat flow mea-
surements are scattered around The Geysers geothermal field
(see the location of the Sonoma power plant in Fig. 19). As a
result, many of these points are pairwise exclusive under the
dmin criterion. While most of the data in that cluster are at the
upper end of the range within the region (> 80 mW m−2), the
lowest data point of the region (8.4 mW m−2) lies at the edge
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Figure 17. Two groups of heat flow fluctuation causes. Panels (a) and (b) illustrate heat flow fluctuations on the basis of inhomogeneous
conductivity κ and by varying volumetric heat production. Both (a) and (b) are driven by a line heat source of constant temperature at 80 km
depth (leading to an average upward heat flow of 68.3 and 40 mW m−2 at κ = 2.5 W m−1 K−1, respectively) and have a T = 0 boundary
condition at the surface. The additional heat sources in (b) are fit to match the surface heat flow in (a) (panel c shows the surface heat flow of
both models). While both the varying conductivity and production can lead to similar fluctuations in surface heat flow, only the heterogeneous
conductivity κ , panel (a), influences the anomaly, panel (d), generated by a buried strike slip fault (frictional power of 0.98 MW km−1). If
fluctuations are due to inhomogeneous sources, the heat flow anomaly is independent of the fluctuations. The thermal conductivity in panel (a)
is varied within bounds similar to what Harlé et al. (2019) found for the Upper Rhine Graben (1–4 W m−1 K−1), and the heat production in
panel (b) is varied within a range compatible with what Jaupart and Mareschal (2005) list for the Australian cratons (0–8 µWm−3).

of the cluster (see Fig. 19d). This particular data point has
significant control over the aggregate heat flow distribution:
the two distinct shapes around which the set of subset poste-
rior predictive distributions scatter in Fig. 20h correspond to
the subsets in which the 8.4 mW m−2 data point is included
or not. Furthermore, two to three spatial clusters in Fig. 19d
(The Geysers subset, the data close to the south end of the
fault trace, and the data beyond the 10−12 m−2 contour) lead
to distinct modes in the histogram in Fig. 20h.

5.2 Heat flow anomaly

Given the heat flow data from the previous section and the
REHEATFUNQ gamma model, we can now investigate the
strength of fault-generated heat flow anomalies originating
from the SAF segments within the four regions. We assume
a conductive mode of heat transfer and use the analytical
model of Lachenbruch and Sass (1980) given in Eq. (25),
parameterized by the distance to the closest point on the fault
segment. We then use the parameterization of Eq. (26) to ex-
press the anomaly as a function of total frictional power PH
within the four regions. The depths of the fault segments are
taken from the UCERF3 model (Milner, 2014). The resulting

unit scaled factors ci are shown in Fig. 19. This concludes
step 4 of the workflow listed in Appendix A.

The resulting posterior distributions f (PH) of the fric-
tional power PH are shown in Fig. 21 (step 5 of the work-
flow in Appendix A). They reflect features that we have dis-
cussed for the posterior predictive distributions ψ(PH) in the
previous section. As before, the Mojave section (panel a)
features the clearest results. We have marked the frictional
power of the “reference anomaly” of Lachenbruch and Sass
(1980) (0.92 MW km−2, leading to a total power of 146 MW
over the fault segment), and we can confirm that this refer-
ence anomaly is unlikely. The REHEATFUNQ model yields
less than 10 % posterior probability of anomalies of similar
or larger frictional power. If one were to use the 10 % tail
quantile as an upper bound on the fault’s frictional power, the
upper bound would be 111 MW corresponding to 0.77 “heat
flow units” of Lachenbruch and Sass (1980). The best esti-
mate of Lachenbruch and Sass (1980), 10 % of the reference
anomaly corresponding to 14.6 MW, is within the bulk of the
posterior mass. Under the premise of a stochastic interpreta-
tion of the heat flow data, the best estimate of Lachenbruch
and Sass (1980) cannot reliably be distinguished from larger
bounds within a factor of 8.
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Figure 18. Map of the regions investigated in Sect. 5. Heat flow
data are from Lucazeau (2019), filtered as described in Sect. 2.1.
The San Andreas fault trace is from Milner (2014).

In the Carrizo section (Fig. 21b), the existence or non-
existence of a finite heat flow anomaly is less clear. The PDF
has a finite mode between 50 and 100 MW that could indi-
cate the existence of a heat flow anomaly, but the curve is not
well-separated from 0. The origin of this peak becomes clear
in Fig. 19b. On the one hand there is a high heat flow cluster
just next to the north end of the fault segment compared to the
northeastern part of the region, which could support the exis-
tence of an anomaly. On the other hand, the cluster south of
the fault trace consists of similarly or exceedingly high heat
flow, adding the ambiguity that the northern cluster could be
due to the generally large range of heat flow from north to
south. Hence, the existence of an anomaly is an option, but
equally plausible is the overlay of an independent regional
trend, for instance the Coast Ranges–Great Valley transition
that Williams et al. (2004) modeled near Parkfield. More
geophysical analysis would have to be performed to disen-
tangle the posterior distribution for, say, PH < 175 MW (the
10 % tail quantile in Fig. 21b). Only the reference anomaly
of Lachenbruch and Sass (1980) seems to be a large enough
effect that it could be considered unlikely as is, being close
to the 10 % tail quantile.

As before, the results for the Creeping and North Coast
sections are of limited significance due to the data and ge-
ologic situation. In the Creeping section (Fig. 21c), there is
one dominant mode at about 200 MW, but there is a long tail,
with a few percent probability, up to about 1500 MW. The
origin of this tail becomes clear when looking at the loga-

rithm of the PDF (inset): the selection of data points from
the cluster of four data points close to the fault trace leads
to three separated peaks in the with modes at roughly 200,
500, and 1500 MW. While the mass associated with the two
higher peaks is small, this example highlights that the identi-
fication of the frictional power PH from very small data sets
is aggravated by the dependency on individual data points. In
this region, our data filtering has a profound effect (we retain
8 data points of the NGHF, while d’Alessio et al., 2006, for
instance, use 49 data points) so that a detailed quality anal-
ysis of the data set is warranted for further refinement of the
analysis.

In the North Coast section, the posterior distribution has a
peak at roughly 300 MW. This is likely due to the generally
higher heat flow close to the fault compared to the north-
eastern end of the region. The peak is broad, however, and
a 90 % credibility interval surrounding the peak is not much
smaller than 90 % of PH domain (e.g., 325 MW from about
10 to 425 MW versus 450 MW). The reference anomaly is a
bit below to the posterior distribution’s median.

The fairly sharp separation into two regions parallel and
north to the fault, one with high and one with low heat
flow, has already been discussed by Lachenbruch and Sass
(1980). They have proposed that the increased heat flow
within 100 km of the fault trace might be due to a combina-
tion of an interaction with the subducting plate and frictional
heating within the fault systems surrounding the SAF. This
scenario is plausible within the data and highlights that the
North Coast region is an example of a region where further
geothermal modeling is required before REHEATFUNQ can
separate the heat flow anomaly from the regional background
heat flow.

In this section, we have used the expression given in
Eq. (25) to model all heat flow anomalies. This allowed us to
infer the uncertainty inherent to the anomaly quantification
due to stochasticity in the heat flow data. What we have not
captured in this simple analysis is the uncertainty in the heat
flow anomaly itself. For instance in the case of the Creep-
ing section, a localized creeping asperity and particular rock
composition might cause an anisotropic heat flow anomaly
(Brune, 2002; d’Alessio et al., 2006).

6 Conclusions

This study presented the REHEATFUNQ model for regional
aggregate heat flow distributions and the quantification of
heat flow anomalies. The REHEATFUNQ model is a new
approach to the analysis of regional heat flow that aggregates
the data into a single heat flow distribution that is agnostic
to the spatial component of the data. Heat flow data are in-
terpreted as the result of a stochastic process characteristic to
the region. As a result, REHEATFUNQ treats the variability
in heat flow measurements on short spatial scales by design
and uses Bayesian inference both to estimate the regional ag-
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Figure 19. Closeups of the four regions of Fig. 18 and heat flow data within. The gray contour lines show the spatial heat flow field obtained
by parameterizing the heat flow anomaly of Eq. (25) by the distance to the closest point on the fault trace.

gregate heat flow distribution and to quantify the frictional
power that generates a potential heat flow anomaly super-
posed on the regional heat flow. Thereby, REHEATFUNQ
can quantify the uncertainty in estimating fault-generated
heat flow anomalies from heat flow measurements.

REHEATFUNQ is an empirical model and uses the
gamma distribution to model regional aggregate heat flow.
Our goodness-of-fit analysis shows that the gamma distribu-
tion is not a perfect model. Yet, it is optimal in the sense that
among other similarly simple probability distributions, none
is clearly favorable to the gamma distribution. Furthermore,
we have tested how resilient the heat flow anomaly quantifi-
cation of REHEATFUNQ is to extreme deviations from the
gamma distribution hypothesis inspired by real-world data.
Our results show that REHEATFUNQ is successful in deter-
mining upper bounds on the strength of fault-generated heat
flow anomalies under these conditions and that it can fairly
well quantify the strength of an anomaly if the heat flow data
set and the power of the anomaly are sufficiently large. We
have found no indication that these results depend signifi-
cantly on the region size up to a circumradius of 260 km.

In this article, we focused on the analysis of the heat flow
anomaly generated by a vertical fault in a homogeneous half
space (Lachenbruch and Sass, 1980), which is implemented
in REHEATFUNQ. Other heat flow anomalies, obtained for
instance from numerical methods, can easily be used by pro-
viding scale coefficients at the data locations. This might be
especially important for complex fault geometries, in the case
of inhomogeneous thermal conductivity or in the presence of
convection.

An application of the REHEATFUNQ model to the San
Andreas fault in California highlights that a stochastic in-
terpretation of the heat flow data can significantly relax the
upper bound for a fault-generated heat flow anomaly derived
by Lachenbruch and Sass (1980). Their best estimate has an
amplitude that is low enough such that random fluctuations
might have hidden the anomaly. The stochastic approach un-
derlying REHEATFUNQ is hence worth attention, and RE-
HEATFUNQ can be a valuable tool for the analysis of re-
gional heat flow values.

The reduction in regional heat flow variability through the
correction of modeled geothermal patterns and a standard-
ized heat flow data processing, including for instance the

Geosci. Model Dev., 17, 2783–2828, 2024 https://doi.org/10.5194/gmd-17-2783-2024



M. J. Ziebarth and S. von Specht: REHEATFUNQ 2.0.1 2811

Figure 20. Posterior predictive distribution of regional aggregate heat flow for the four regions surrounding the SAF in Fig. 19. The left
column, panels (a), (c), (e), and (g), shows the cumulative distribution of regional aggregate heat flow data from the NGHF within the region,
denoted “eCDF (all data)”. The spatial distribution of these data is shown in Figs. 18 and 19. Since some data pairs are within 20 km of each
other, the dmin sampling approach leads to the set of curves denoted “eCDFs (dmin enforced)”. The resulting posterior predictive CDF is
shown as a dashed line. The right column, panels (b), (d), (f), and (h), shows the densities corresponding to the cumulative distributions of
the left column. For each of the eCDFs with dmin enforced, the posterior predictive distribution of that data subset is shown. The results, in
particular the differences between the histograms and the posterior predictive distribution estimates due to the distance criterion, are discussed
in Sect. 5.1.

removal of topographic effects, may be the most promis-
ing path forward to reduce the uncertainties in the heat flow
anomaly quantification. While Fig. 22 indicates that a reduc-
tion in heat flow variability leads to a proportional reduction
in anomaly quantification uncertainty, the uncertainty reduc-

tion with an increased sample size scales sublinearly and re-
quires orders of magnitude more (expensive) heat flow data
than available today. Steps that can lead to such a reduction
in heat flow variability are the unified correction for topo-
graphic effects as performed by Fulton et al. (2004) and de-
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Figure 21. Posterior distributions of the frictional power PH from the analysis of heat flow anomalies surrounding the fault segments in
Fig. 19. The heat flow data and heat flow anomaly signature {ci} used in the computation of the posterior distributions following Eq. (23) are
also shown in Fig. 19. LS1980: Lachenbruch and Sass (1980).

Figure 22. Anomaly quantification uncertainty reduction by decreasing heat flow data variance and increasing sample sizes. Panel (a) shows
the synthetic regional aggregate heat flow distribution we start from. The gamma distribution has a mean of 75 mW m−2 and standard
deviation of 20 mW m−2, which are similar to the posterior predictive distributions in the Mojave section (Fig. 20b). Panels (b) and (c) show
the results of quantifying a fault-generated heat flow anomaly superposed on synthetic gamma-distributed regional aggregate heat flow
distributions (the fault configuration is the same as that of Fig. 13 with a depth of d = 14 km). In panel (b), the standard deviation of the
distribution in (a) is reduced while keeping the mean and the sample size of N = 20 constant. This could, for instance, be achieved by
removing spatial trends through modeling. In panel (c), the standard deviation is kept constant while the sample size is increased. In both
panels (b) and (c), the minimum-distance criterion is not enforced.
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trending based on geothermal modeling (e.g., Cacace et al.,
2013). An important aspect might also be the determination
of boundaries between regions of (nearly) uniform heat flow
characteristics. Our empirical analysis has shown that the
mixture of two aggregate heat flow distributions, possibly re-
sulting from the boundary between two such regions, is suf-
ficient to explain the empirical mismatch of the gamma dis-
tribution model. Finally, the work of the International Heat
Flow Commission to update the Global Heat Flow Database
(Fuchs et al., 2021) might lead to a reduction in heat flow
variability.

Appendix A: Workflow cheat sheet

Here we provide a short synopsis of a typical workflow that
uses the REHEATFUNQ Python package (reheatfunq)
to analyze regional aggregate heat flow and quantify the
power of an underground heat source with a known surface
heat flow pattern. Figure 8 accompanies this synopsis and il-
lustrates important steps.

The workflow assumes that a region of interest (ROI) and a
set of heat flow data available therein are given. Furthermore,
the subject of the analysis is an underground heat source (the
unknown heat source) whose surface heat flow pattern qa(x)

(the heat flow anomaly) can be computed but whose power
PH is unknown and should be inferred.

1. Filter the heat flow data. For instance, this might include
the removal of any known unreliable measurements or
known outliers.

2. Choose a minimum-distance parameter dmin. This pa-
rameter aims to reduce the impact of spatial data clus-
ters by considering heat flow data as potentially depen-
dent if they are located closer than dmin. In this article,
we use dmin = 20 km (see Sect. 3.2).

3. Remove any known spatial heat flow pattern from the
heat flow data. This might include not only topographic
effects (e.g., Fulton et al., 2004) but also the surface heat
flow generated by a known underground heat source.

4. Compute the coefficients {ci} that specify how much
surface heat flow is generated at the heat flow data lo-
cations {xi} by the unknown heat source per power PH.
This might be done by computing the surface heat flow
anomaly qa(xi) at the locations of the heat flow mea-
surements {qi} for an arbitrary power PH and dividing
the result by that power (ci = qa(xi)/PH). Any external
method can be used to solve the conduction–advection
equation for the problem at hand (heat source distri-
bution and boundary conditions) as long as qa(x) can
be evaluated at the heat flow data locations and PH
is known. The AnomalyNearestNeighbor class
can be used to provide the coefficients ci to the
REHEATFUNQ model. The REHEATFUNQ package

provides furthermore the solution (A23b) of Lachen-
bruch and Sass (1980) for an infinitely long, surface-
rupturing straight strike-slip fault in a homogeneous
half space (AnomalyLS1980). Figure 8a shows how
this anomaly may look compared to some artificial heat
flow data.

5. Evaluate the posterior distribution of the un-
known heat source’s power PH. Use the
HeatFlowAnomalyPosterior class to com-
pute the posterior PDF, CDF, complementary CDF
(“tail distribution”), and tail quantiles of the power PH.
Figure 8c shows what the posterior PDF looks like
for the example in Fig. 8a: the heat flow anomaly was
successfully assessed, but due to the scatter in the data,
the result is uncertain.

Code examples can be found in the documentation shipped
with the REHEATFUNQ source code (Ziebarth, 2023) and
online at https://mjziebarth.github.io/REHEATFUNQ/ (last
access: 25 March 2024). All analysis performed in this arti-
cle can be reproduced using the Jupyter Notebooks (Kluyver
et al., 2016) provided with the source code.

Appendix B: Random global R-disk coverings

In the analyses, we frequently make use of random global R-
disk coverings (RGRDCs). The RGRDC is an algorithm to
generate a set of many regional aggregate heat flow distribu-
tions from the NGHF data set by means of random sampling.
The algorithm allows us to capture the typical variability in
heat flow within the global database. Control over the radius
R allows us to investigate the global data set over various
spatial scales.

In the RGRDCs, disks are randomly distributed across
Earth’s surface to asymptotically capture the detail of the in-
homogeneous data set. Within each disk, data from the fil-
tered NGHF are selected and form one regional aggregate
heat flow distribution. In detail, the algorithm proceeds as
follows.

1. Filter the NGHF according to general criteria. All re-
maining points are unmarked.

2. Draw 100 000 random points {pi} from a spherical uni-
form distribution.

3. Perform the following for each of them.

(a) Collect the set {xi} of NGHF data points within a
distanceR of pi . If any of them are marked, discard
pi and continue with pi+1.

(b) Ensure a minimum distance dmin between the {xi}
to prevent biases from spatial measurement clus-
ters (see Sect. 3.2). From violating data point pairs,
keep one data point at random until the criterion is
fulfilled for all remaining {xi} values.
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(c) If the number of remaining {xi} is larger than 10,
retain the disk centered on pi . The remaining {xi}
are the corresponding regional heat flow sample
and are marked.

4. Repeat from step 1 M times to obtain M coverings.

Figure 1a shows the location of the R disks (R = 80 km) that
have been determined for later use in Sect. 3.3.2.

B1 Synthetic random global R-disk coverings

To understand how well our gamma distribution model of
regional heat flow can describe the data from the RGRDCs
obtained from the NGHF database, we generate synthetic
coverings from the gamma distribution model and compare
statistics of the NGHF coverings with those of the synthetic
coverings. To be able to do so, the synthetic coverings need
to replicate the sample size structure and the heat flow distri-
bution of the NGHF data coverings. Furthermore, the same
data filtering needs to be applied. To this end, we use the fol-
lowing algorithm to generate M synthetic RGRDCs.

1. Generate a set X = {X1, . . .,Xn} of random global R-
disk coverings Xi = {Qi

1, . . .,Q
i
m(i)} from the NGHF

database (see Appendix B).

2. For each heat flow distribution Qi
j = {q1, . . .,ql(i,j)},

compute the gamma distribution maximum likelihood
parameters (kij ,θij ).

3. Repeat the following M times.

(a) Select a random NGHF covering Xi .
(b) For each heat flow distribution Qi

j within Xi , pro-
ceed as follows.
i. Generate a heat flow sample of at least l(i,j)

data points. Draw these heat flow values from a
gamma distributions with parameters (kij ,θij ).

ii. For each heat flow value from the sample, draw
a random standard deviation σ from the relative
error distribution (Fig. 9). From a central nor-
mal distribution with that σ , draw a random rel-
ative error. Distort the corresponding heat flow
value by this relative error.

iii. Round all heat flow values from the sample to
integers.

iv. Remove all negative heat flow values and all
those larger than 250 mW m−2.

v. If less than l(i,j) data points remain, repeat.
Otherwise the first l(i,j) accepted heat flow
values will form the j th heat flow distribution
within the current synthetic covering.

(c) The generated synthetic covering will match the
sample sizes of Xi and have, within the bounds im-
posed by the gamma distribution and the additional
effects, a similar heat flow distribution.

Appendix C: Points-of-interest measurement model

This section considers a toy model that aims to mimic a
data acquisition process in which few explorative measure-
ments are joined by many dependent measurements that fo-
cus on the vicinity of particularly interesting previous mea-
surements. We call these previous measurements “points of
interest” (POIs). One might imagine that they represent a
geothermal or oil field in which, after its discovery, many
data points scatter in close proximity.

The POI model consists of an algorithm that distributes a
desired number of sampling points {xk} on a rectangular spa-
tial domain. Synthetic heat flow measurements are generated
for these points by querying a pre-generated spatial heat flow
field q(x) on the spatial domain. This heat flow field q(x)
is represented by a raster filled with values qij which are in
turn drawn from a gamma distribution. Hence, if the points
xk were uniformly distributed, the resulting heat flow sample
would follow a gamma distribution (up to discretization ef-
fects of the finite raster). With the POI spatial sampling, this
is not the case.

The POI sampling algorithm, illustrated in Fig. C1a, pro-
ceeds as follows.

1. Generate a rasterized heat flow field q(x) by drawing
i.i.d. random values from a gamma distribution for each
point of the raster.

2. Iteratively flip random pixel pairs of the heat flow raster
qij if the flip reduces the variance in the local neighbor-
hoods of the both pixels. This smoothens the field while
retaining its aggregate gamma distribution.

3. Generate a first POI from a uniform distribution across
the spatial domain.

4. Sequentially for each of the remaining N − 1 requested
points, choose one of the following actions.

(a) With probability PPOI, generate a new POI.

(b) With probability Pf, generate a follow-up point.
Choose one of the existing POIs at random and
place the follow-up point within a square of side
length R of the selected POI.

(c) With remaining probability, generate a non-POI
point uniformly in the spatial domain.

5. For each of the generated points, determine the mea-
sured heat flow value from the heat flow field q(x).

The general idea of this clustered point sampling is reflected
in the assumptions made in the formulation of the REHEAT-
FUNQ likelihood in Sect. 3.3.1. In the POI sampling, the de-
pendent sampling points that attach to a POI lead to corre-
lations in the aggregate heat flow distribution (see Fig. C1b)
due to the spatial correlation of the underlying heat flow field.
One point of the cluster – the POI – is spatially independent

Geosci. Model Dev., 17, 2783–2828, 2024 https://doi.org/10.5194/gmd-17-2783-2024



M. J. Ziebarth and S. von Specht: REHEATFUNQ 2.0.1 2815

Figure C1. The point-of-interest (POI) sampling algorithm to generate heat flow data sets with spatial clustering described in Appendix C.
(a) The algorithm generated 100 random sampling points. Each point had a 20 % chance of becoming a POI (squares) and being randomly
distributed over the square. At 70 % probability, a new point would be dependent and generated within an 8 km square surrounding a previous
POI (triangles). At 10 %, the point would be randomly distributed but not of interest (circles). The coloring of the markers and the dashed
circles surrounding some points illustrates the dmin sampling: only the filled black markers are used for the analysis in this particular sample,
ignoring all data points within the dmin disks surrounding them. Panels (b) and (c) show the impact that the POI point generation and the
dmin sampling have on the aggregate heat flow distribution. Panel (b) shows the empirical cumulative distribution function (eCDF) of the
full data set as well as the CDF of the corresponding gamma distribution maximum likelihood estimate (MLE). Panel (c) shows the same for
only the selected data points of panel (a). Deviations of the eCDF from the CDF in panel (a) due to the clustered sample points (steep slopes
in the eCDF) are successfully removed in panel (c).

and leads to a random gamma-distributed heat flow measure-
ment. Assumption II of Sect. 3.3.1 takes this into account
by using only one data point of a cluster identified by the
dmin disk at the same time. Assumption III then acknowl-
edges that each point of the cluster is equally likely to be the
independent, and the summation over all possible choices for
independent points (latent parameter j ) ensures that no data
point is left behind.

In Fig. C1c, we can indeed observe that the enforcement
of dmin results in more gamma-like samples compared to the
full data set (panel b). We have furthermore observed from
Monte Carlo simulations of the POI sampling that the likeli-
hood approach in Eq. (5) leads to more accurate recovery of
the true regional aggregate heat flow distribution (Fig. C2)
and reduces bias in the estimation of heat flow anomalies
(Fig. C3) when compared to using all heat flow data in the
presence of spatial clustering.
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Figure C2. Improvement of the gamma distribution likeness of heat flow samples generated by the point-of-interest (POI) sampling method
(Appendix C) when using the minimum-distance sampling. Each panel shows the distribution of the Anderson–Darling statisticA2 (Stephens,
1986) for the gamma distribution, a measure of how well the sample matches the gamma distribution (less being a better match). The filled
histograms labeled “i.i.d.” show the distribution ofA2 that follows from independent and identically distributed gamma random variables with
α = 10. The histograms marked by the dark-blue line show the distribution of A2 generated from the POI sampling method with a gamma
landscape generated for α = 10 (shown in Fig. C1) and with PPOI = 20%, Pf = 70%, and R = 8km. The minimum-distance criterion has
then been applied with the dmin specified in the panel titles. The good match between both distributions in panel (c) shows that an accurately
chosen dmin can counter the spatial clustering effect of the POI sampling model. If dmin is chosen to be too small, the clustering is not
effectively countered and a large A2 compared to the i.i.d. histograms indicates significant departures from the gamma distribution. If dmin
is chosen to be too large, the heat flow data generated from the POI model show less difference to the gamma distribution CDF than the
actual i.i.d. gamma random variable. This is due to the minimum-distance criterion removing too many clusters, that is, also those clusters
that naturally appear for uniform random variables.

Figure C3. Improvement of the accuracy of the posterior PH estimates for point-of-interest-generated (POI-generated) data as the minimum-
distance sampling is enforced. Both panels analyze data generated from 1000 POI sampling runs with PPOI = 12%, Pf = 80%, R = 5km,
and the gamma-distributed field in Fig. C1. The sample size is N = 50, and dmin is 5 km. Panel (a) shows how the relative deviation of the
PH posterior distribution’s median from the true PH is distributed across the 1000 POI runs. For each run, the PH posterior distribution is
evaluated on all data (dmin = 0) and with the minimum distance enforced (dmin = 5km). Using the minimum-distance criterion improves the
accuracy of the median estimator. Panel (b) shows the same for the posterior mean PH. Similarly, the use of the minimum-distance criterion
reduces bias.
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Appendix D: Expressions for numerical quadrature

D1 Gamma conjugate prior distribution

The normalization constant8 of Eq. (9) requires one numer-
ical quadrature for the evaluation of the α integral. To this
end, we first compute the location of the integrand’s maxi-
mum αmax using an approximation based on Stirling’s for-
mula,

α0 = exp
(

lnp− νs+ ν lnν
n− ν

)
, (D1)

followed by a Newton–Raphson refinement. Integration is
then performed in the intervals [αmin,αmax] and [αmax,∞[
using tanh-sinh and exp-sinh quadrature, respectively (Taka-
hasi and Mori, 1974; Tanaka et al., 2009). To prevent the in-
tegrand from overflowing, we use a transform of the type

f (α)→ exp
(

lnf (α) − lnf (αmax)
)
, (D2)

where f is the integrand of Eq. (9) and lnf is expressed
through the logarithmic versions of its constituents. This
rescaling cancels in normalization.

The piecewise integrals involved in evaluating the poste-
rior predictive CDF at a set of points {qi} for a given 8 are
computed using adaptive Gauss–Kronrod quadrature (Lau-
rie, 1997; Kronrod, 1965; Gonnet, 2012).

D1.1 Kullback–Leibler divergence

The Kullback–Leibler divergenceK is given in Eq. (14). For
the gamma conjugate prior distribution with variables x =
(α,β), the expression reads

K
(
φ
(
α,β

)
, φref

(
α,β

))
=

∞∫
αmin

dα

∞∫
0

dβ
1
8

βνα−1pα−1e−sβ

0(α)n

· ln

(
8ref

8

βνα−1pα−1e−sβ0(α)nref

βνrefα−1pα−1
ref e

−srefβ0(α)n

)
, (D3)

where (p,s,n,ν) are the parameters of φ with normaliza-
tion 8, (pref, sref,nref,νref) belong to the reference model
φref with normalization 8ref, and 0(α) is the gamma func-
tion. After a bit of algebra, the integrals can be converted to
the following expression (withK being shortened notation in

the following):

K = ln
(
8ref

8

)
+

1
8

∞∫
αmin

dα
pα−1

0(α)n

·

[(
(α− 1) ln

p

pref
−1n ln0(α)

) ∞∫
0

dβ βνα−1e−sβ

−1s

∞∫
0

dβ βναe−sβ

+α1ν

∞∫
0

dβ ln(β)βνα−1e−sβ
]
, (D4)

where we have used the abbreviations

1s = s− sref , 1n= n− nref , and 1ν = ν− νref . (D5)

The three β integrals can be evaluated analytically with a
little help from SymPy (Meurer et al., 2017):

∞∫
0

dβ βνα−1e−sβ =
0(να)

sαν
, (D6)

∞∫
0

dβ βναe−sβ =
0(να+ 1)
sαν+1 , (D7)

∞∫
0

dβ ln(β)βνα−1e−sβ =

(
ψ(αν)− lns

)
0(να+ 1)

ανsνα
, (D8)

where ψ(x) is the digamma function. After some more al-
gebra, the expression used in REHEATFUNQ to estimate
the Kullback–Leibler divergence from the reference model
(pref, sref,nref,νref) to the model (p,s,n,ν) is

K = ln
(
8ref

8

)
+

1
8

∞∫
αmin

dα
pα−10(να)

sνα0(α)n

·

[
(α− 1) ln

p

pref
−1n ln0(α)−

να1s

s

+α1ν
(
ψ(να)− lns

)]
. (D9)

The integral (D9) is solved in REHEATFUNQ using the
tanh-sinh integration routine implemented in the Boost C++
library (Takahasi and Mori, 1973). The bracketed part of the
integrand in Eq. (D9) typically has a change in sign, which
we have observed to lead to a condition number (L1/|Q|,
where L1 is the integral of the absolute integrand and Q is
the integral of the signed integrand) of ∼ 103. This is indica-
tive of a precision loss of three digits (Agrawal et al., 2022),
but we have not observed further numerical difficulties that
could lead to great loss of usefulness.
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D2 PH marginal posterior distribution normalization

Evaluating the integrand of the marginal posterior distribu-
tion of Eq. (23),

γ
(
{1i}j ;α,β

)
φ(α,β)

∼

βν
′α−1

(
p
∏
i∈Ij

1i

)α−1

exp

(
−

(
s+

∑
i∈Ij

1i

)
β

)
0(α)n+Nj

,

ν′ = ν+Nj , 1i = qi −PHci (D10)

where Nj is the number of data points indexed in Ij , leads
to the modified hyperparameter update rule

ν→ ν′j = ν+Nj , n→ n′j = n+Nj ,

s→ s′j = s+
∑
i∈Ij

(qi −PHci),

p→ p′j = p
∏
i∈Ij

(qi −PHci), (D11)

given a sample {qi}j ofNj regional heat flow measurements.
Since PH occurs both in s and p and nonlinearly in the latter,
it breaks the conjugacy of the prior distribution; i.e. the pos-
terior distribution does not have the same functional shape.
Additionally the normalization constant changes:

F =
m∑
j=1

Pm
H∫
0

dPH

∞∫
0

dβ

∞∫
0

dα
β
ν′
j
α−1
(p′j )

α−1
exp

(
−s′jβ

)
0(α)

n′
j

=

m∑
j=1

Pm
H∫
0

dPH

∞∫
0

dα
0(ν′jα)p

α−1

0(α)
n′
j

∏
i∈Ij

(qi −PHci)
α−1

(
s+

∑
i∈Ij

(qi −PHci)

)ν′jα

=

m∑
j=1

9j . (D12)

For numerical evaluation we use the transform

z=
PH

P
m,j
H

(D13)

and express these integrals by

9j = P
m,j
H

1∫
0

dz

∞∫
0

dα Ij (α,z) (D14)

with the integrand

Ij (α,z)=
0(ν′jα)(p̃j )

α−1

0(α)
n′
j
(
s̃j
)ν′jα

∏
i∈Ij

(1− κ(j)i z)
α−1

(1−ωjz)
ν′
j
α

(D15)

and the parameters

s̃j = s+
∑
i∈Ij

qi, Bj =
∑
i∈Ij

ci, ωj =
BjP

m,j
H
s̃j

,

p̃j = p
∏
i∈Ij

qi,κ
(j)
i =

P
m,j
H ci

qi
, P

m,j
H = min

i∈Ij

{
qi

ci

}
.

To avoid overflow, we evaluate the integrand Ij (α,z) as an
exponentiated sum of logarithms. The full posterior distribu-
tion is then, with parameters updated as described above,

ψ(PH,j,α,β)=
β
ν′
j
α−1(

p′j

)α−1

exp
(
−s′jβ

)
F 0(α)

n′
j

. (D16)

The marginal posterior density of PH then reads

f
(
PH |p,s,n,ν, {(qi ,ci)}

)
=

1
F

m∑
j=1

∞∫
0

dα Ij

(
α,

PH

P
m,j
H

)
. (D17)

D2.1 Rescaling integrands

Before computing the integrals in 9 using numerical inte-
gration, it is helpful to determine the maximum of the inte-
grand and perform relative normalization. This can reduce
the chance of overflow in the integration routine and, by
splitting the integration interval in α at the maximum, stabi-
lize the numerical integration routine (we use tanh-sinh and
exp-sinh quadrature from the Boost software package with a
Gauss–Kronrod fallback if an error occurs). REHEATFUNQ
furthermore computes the global maximum of the integrand
in α using a combined Newton–Raphson and TOMS748
method (Alefeld et al., 1995) to get an initial estimate of the
global norm scale. This is then used to rescale the integrand:

ln9j = lnPm,j
H + ln

 1∫
0

dz

∞∫
0

dα Ij (α,z)


= lnPm,j

H + lnI (j)max+ ln

 1∫
0

dz

∞∫
0

dα

·exp
(

lnIj (α,z)− lnI (j)max
))
. (D18)

Here Ij (α,z) denotes the integrand in Eq. (D14). The nom-
inators occurring in the resulting PDF and CDF are then
equally rescaled.

D2.2 Large PH (z→ 1)

In this section, we leave out the indices j for brevity. All
variables defined in the previous sections are to be consid-
ered j -indexed as before. Products

∏
i are to be considered
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products over i ∈ Ij . Where required by dependency on j -
indexed variables of previous sections, variables introduced
in this section are to be considered j -indexed (this applies to
most variables).

For z approaching 1, the double integral of Eq. (D14) can
become unstable due to the product of the 1− κiz approach-
ing 0. This is caused by the largest κi at index i = imax, which
is 1 by definition. Hence, it is helpful to use a Taylor expan-
sion in y = 1−z to explicitly compute the integral for z above
a suitable threshold of 1− ym close to 1. With this change of
variables, the high-z part of the integral 9 becomes

1∫
1−ym

dz

∞∫
0

dα I (α,z)=

ym∫
0

dy

∞∫
0

dα
0(ν′α)(p̃)α−1

0(α)
n′
(
s̃
)ν′α yα−1g(α,y), (D19)

where we have defined g through

∏
i

(1− κiz)
α−1

(1−ωz)ν
′α
= yα−1

∏
i 6=imax

(1− κi + κiy)α−1

(1−ω+ωy)ν′α︸ ︷︷ ︸
g(α,y)

. (D20)

We now aim to expand g(α,y) into powers of y, which will
allow us to compute analytically the y integrals in Eq. (D19).
Then, we approximate the integral by retaining only a finite
order of the expanded polynomial. For this, we first expand
the product i 6= imax into the first four polynomial coeffi-
cients:∏
i

(1− κiz)= y
∏
i 6=imax

(1− κi + κiy)

= y(h0+h1y+h2y
2
+h3y

3
+O(y4)), (D21)

where h0 to h3 are the expansion coefficients of the second
product. After some algebra, this leads to the following ap-
proximation of the integral for z close to 1:

1∫
1−ym

dz

∞∫
0

dα
0(ν′α)(p̃)

α−1

0(α)
n′
(
s̃
)ν′α

∏
i

(1− κiz)
α−1

(1−ωz)ν
′α

≈

∞∫
0

dα
0(ν′α)(h0p̃)

α−1

0(α)
n′
(
s̃(1−ω)

)ν′α 3∑
k=0

yα+km
α+ k

Ck(α), (D22)

C0(α)= 1, (D23)

C1(α)=
(α− 1)h1

h0
−
ν′αω

1−ω
, (D24)

C2(α)=
1
2

(
(α− 1)(α− 2)h2

1

h2
0

+
2(α− 1)h2

h0

−
2ν′αω(α− 1)h1

h0(1−ω)
+
ν′α(ν′α− 1)ω2

(1−ω)2

)
, (D25)

C3(α)=

[
α3
(
ν3ω3

+ 3h1h0ν
2ω2(ω− 1)

+ 3
h2

1

h2
0
νω(ω(ω− 2)+ 1)

+
h3

1

h3
0
(ω(ω2

− 3ω+ 3)− 1)
)

+ 3α2
(
ν2ω3

+
h1

h0
νω2(ν− 1)(1−ω)+ 2

h2

h0
νω(ω− 1)2

+ 3
h2

1

h2
0
νω(ω(2−ω)− 1)+ 2

(
h1h2

h2
0
−
h3

1

h3
0

)

· (ω(ω2
− 3ω+ 3)− 1)

)
+α

(
2νω3

+ 3νω
(
ω

(
h1

h0
(1−ω)+ 2

h2

h0
(2−ω)

)
− 2

h2

h0

)
+ 6

h2
1

h2
0
νω(ω2

− 2ω+ 1)

+

(
6
h3

h0
− 18

h1h2

h2
0
+ 11

h3
1

h3
0

)
(ω3
− 3ω2

+ 3ω− 1)
)]

×
1

ω3− 3ω2+ 3ω− 1
+ 6

(
2
h1h2

h2
0
−
h3

h0
−
h3

1

h3
0

)
.

(D26)

D2.3 Asymptotics of 0(να)/(n0(α))

By far the most expensive operation when numerically inte-
grating Ij (α,z) is to evaluate the two ln0 functions:

Ij (α,z)= exp
(

ln0(ν′jα)− n
′

j ln0(α)+ . . .
)
. (D27)

Furthermore, the difference between these two dominant
terms in the exponent of I can lead to a catastrophic loss of
precision for a large α, leading to numerical difficulty in eval-
uating Ij . For these two reasons, we used SymPy (Meurer
et al., 2017) to express the difference of the two ln0 func-
tions as an asymptotic series expansion:

1 ln0
(
α |n,ν

)
= ln0(να)− n ln0(α)

= α
(
(n− ν)(1− lnα)+ ν lnν

)
+

1
2

(
(n− 1)(lnα− ln2π)− lnν

)
+

1
12α

(
1
ν
− n+

1
30α2

[
n−

1
ν3 +

2
7α2(

1
ν5 − n+

3
4α2

[
n−

1
ν7

])])
+O

(
1
α9

)
. (D28)

To estimate the error in that series expansion, we use the lead-
ing order error term

1(α)=

∣∣∣∣∣ n−
1
ν9

1188α9

∣∣∣∣∣ . (D29)
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Figure D1. Relative error in the series expansion of Eq. (D28) with
argument shift M of Eq. (D31) as a function of α. The argument
shift is applied for a <M . The series expansion is then compared
to the actual function, ln0(να)−n ln0(α). The functions have been
evaluated with 100-digit precision using mpmath (The mpmath de-
velopment team, 2023) for parameters n= ν = 1.1. The situation
is similar for some other combinations of n and ν in the range
0< ν ≤ n < 2.

If 1(α) is less than machine ε compared to the value ob-
tained from Eq. (D28), we use the expansions, while other-
wise the ln0 functions are explicitly evaluated.

The expansion of Eq. (D28) is computed for α→∞ and
becomes increasingly imprecise at a small α. To avoid having
to explicitly compute ln0 functions also for a small α, we use
the argument shift technique described by Johansson (2023).
The argument shift is based on the recurrence relation of the
0 function and allows for expressing the 0 function through
arguments shifted by integer values M (index j omitted for
brevity):

(x)M = x(x+ 1)· · ·(x+M − 1)=
0(x+M)

0(x)
. (D30)

Applied to Eq. (D28) we find

1 ln0
(
α |n,ν

)
= n ln(α)M − ln(να)M

+1 ln0
(
α+M

∣∣∣n, να+M
α+M

)
. (D31)

To compute ln(α)M and ln(να)M , we iteratively multiply the
sequence (x)M within the dynamic range of the floating point
type. Whenever overflow impends (say at index o), an inter-
mediate logarithm is computed and the remaining product
sequence (x+ o)M−o is evaluated separately. Finally, all in-
termediary and the final logarithm(s) are summed.

Using high-precision evaluation of Eq. (D31) and the ac-
tual difference ln0(να)− n ln0(α), we have found that an
argument shift M = 47, applied for a < 47, is a compromise
that leads to relative errors below long double precision

for most of the α range given some common parameter com-
binations of n and ν (see Fig. D1).

D3 Interpolating the marginal PH density f (PH)

The PDF f (PH) is the base for all uses of the marginal
PH posterior distribution. Due to the required α integration,
but in particular due to the latent dimension j , f (PH) is an
expensive bottleneck of the REHEATFUNQ model. To re-
duce the required computation time once the normalization
has been computed, we provide a barycentric Lagrange in-
terpolant (Berrut and Trefethen, 2004) that can be (and by
default is) used for all f (PH) evaluations, including evalua-
tions of the CDF, tail distribution, and tail quantiles. The in-
terpolant uses Chebyshev points of the second kind, leading
to simple and stable formulae (Berrut and Trefethen, 2004).

Since we are interested in a wide dynamic range in the
tail of f (PH) to be able to determine a wide range of tail
quantiles, we interpolate the logarithm of the PDF,

f (PH)≈ exp(Btot(PH)) , (D32)

where B is the interpolant. If f (PH) is interpolated di-
rectly, the tail may be obscured by oscillations due to the
PDF’s bulk, which require an unwieldy number of samples
to achieve the desired accuracy.

A further challenge to overcome when interpolating
f (PH) appears in the tail of lnf (PH), which diverges to−∞
as PH→ Pm

H because the PDF vanishes at PH = P
m
H . Even

when limiting the interpolation interval to [0,PH(1− ε)]
(where ε is the machine precision), the result of this steep
descent at the endpoint of the interpolant’s support leads to
large oscillations. To handle this difficulty, we split the PH
support into two intervals at 0.9Pm

H . For the first interval, we
use a standard barycentric Lagrange interpolant B0(PH). For
the second interval, we resolve the endpoint difficulty via a
coordinate transform,

t = ln(Pm
H −PH), (D33)

which transforms the divergence for PH→ Pm
H into a slope

as t approaches its lower limit tmin. With PH given in double
precision, discernible up to precision ε, the smallest t that
can be discerned from Pm

H is

tmin = ln
(
Pm

H (1− ε)
)
. (D34)

The support for the second interpolant B1(t) is therefore
[tmin, tmax] with tmax = ln

(
0.1Pm

H
)
. Finally, the combined in-

terpolant is

Btot(PH)=


B0(PH) : PH ≤ 0.9Pm

H

B1

(
ln
(
Pm

H −PH
))
: 0.9Pm

H < PH < P
m
H

−∞ : otherwise.
(D35)

Both B0 and B1 use Chebyshev points of the second kind
(Berrut and Trefethen, 2004),

xs = cos
(
(2s+ 1)π

2S+ 2

)
with s = 0, . . ., S, (D36)
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scaled to their respective support. For this point scheme, we
implemented the following adaptive refinement strategy.

1. Start with lnf evaluated at S+ 1 Chebyshev points of
the second kind.

2. Evaluate lnf at 2S+ 1 Chebyshev points of the second
kind. All previous points can be reused, and lnF needs
to be evaluated only at the Chebyshev points of even
index s. These new points are located in the intervals
spanned by the odd S+ 1 starting points.

3. For each of the newly evaluated points, compute the dif-
ference in lnF with the barycentric Lagrange interpola-
tion using the S+1 starting points. Obtain the maximum
absolute deviation between interpolant and lnF over the
new points.

4. If the maximum absolute deviation is greater than a set
tolerance, set S→ S′ = 2S+ 1 and repeat from step 1.
Otherwise exit the refinement.

This allows us to refine the interpolant’s approximation of
the PDF up to a desired relative precision.

D4 Cumulative functions of the marginal PH posterior
distribution: adaptive Simpson’s rule

For the cumulative and related functions of the marginal PH
posterior distribution – the CDF, the tail distribution, and the
tail quantiles – we need to be able to evaluate the z integral
of9 of Eq. (D14) for parts of the interval [0,1]. For this pur-
pose, we divide the full interval into a binary tree of subin-
tervals in which we can evaluate the integral to a sufficient
precision.

In each subinterval, we evaluate f (by default using its
barycentric Lagrange interpolant) in three points: the center
and the endpoints (hence adjacent subintervals share func-
tion evaluations). The total mass of a subinterval can then be
evaluated using Simpson’s rule (Mysovskikh, 2006):

zr∫
zl

dz f (z)≈
zr− zl

6

(
f (zl)+ 4f (zc)+ f (zr)

)
. (D37)

Furthermore, we can evaluate the left-aligned quadratic poly-
nomial defined by these three function evaluations:

f(δz)= C0+ δz
(
C1+ δzC2

)
, (D38)

where

δz= z− zl, C0 = f (zl),

C1 =
1

zr− zl

(
− 3f (zl)+ 4f (zc)− f (zr)

)
,

C2 =
2

(zr− zl)2

(
f (zl)− 2f (zc)+ f (zr)

)
.

This polynomial can readily be integrated to any point δz
within the interval:

F(δz)= δz

(
C0+ δz

(
C1

2
+ δz

C2

3

))
. (D39)

With these tools at hand, the adaptive Simpson’s and polyno-
mial quadrature rule implemented for the cumulative distri-
butions is as follows: start with the root element over the full
interval [0,1] in the todo list. Iterate the following until the
todo list is empty.

1. Choose and remove an item from the todo list with in-
tegrated polynomial F0 spanning an interval [zl,zr].

2. Evaluate f at the two centers of the subintervals [zl,zc]

and [zc,zr]. Using the central nodes of the subintervals,
use Simpson’s rule to compute the integrals over the
subintervals (Il and Ir).

3. If Il and Ir are within a prescribed tolerance of the esti-
mates obtained by evaluating F0, accept the chosen in-
terval [zl,zr]. Otherwise split the interval at zc and add
the two subintervals to the todo list.

Over the resulting tree of subsequent subintervals, we sum
the integrals in the forward and backward direction to obtain,
at the start and end of each subinterval, an estimate of the
CDF and tail distribution.

Evaluating the CDF and tail distribution at a point z then
amounts to a binary search to find the interval that contains
the coordinate z, computing the corresponding δz, evaluating
F(δz), and adding to or subtracting from the corresponding
value at the subinterval’s boundary.

To compute tail quantiles t of the marginal posterior dis-
tribution in PH of Eq. (24), we use the TOMS748 method
(Alefeld et al., 1995) to find the root zt of the expression
T(z)− t , where T(z) is the tail distribution evaluated by the
subinterval tree. The solution zt is then scaled back to PH
coordinates.

Appendix E: Neighbor density on a disk with uniform
point density

In this section, we derive the neighbor density of points
drawn from a disk of radius R with uniform point density.
This neighbor density is the probability density of the dis-
tance d between two points which are both drawn from a
uniform point density on the disk. In other words, this distri-
bution describes the following: if we draw two random points
from the uniform density on the disk, what distance d do we
expect between the two points?

Suppose that we have a point p0 drawn randomly from the
uniform distribution on the disk. Without loss of generality,
we can rotate the disk as indicated in Fig. E1a so that p0 is at
distance x from the center of the disk. For the random point
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Figure E1. Geometry for the computation of the neighbor density by distance on a disk of radius R with uniform point density. This sketch
illustrates the sets of points at a distance d from a test point on the disk. (a) For a point that is located at distance x from the disk center,
the set of points at distance d within the disk is a circular segment that spans an angular range of 2α. This angle α is determined from the
trigonometry of the parameters x, d, and R. (b) As the distance d approaches its upper limit 2R, the circular segment converges to a point
that is antipodal to a point on the disk’s perimeter (x = R). (c) If x+ d ≤ R, the set of points at distance d from the test point is a full circle
of radius d.

p0 drawn from the disk, x follows the distribution

p(x)=
2x
R2 . (E1)

The orange circle wedge shows the set of points within the
disk that are located at distance d from p0. For the configura-
tion shown in Fig. E1a, the wedge intersects the disk’s border
at the red dot. This dot can be parameterized by the angle α,
measured counterclockwise from the line that connects p0
with the disk’s center. The angle can be computed by the law
of cosines:

α(d,x,R)= arccos
(
x2
+ d2
−R2

2xd

)
. (E2)

The sketch of Fig. E1a equips us to compute the density of
points at distance d from p0 within the set of all points in
the disk. Conceptually, we expand the light-gray circle from
panel a from a point (d = 0) up to the maximum size that
intersects with the disk (d = R+x, indicated in panel b). For
each d , the density is the length of the orange wedge, that is,
2αd , divided by the disk’s area. If d is too large (d > R+x),
the density is 0, and if d ≤ R− x, the length is the full circle
perimeter (see Fig. E1c). The density of d conditional on x
is hence

p
(
d |x

)
∼

 0 : d > R+ x

2α(d,x,R)d : R− x < d ≤ R+ x

2πd : d ≤ R− x

. (E3)

To obtain the distance distribution within the population of
pairs (p0,p1), this density needs to be averaged over the den-

sity p(x) of Eq. (E1). We hence find the density

f (d)=
1
F

R∫
0

dx p
(
d |x

)
p(x)d (E4)

with p(x) given in Eq. (E1), p
(
d |x

)
given in Eq. (E3), and

with the normalization constant

F =

2R∫
0

dy

R∫
0

dx p
(
d |x

)
p(x)y . (E5)

The resulting density is shown by dashed lines in Fig. 3.
As dmin increases in that figure, the density of Eq. (E4) is
adjusted by setting the lower y integration bound for F in
Eq. (E5) to dmin.
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Appendix F: Artificial surface heat flow with
gamma-like aggregate distribution

This section describes how the artificial heat flow field in
Fig. 2 is generated. The generation follows a two-step pro-
cedure.

First, a target surface heat flow distribution is gener-
ated on the x interval shown in Fig. 2a. This target heat
flow distribution is determined through 13 equidistantly dis-
tributed points on the x range (the control points). On the
two boundary points, the heat flow is set to 42 mW m−2 (an
arbitrary value within the range of heat flow encountered
within regional samples of the NGHF; Lucazeau, 2019).
The 11 remaining points are allowed to vary freely between
35 mW m−2 and 50 mW m−2. Between these 13 points, the
heat flow field is interpolated using SciPy’s smoothing cu-
bic spline with a smoothing parameter of s = 2 (Dierckx,
1975; Virtanen et al., 2020). The interpolated heat flow
field is evaluated at 573 equidistant points on the x inter-
val, and a cost function is constructed by computing the
Anderson–Darling statistic for a maximum likelihood esti-
mate of the gamma distribution on these 573 sample values.
This cost is minimized by optimizing the heat flow values
at the 11 control points using the SciPy implementation of
the limited-memory bound-constrained Broyden–Fletcher–
Goldfarb–Shanno (BFGS) optimizer (Byrd et al., 1996; Vir-
tanen et al., 2020).

Once this target heat flow distribution with gamma-like
aggregate distribution has been created, it is used as an
optimization target for the heat flow generated by under-
ground heat sources. Below the x extent shown in Fig. 2,
x ∈ [−50 km, 75 km], a 200 km wide and 80 km deep grid
is created with x ∈ [−80 km, 120 km] and 201× 151 cells.
The heat generation in each cell is allowed to vary between
0 W m−3 and 8 W m−3, below which most rock samples are
found (Jaupart and Mareschal, 2005, Fig. 1). The material
is assumed homogeneous with a thermal conductivity of
2.5 W m−1 K−1 (as used in Lachenbruch and Sass, 1980).
At the surface, a temperature of 0 K is assumed. At 80 km
depth, a boundary temperature of 318 K is enforced, caus-
ing a surface heat flow of 10 mW m−2 that is superposed
by any heat sources in the grid. The heat equation is solved
on the grid using the finite difference method. Starting from
a uniform heat generation of 0.8 W m−3 in each grid cell,
the constrained trust-region optimization algorithm of SciPy
(Conn et al., 2000; Virtanen et al., 2020) is used to minimize
the squared deviations of the solved surface heat flow from
the target heat flow evaluated at the corresponding surface
points.

The code to generate Fig. 2 is part of
the REHEATFUNQ model (Ziebarth, 2023,
A9-Simple-Heat-Conduction.ipynb).

Appendix G: A note on nonlinear heat transport

This is a technical note on the applicability of REHEAT-
FUNQ for nonlinear heat transport, brought to our attention
by anonymous reviewer 1. A central equation for connecting
the Bayesian methods with the physical model of heat con-
duction, ultimately leading to the PH posterior distribution,
is Eq. (18):

qa(xi)= PHc(xi) . (G1)

This equation assumes linearity of the heat conduction in
heat power PH – which is the case for heat conduction if PH
is sufficiently small but may break down as other means of
heat transport set in as PH increases. In such a case of non-
linear heat transport, the anomaly may in general be of the
non-decomposable form

qa(xi)= q(PH,xi). (G2)

REHEATFUNQ is not able to handle such non-
decomposable nonlinearities in heat transport. The linear
decomposition of qa(xi) into a constant coefficient ci and
a variable but global magnitude parameter (here PH) is re-
quired. However, there is one kind of nonlinear dependence
of the heat transport onto the power PH that fulfills this
requirement: a factorization into a function of PH and a
function of x,

qa(xi)= p(PH)c(xi). (G3)

With this, one could simply provide {c(xi)} instead of {ci}
to REHEATFUNQ. The posterior PDF f and CDF F would
then be evaluated in p instead of the heat power PH. This
result would then have to be manually transformed to PH by
inverting the function p(PH).

We do not know whether there are cases of nonlinear heat
transport that factorize according to Eq. (G3) and show no
spatial nonlinearity and hence whether this note is relevant.
We leave this open for further study.

Code and data availability. The REHEATFUNQ model code is
available from the GFZ Data Services repository (Ziebarth,
2023, https://doi.org/10.5880/GFZ.2.6.2023.002) and at Zenodo
(Ziebarth, 2024, https://doi.org/10.5281/zenodo.10614892). It can
be installed as a Python package or built as a Docker image. It
comes with a set of Jupyter Notebooks (Pérez and Granger, 2007;
Kluyver et al., 2016; Granger and Pérez, 2021) that reproduce the
analysis described in this article. These Notebooks should make it
easy to apply REHEATFUNQ to other areas.

The NGHF data set can downloaded as supplement to the article
of Lucazeau (2019). The shoreline data used in this paper are from
the Global Self-consistent, Hierarchical, High-resolution Shoreline
Database (GSHHS; Wessel and Smith, 1996). They can be down-
loaded from https://www.soest.hawaii.edu/pwessel/gshhg/ (last ac-
cess: 25 March 2024). The UCERF3 model is available from Milner
(2014).
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The REHEATFUNQ model builds upon free software. For nu-
merical computations, REHEATFUNQ builds on the scientific
Python stack of NumPy (van der Walt et al., 2011) and SciPy (Vir-
tanen et al., 2020). The computationally intensive number crunch-
ing is written in C++, interfaced via Cython (Behnel et al., 2011),
and makes use of the Boost Math Library, GNU MP (Granlund
and the GMP development team, 2020), and Eigen (Guennebaud
et al., 2010). Spatial computations are performed with the help of
GeographicLib (Karney, 2022), PROJ (PROJ contributors, 2022),
PyProj (Snow et al., 2022), and GeoPandas (Jordahl et al., 2022;
The pandas development team, 2022; GDAL/OGR contributors,
2022). Visualizations are created using Matplotlib and FlotteKarte
(Hunter, 2007; Ziebarth, 2022b; Crameri, 2021; van der Velden,
2020; Thyng et al., 2016). A number of other numerical software
developments are used less prominently (Pedregosa et al., 2011;
Ziebarth, 2022a; Giezeman and Wesselink, 2022; Badros et al.,
2001; Wang et al., 2013; Fousse et al., 2007).

The archived version at GFZ Data Services (Ziebarth,
2023, https://doi.org/10.5880/GFZ.2.6.2023.002) and at Zenodo
https://doi.org/10.5281/zenodo.10614892 (Ziebarth, 2024) contains
a snapshot of all relevant software packages to build the model.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-2783-2024-supplement.
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S. B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J. K., Singh,
S., Rathnayake, T., Vig, S., Granger, B. E., Muller, R. P.,
Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F.,
Curry, M. J., Terrel, A. R., Roučka, V., Saboo, A., Fernando,
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