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A B S T R A C T

Providing land cover estimates with both correct pixel-level class predictions and regional class area estimates
is important for many monitoring and accounting purposes but rarely achieved by current land monitoring
efforts. We propose a framework that uses class probabilities predicted by machine learning to guarantee that
the mapped proportion of each class matches independent area estimates. We used CatBoost models trained on
CORINE data to predict probabilities for 8 primary LUCAS land cover classes in five European countries. We
then used the proposed algorithm to produce proportional class maps that match Eurostat class area estimates.
We validate these proportional class maps and baseline highest likelihood class maps with LUCAS land cover
observations and S2GLC validation points. Our results show that the framework and algorithms create maps
that match area estimates, and that may also be more accurate than maps created with highest likelihood
classification. This is especially the case with general-purpose models trained on data whose class proportions
are not representative of the mapped area, which means that this algorithm can be used to localize such models
for more accurate mapping of individual countries.
1. Introduction

Land cover changes are fundamental to understanding the com-
plex interplay between human activities and the environment (Winkler
et al., 2021). Locating and quantifying this process is essential for
several UN Sustainable Development Goals (SDG) (Division, 2023;
Romijn et al., 2016), predicting and combating climate change (UN-
FCCC, 2015), and preserving the diversity of life on earth (Secretariat
of the Convention on Biological Diversity, 2016). For this, we currently
rely on two main techniques: model-based mapping (pixel- or polygon
based predictions) and design-based area estimation for a given region.
Land cover maps enable visualization and analysis of spatial patterns,
allowing the identification of drivers of change (Sy et al., 2019),
quantifying carbon emissions (Avitabile et al., 2016), and targeted land
management (Verburg et al., 2011). Design-based land area estimates,
on the other hand, provide statistically-robust, model-free insights and
estimates (typically with confidence intervals) of long-term trends and
comparisons necessary for resource allocation, economic assessments,
and international accountability (Olofsson et al., 2014; Gallego, 2017).
As a result, policy and decision-makers often continue to rely on design-
based area estimates, while there also is interest in maps that match the
statistical area estimates. Due to the costs involved in performing such
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sampling surveys, there has long been a large interest in deriving area
estimates directly from Earth Observation (Gallego, 2004). Counting
the number of pixels per class in the mapped area is the simplest
method, but strongly discouraged due to unpredictable biases that may
lead to over- and under-prediction of specific classes (Gallego, 2004;
Olofsson et al., 2014; Waldner and Defourny, 2017). These area biases
stem from many sources such as imbalanced training data (He and
Garcia, 2009; Mellor et al., 2015; Zhu et al., 2016), the interaction
between spatial resolution and pixel heterogeneity (Strahler et al.,
2006; Herold et al., 2008), regional accuracy differences (Waldner
et al., 2016; Witjes et al., 2022; Duarte et al., 2023), and classifier
design (Waldner et al., 2016; Ghorbani and Ghousi, 2020; Demirkaya
et al., 2020), and are therefore difficult to quantify in order to assess
the uncertainty of predictions.

Unbiased area estimation based on pixel counting is possible using
the confusion matrix computed from additional statistical reference
data that are e.g. stratified according to the mapped classes. The map-
based area estimates are then adjusted using commission and omission
errors from according to the confusion matrix (Stehman, 2013, 2014;
Olofsson et al., 2013, 2014). While it is not always feasible to obtain
additional samples directly from the mapped area, many organizations
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still adhere to this approach as their standard practice. This is pri-
marily because methods that rely on obtaining (additional) samples
directly from the field tend to yield more precise area estimates com-
pared to other methods (Finegold and Ortmann, 2016; Gallego, 2017;
Anon., 2022; Angelopoulos et al., 2023). Recent developments suggest
that unbiased area estimation may be possible without requiring post-
classification sampling. For instance (Kleinewillinghöfer et al., 2022)
used Land Use/Cover Area Frame Survey (LUCAS) data and Copernicus
High Resolution Layers (HRL) layers to show that it may be possible
when the sampling design of the reference data is appropriate for the
mapped phenomenon. Furthermore, Sales et al. (2022) derived area
estimates from probabilities predicted by a random forest that were
more accurate than pixel counting in a binary classification context.
Finally, the prediction-powered inference framework recently proposed
by Angelopoulos et al. (2023) makes it possible to derive quantity
estimates with statistically valid confidence intervals that are smaller
than those of purely sample-based estimates, without the need for
post-classification sampling to adjust for model bias.

While these approaches show promise towards the end goal of deriv-
ing unbiased and accurate area estimates without requiring additional
sampling, policy and decision makers continue to rely on sample-based
area estimates such as the European Commission’s LUCAS (Gallego,
2017), and require maps that match their class proportions to enable
localized interventions (Olofsson et al., 2014). Linking trends from area
estimates to periodic maps would also facilitate temporally and spa-
tially explicit assessment of land change, which is crucial for evaluating
the impacts of critical human activities on the environment (Olofsson
et al., 2014; Szantoi et al., 2020; Winkler et al., 2021). A key issue is
that land cover monitoring from remote sensing data has been produc-
ing accurate spatial maps or providing ‘‘best’’ area estimates but rarely
the focus has been on addressing both objectives together: an accurate
map whose spatial distribution of classes is an exact match to those
from a provided, trusted area estimate. This would effectively mini-
mize both allocation and quantity disagreement (Pontius and Millones,
2011); pixel-wise classification errors and map-wide class quantities,
respectively. Although this issue has been subject to study since the
early years of remote sensing (Strahler, 1980), little research on related
approaches has been presented so far. Janssen and Middelkoop (1992)
showed that using ancillary data about class area proportions can be
used to improve classification accuracy, especially when there is un-
certainty caused by ‘mixed pixels’ or difficulty separating classes in the
feature space. Mingguo et al. (2009) further analyzed such methods and
showed that using prior probabilities to adjust classification thresholds
can be used to change the balance of user’s and producers’s accuracy
(precision and recall, respectively), but that this can cause small classes
to disappear from the classified map. There have been few attempts
to use ancillary data to go beyond improving per-pixel accuracy and
actually making maps that match area estimates. A notable exception
is the work done by Tröltzsch et al. (2009) and Brus et al. (2012),
who made 1 km within-pixel tree species proportion maps of Europe,
and used an iterative scaling and calibration technique to make them
correspond to national forest statistics.

More recently, Horvath et al. (2021) transformed predicted proba-
bility surfaces for vegetation types (Horvath et al., 2019) into classified
maps whose class distributions matched estimates derived from area
frame survey data (Bryn et al., 2018), iterating over each species
and assigning pixels on the map to that species until the expected
prevalence was reached. However, they found that while their pro-
posed methods produced maps with correct area proportions, these
maps were less accurate than a map where each pixel was assigned
to the class with the highest predicted probability, which suggests a
trade-off between allocation and quantity disagreement. Furthermore,
their proposed method left approximately 10% of the map unclassified
because not every pixel had probabilities for every class. As soon as a
pixel is assigned to one class, it can no longer be assigned to another;
2

if pixels with probabilities above 0 for a certain class are rare, this
leaves gaps in the classified map that must be filled with other methods.
We hypothesize that the amount of remaining unclassified pixels can
be reduced by using ‘smoother’ input probability data. We consider
such data ‘smooth’ when for each class, there are more pixels with a
predicted probability value above zero than the number of required
pixels on the final map. This might be achieved by improving a model’s
ability to generalize such as using a bigger training dataset. This is
often unfeasible in land cover classification due to the cost involved in
collecting reference data, especially when area proportions must be cor-
rectly represented to obtain matching proportional predictions (Sales
et al., 2022; Kleinewillinghöfer et al., 2022). Horvath et al. (2021) state
that the accuracy of their proportional maps might be improved by
using more accurately predicted input probabilities, and models trained
on bigger training datasets tend to be more accurate (Myburgh and van
Niekerk, 2014; Rodríguez-Pérez et al., 2017). While there are general
recommendations for training dataset size (Foody et al., 2006; Koshute
et al., 2021) and indications that tree-based methods can attain high
accuracy without large training datasets (Ramezan et al., 2021) it is
important to represent as much of the feature space as possible (Meyer
and Pebesma, 2021; Wadoux et al., 2019). Furthermore, Witjes et al.
(2022, 2023) showed that models trained on larger portions of CORINE-
derived training data generalized better on unseen data, especially
when mapping land cover in years not covered by the training dataset.

This paper proposes and demonstrates a framework that employs
predicted probabilities for land cover classes to create land cover maps
that are both accurate and adhere to the class distribution determined
by independent area estimates. We present an expanded version of the
approach suggested by Horvath et al. (2021) that iterates over each
class multiple times to minimize the overlap between classes: Itera-
tive Mapping of Probabilities (IMP). We investigate the effectiveness
and potential advantages of the proposed approach by answering the
following research questions:

1. How does the quantity disagreement vary between proportional
maps produced by IMP compare to that of highest likelihood
class maps?

2. How does the allocation disagreement vary between propor-
tional maps and highest likelihood class maps?

3. What is the impact of using machine learning models trained on
national or larger area training datasets for producing propor-
tional maps?

We will answer these questions by creating proportional and highest
likelihood class maps for five European countries. We will measure
quantity disagreement by comparing the proportion of predicted classes
to EuroStat area estimates, and allocation disagreement by validating
the maps LUCAS land cover samples and S2GLC validation points. To
assess the impact of using larger but less proportional training datasets,
we do this twice: Once with a model trained on land cover data from
the mapped country, and once with a model trained on a data from a
group of countries.

2. Materials and methods

In this study, we classify land cover and produce maps that match
area estimates by Eurostat across five neighboring European countries:
Belgium, Czechia, Germany, Luxembourg, and The Netherlands. We
utilized CORINE training points produced by Witjes et al. (2022), from
which we removed potential labeling errors using data from Copernicus
HRL and OpenStreetMap. CatBoost classification models were then
trained on these filtered points, with distinct models trained on subsets
of the CORINE points from each country (referred to as local models)
and one general model trained on CORINE points from all countries
that adopted the LUCAS survey in 2006: Belgium, Czechia, France,
Germany, Hungary, Italy, Luxembourg, The Netherlands, Poland, and

Slovakia. For each of the five mapped countries, we predicted LUCAS
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land cover probabilities with the country’s local model, as well as
with the general model for the years 2009, 2012, 2015, 2017, and
2018. Each set of probabilities was used to create two hard-class land
cover maps: One highest likelihood class map created through highest
ikelihood classification, and one proportional class map, created by the
roposed algorithm in an attempt to match land cover class quantities
ith official LUCAS estimates. We validated our annual maps of 2009,
012, 2015 and 2018 with the LUCAS points compiled by d’Andrimont
t al. (2020). The maps for 2017 were validated with a separate dataset
hat was explicitly created to validate the S2GLC land cover map of
017 (Jenerowicz et al., 2021). We used this evaluation to compare
he classification performance of local and general models, as well as
ighest likelihood class maps and proportional maps. An overview of
ur methodology is provided in Fig. 1.

.1. Training and reference data

We used three different land cover point datasets for this study: (1)
entroids of CORINE land cover polygons from 2006, 2012 and 2018
xtracted by Witjes et al. (2022) (available on Zenodo (Landa et al.,
021)), (2) in-situ LUCAS samples of harmonized by d’Andrimont et al.
2020), and (3) validation points of S2GLC land cover maps (Mali-
owski et al., 2020) produced by Jenerowicz et al. (2021) (see Fig. 2).
ll classifiers were trained using CORINE centroids as reference, and all
roduced maps were validated on S2GLC and LUCAS samples. The strict
ampling design and high accuracy of the LUCAS survey has made it a
aluable resource in training and validating land cover models across
urope (Benevides et al., 2021; Pflugmacher et al., 2019; Sparks et al.,
022; Verhegghen et al., 2021; Witjes et al., 2022), while S2GLC was
pecifically designed to validate land cover maps of Europe, using a
tratified random sampling design to ensure proportional coverage of
ll European countries equal or larger in size than Luxembourg (see
ection 2.4 of Malinowski et al., 2020).

.1.1. Legend harmonization and filtering
We reclassified all CORINE-derived and S2GLC points to eight LU-

AS land cover classes (level-1). In the case of CORINE points, we
emoved any points that belong to CORINE classes with no clear
nd exclusive match to a LUCAS class. This process was conducted
ccording to the key shown in Table 1

Considering that the minimum mapping unit of CORINE is 25
ectares and the minimal width of mapped features 100 m, CORINE
olygons can encompass smaller-scale land cover types that differ from
he main category of the polygon, introducing a risk of labeling errors.

e counteracted this by screening the CORINE-derived points and
emoving all points whose land cover class were inconsistent with data
rom Copernicus HRL layers and OpenStreetMap in a similar way as
he one detailed in Witjes et al. (2022). For example, grassland training
oints were removed if Copernicus HRL layers indicated tree cover, or if
penStreetMap rasters indicated roads or buildings were present at the
oints’ coordinates. Appendix A provides an overview of the data and
onditions used to remove potentially faulty training points for each
lass.

.1.2. Feature space
All training points were overlaid on 224 covariates: Landsat data,

erived spectral indices, a digital terrain model, and monthly minimum
nd maximum geometric temperature.

The Landsat data were originally published by Potapov et al. (2020),
ggregated to seasonal composites and gap-filled with a temporal mov-
ng window median (TMWM) algorithm by Witjes et al. (2023), and are
penly available for download on stac.ecodatacube.eu. From the orig-
nal bands (Blue, Green, Red, NIR, SWIR1, SWIR2, Thermal), several
pectral indices were calculated:

1. Normalized Difference Vegetation Index (NDVI) (Rouse et al.,
3

1974),
Table 1
Reclassification key of CORINE and S2GLC land cover codes to LUCAS level 1 land
cover. CORINE centroids of classes in the Not Used category were removed from the
training set.

LUCAS land cover CORINE codes S2GLC codes

Artificial 111, 112, 121, 122, 132, 133 111
Cropland 211, 212, 213, 221, 222, 223, 241 211, 221
Woodland 311, 312, 313 311, 312
Shrubland 322, 323, 324 322
Grassland 231, 321 231
Bare land 331, 332, 333, 334, 335 331, 335
Wetlands 411, 412, 421, 422, 423 411, 412
Water 511, 512, 521, 522, 523 511

Not used 123, 124, 131, 141, 142, 242, 243, 244

2. Soil Adjusted Vegetation Index (SAVI) (Huete, 1988),
3. Modified Soil Adjusted Vegetation Index (MSAVI) (Qi et al.,

1994),
4. Normalized Difference Water Index (NDWI) (McFeeters, 1996)
5. Normalized Difference Moisture Index (NDMI) (Gao, 1996),
6. Normalized Burn Ratio (NBR) (García and Caselles, 1991),
7. Normalized Burn Ratio Plus (NBR+) (Alcaras et al., 2022),
8. Road Extraction Index (REI) (Shahi et al., 2015),
9. Enhanced Vegetation Index (EVI) (Liu and Huete, 1995)

For each Landsat band and spectral index, the highest 25th percentile,
median, and 75th percentile was included for each of the 4 seasons
typical in Central Europe, resulting in 12 covariates for each of 7 bands
and 8 indices, amounting to 192 Landsat-derived covariates.

The digital terrain model was originally published by Hengl et al.
(2020). We used 8 derived variables:

1. Slope percent
2. Elevation (Lowest mode)
3. Northness
4. Easterness
5. Positive openness (Yokoyama et al., 2002)
6. Negative openness (Yokoyama et al., 2002)
7. Multidirectional hillshade (Mark, 1992)
8. 315 degree sun azimuth hillshade (Mark, 1992)

The minimum and maximum geometric temperature is a geomet-
ric transformation of latitude and the day of the year (Kilibarda
et al., 2014). Aggregated to monthly averages, this amounts to 24
covariates.

2.1.3. Area estimates
The area estimates used as input for the proposed algorithm, and to

validate the quantity disagreement of all produced maps, were obtained
from Eurostat (European Commission, Eurostat, 2024). This database
reports how much of each LUCAS land cover class covers each country
in each year that the LUCAS survey was performed: 2006, 2009, 2012,
2015, and 2018. We derived proxy area estimates for 2017 through
linear interpolation of the area estimates of 2015 and 2018.

2.2. Machine learning

We trained CatBoost classifiers on the filtered and overlaid
CORINE-derived points. CatBoost is an implementation of gradient
boosting (Prokhorenkova et al., 2018) that has seen much use in recent
years due to its ability to achieve relatively high accuracy on large
datasets in several fields (Hancock and Khoshgoftaar, 2020), notably
being used to produce ESA WorldCover (Zanaga et al., 2022) and
WorldCereal (Van Tricht et al., 2023).

We trained six models in total: five local models trained exclusively
on CORINE training data from each country, and one general model
trained not only on data from the five countries, but also on CORINE

http://stac.ecodatacube.eu
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Fig. 1. Overview of the methodology to produce, validate, and compare highest likelihood and proportional maps. More detailed information on the production of the training
data and features can be found in Witjes et al. (2022, 2023).
data from all countries that participated in the LUCAS program in 2006.
Each model was trained on CORINE data from all available years: 2006,
2012, and 2018. Table 2 shows how many training points were used for
the local models of each country, with the column Other representing
the countries from which training data was extracted, but which were
not mapped by a local model (see also Fig. 2). We included this general
model in our analysis to investigate whether a larger feature space
compensates for a less balanced class distribution.
4

The training points were split up into 2996 30 km tiles. We ran-
domly selected 5% of these tiles as validation data. The remaining
points were used to train all models. To prevent overfitting, we vali-
dated each model after each iteration on the points from the validation
tiles. Training was automatically stopped when validation accuracy had
not improved for 10 consecutive epochs, and the model resulting from
the epoch where the most recent validation accuracy improvement was
recorded was selected as the final model.
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Fig. 2. Example of the distribution of CORINE training data (Witjes et al., 2022), LUCAS validation data (d’Andrimont et al., 2020), and S2GLC validation data (Jenerowicz et al.,
2021), each subset to the Netherlands to visualize their spatial distribution. Bottom right: An overview of countries and S2GLC validation sites surrounding the area of interest.
Countries that were mapped and from which CORINE training data was extracted (‘‘Mapped and trained’’) are marked in dark gray, while countries from which additional CORINE
points were extracted for the general model (‘‘Trained’’) are marked in light gray. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
Table 2
Summary of CORINE points per country and LUCAS level 1 class, used to train the land cover models in this work. Local
models were only trained on the available points for that country, while the general model was trained on all points, including
those from other countries.

Lucas class Belgium Czechia Germany Luxembourg Netherlands Other Total

Woodland 13,661 46,555 202,657 1,575 4,934 683,623 953,005
Cropland 12,637 25,506 112,383 1,104 3,608 512,865 668,103
Grassland 10,176 21,923 69,541 689 2,647 255,673 354,649
Artificial 2,028 3,286 19,274 170 2,046 65,012 90,816
Shrubland 494 1,005 2,932 11 614 144,393 150,449
Water 451 1,994 8,415 20 1,222 25,085 37,187
Wetlands 50 272 2,903 3 584 8,385 12,197
Bare land 41 18 833 0 152 31,431 32,475

Total 39,538 100,559 418,938 3,572 15,807 1,726,467 2,250,881
5
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2.3. Land cover classification

For each country, we predicted probabilities for the eight LUCAS
land cover classes in the years 2009, 2012, 2015, 2017 and 2018. We
did this once with that country’s local model, and once with general
model. For each set of predicted probabilities, we created a highest
probability class map (HPC) by assigning each pixel to the class having
the highest class probability. This resulted in ten highest probability
class maps per country (five years, times two models).

2.4. Iterative mapping of probabilities

We implemented IMP, a post-processing algorithm, on each set of
predicted probabilities (year, country, model). IMP is designed to create
the most accurate possible hard-class map with (1) a given set of
predicted probabilities and (2) an existing area estimate, based on the
following assumptions:

1. Bias between classes Models can have unknown biases and
may overpredict certain classes by assigning relatively higher
probabilities for them on average, which leads to rarer classes
being underrepresented by highest likelihood classification (He
and Garcia, 2009; Waldner and Defourny, 2017).

2. Ranking within classes Within each class, the pixels with
higher predicted values are more likely to correspond with
actual occurrence of that class in a given pixel, regardless of
the predicted probability values for other classes in the same
pixel. Essentially, even if all probabilities for a single class are
relatively low, they are at least roughly ranked in the correct
order of likelihood for a given class. This is not always guaran-
teed (Niculescu-Mizil and Caruana, 2005), but can generally can
be expected from accurate classifiers.

3. Overlap between classes: When selecting pixels based on the
level of their within-class relative probability, some pixels may
be the best candidates for multiple classes (i.e. being in the top
percentile of probabilities), either due to model bias, or due to
multiple classes actually occurring inside the same pixel (Hor-
vath et al., 2021).

In general, IMP functions similar to the method proposed by Hor-
ath et al. (2021): It loops over every class, selecting the pixels with
he highest predicted probability for that class and assigns the corre-
ponding pixels on the output map to that class. However, to minimize
he overlap problem, IMP does not do this once, but several times, each
ime selecting only the top percentile of available pixels for each class.

e set the number of iterations to 20 in our presented experiments.
his means that at every iteration, IMP selects the best 5% of the target
roportion from the best available pixels for each class. For example, a
lass which was estimated to cover 20% of a country’s surface, at the
irst iteration, only the pixels with 0.2% of that class’ highest predicted
robabilities will be assigned to that class. At the second iteration, it
ould select and the pixels that are within 0.4% of that range, but some
f those pixels will have been assigned to other classes. Instead, it will
elect the pixels with the top 0.2% highest probabilities for that class
mongst the remaining unassigned pixels in the output map. Fig. 3 presents
visualization of how IMP gradually fills a map until the proportions

f each class matches those in the target area estimate. A detailed
escription of IMP is provided in Appendix B.

.5. Accuracy assessment

We assess the allocation and quantity disagreement (Pontius and
illones, 2011) of the produced models and maps by validating the
aps of 2009, 2012, 2015 and 2018 with LUCAS points (d’Andrimont

t al., 2020) and the maps of 2017 with S2GLC points (Jenerowicz
t al., 2021). Table 3 shows the support per class per country for
6

Table 3
Summary of LUCAS points per country and LUCAS level 1 class, used to validate the
land cover maps of 2009, 2012, 2015, and 2018.

Lucas class Belgium Czechia Germany Luxembourg Netherlands Total

Artificial 1,365 1,120 8,911 83 1,742 13,221
Cropland 4,006 10,487 47,926 285 4,147 66,851
Woodland 2,902 8,552 34,813 347 1,845 48,459
Shrubland 139 218 1,042 15 271 1,685
Grassland 4,332 6,199 30,540 402 6,014 47,487
Bare land 236 306 1,332 13 286 2,173
Wetlands 150 283 1,786 8 720 2,947
Water 42 62 542 0 101 747
Total 13,172 27,227 126,892 1,153 15,126 183,570

Table 4
Summary of S2GLC points per country and LUCAS level 1 class, used to validate the
land cover maps of 2017.

Lucas class Belgium Czechia Germany Luxembourg Netherlands Total

Artificial 115 39 183 8 193 538
Cropland 325 439 1,211 16 246 2,237
Woodland 225 258 1,039 23 202 1,747
Shrubland 2 1 8 0 18 29
Grassland 200 60 459 17 329 1,065
Bare land 15 14 42 0 21 92
Wetlands 12 6 10 0 49 77
Water 2 0 23 0 7 32
Total 896 817 2,975 64 1,065 5,817

LUCAS points, and Table 4 for the S2GLC points. We quantify alloca-
tion disagreement with the Weighted F1-score metric (Van Rijsbergen,
1980), a harmonic mean of user’s and producer’s accuracy (precision
and recall), because it distinguishes classification performance more
strictly on datasets with imbalanced class distributions. This makes it
a useful metric to compare the classification performance when both
accuracy and proportion of each class are important. This is done both
for the highest likelihood class maps (based on the highest probability
per point or pixel) and the proportional class maps produced by IMP.
We measure quantity disagreement with the percentage that class-wise
proportions of each map deviate from the area assessment of the target
country in the target year.

3. Results

3.1. Training data preprocessing

The LUCAS/CORINE training dataset used by Witjes et al. (2022)
contained 3,381,460 CORINE centroids with CORINE classes that were
compatible to the LUCAS level 1 legend. Filtering the CORINE centroids
with Copernicus HRL and OpenStreetMap data removed 1,076,579
points, or 31.84 percent of the data. Appendix A presents a full
overview of the amount of training points removed by each filtering
rule.

3.2. Land cover classification and proportional post-processing

Predicting eight land cover classes for five years with two models (a
country-specific local model and a common general model) resulted in
80 predicted probability layers per country. Creating hard-class maps
with highest likelihood classification yielded one map with eight classes
for each year and each country, resulting in 25 hard-class maps.

Applying the algorithm in 20 iterations on the probabilities pre-
dicted by a country-specific local model and the general model pro-
duced an equal number of proportional class maps each country, year,
and model type. Fig. 4 shows the proportional land cover map of the en-
tire study area for 2009, based on probabilities predicted by the LUCAS
mode. Fig. 5 shows an example of the iterative classification process

resulting in a proportional land cover map, as well as a comparison
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Fig. 3. Visualization of how IMP gradually classifies each pixel in the study area, selecting the pixels with the highest available probabilities for each class in each iteration.
Fig. 4. LUCAS Land cover maps of Belgium, Czechia, Germany, Luxembourg and the Netherlands of 2009 generated with the proposed algorithm, using Eurostat national area
estimates and probabilities predicted by the general CatBoost model trained on CORINE centroid points from all countries that implemented LUCAS in 2006.
with the highest likelihood map and the iteration at which each pixel
was filled. Note that pixels that were classified at later iterations tend
to also be marked as differences with the highest likelihood map, and
that there are distinct spatial patterns in their occurrence: For instance,
the edges of the grassland patches in the northern part of the area, the
7

suburban part in the southern area, and the urban green areas in the
city proper.

A complete overview of the area estimates by Eurostat and mapped
area per country, year, class, model type, and map type is included
in Appendix C. Almost all proportional maps had pixel proportions
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Fig. 5. Example of the IMP iterative classification process and comparison to highest likelihood classification, using the northwestern outskirts of Apeldoorn, the Netherlands. A:
high-resolution reference imagery from Google Earth; B–D: classifications over subsequent iterations, identified in E; F: differences between the proportional map and the highest
likelihood map; G: the highest likelihood map itself.
Fig. 6. Percentage of map area filled per iteration of the IMP algorithm, for the map of Czechia for 2009. Each line with dots indicates the percentage of area assigned to each
LUCAS land cover class at each iteration. The dashed lines indicate the mean area estimated by Eurostat, with the lighter-colored area around each dashed line indicating the
accompanying confidence interval.
that fell within the confidence intervals of the Eurostat-derived area
estimate. Only some maps derived from probabilities predicted by local
models had class proportions that were outside the confidence intervals
of the Eurostat area estimates. The only case of underrepresentation
was Bare Land in the maps derived from probabilities predicted by the
8

local model for Luxembourg, as this class was not represented in the
training data. Also in Luxembourg, Woodland was overrepresented by
the local model by an average of 0.03 percent above the upper bound
of the Eurostat-supplied confidence interval. Both issues are likely due
to the fact that Luxembourg’s local model was trained on a relatively
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Fig. 7. Percentage of pixels for which any probability above zero was predicted per class, compared to the proportion of that class according to the Eurostat area estimate used
to create proportional maps of the Netherlands in 2009. Note that the general model predicted a surplus of probabilities above zero for each class, while the local model did not
predict probabilities above zero in enough pixels for Water.
small dataset compared to the other models, as no under- or overrep-
resentation occurred in proportional maps derived from probabilities
produced by the general model.

The Artificial class was overrepresented in the 2012 map of Germany
by 0.04 percent of the upper bound, and finally, the Shrubland class
was overrepresented in the 2009 map of Czechia by 11 percent. This is
the biggest percentual error in all proportional maps, and constitutes a
representation of 0.87 percent of Czechia’s surface instead of the 0.69
percent estimated by Eurostat, with an upper confidence bound of 0.78
percent. This relatively large overrepresentation was caused after the
final iteration, where remaining gaps in the map were filled with the
highest likelihood class. These gaps were assigned to Grassland and
Shrubland, for which more pixels were available with higher probabili-
ties. Fig. 6 shows how the iterative classification, or ‘filling’ of the 2009
9

map of Czechia proceeded. The general behavior of each class is similar
to those observed in other countries and years, but not every class
approaches the area estimate at the same rate, with Woodland reaching
the confidence interval at iteration 8, and Grassland at iteration 19.
We observed a similar pattern in other maps: More gaps remained at
the final iteration when there was a relatively small surplus of pixels
with predicted probabilities for each class. Generally, classes for which
there was a low number of pixels with any probability compared to
their proportion according to the Eurostat estimate were classified less
accurately, and in proportions that less closely matched the Eurostat
estimates. Predictions by the general model tended to have probabilities
for more different classes in each pixel, especially for rarer classes.
Fig. 7 shows this for predictions for the Netherlands in 2009. Both
models predicted probabilities above zero for Cropland and Grassland



International Journal of Applied Earth Observation and Geoinformation 131 (2024) 103932M. Witjes et al.
Fig. 8. Weighted F1-score of the land cover maps classified with maximum likelihood (𝑋-axis) and the iterative mapping (𝑌 -axis), validated on LUCAS and S2GLC reference data.
Maps based on probabilities predicted by the general model are shown in blue, while maps based on probabilities predicted by local models are shown in orange. The boxplots
at the top and right summarize the F1-scores of maximum likelihood and proportional classification, respectively. The diagonal reference line shows where the F1-score would be
equal, while the horizontal and vertical line represent the average across all F1-scores. Points above the diagonal reference line indicate maps where proportional maps were more
accurate. In most cases, proportional maps had higher F1-scores than maximum likelihood maps. This difference was generally larger when using probabilities predicted by the
general model, although maps based on predictions by local models were more accurate on average. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
on a large number of pixels compared to their prevalence as estimated
by Eurostat, but the local model barely predicted enough pixels for
Bare Land, and an insufficient amount for Water. While the general
model predicted a smaller surplus of pixels with probability above zero
for Artificial and Woodland, it predicted surpluses for each class. The
comparison of Eurostat estimates and counts based on classification
in Appendix C show that proportional maps based on probabilities
predicted by the general model matched the Eurostat estimates more
closely than those based on probabilities predicted by the local model.

3.3. Accuracy assessment

F1-scores calculated by overlaying the highest likelihood and pro-
portional maps of 2009, 2012, 2015 and 2018 on LUCAS points of
matching years and the maps of 2017 on S2GLC points show (see
Fig. 8) the accuracy of proportional maps tended to be higher or equal
to the accuracy of highest likelihood maps. The difference between
highest likelihood maps and proportional maps created from the same
predicted probabilities is more pronounced on maps created by the
general model, which was trained on the entire training dataset. On
average across all mapped years (see Table 5, proportional maps were
more accurate than highest likelihood maps in most cases. Proportional
maps consistently achieved a weighted F1-score above 0.7 on LUCAS
points, and above 0.85 on S2GLC points. Fig. 9 shows that the highest
likelihood maps generally had higher precision (User’s accuracy) than
10
proportional maps, while Fig. 10 shows that proportional maps gener-
ally had higher recall (Producer’s accuracy). This sacrifice of precision
for gains in recall can explain the noted increase in F1-score. Note
that we use the weighted precision and recall metrics to give equal
importance to the performance of every class.

As shown in Fig. 11, the proportional maps had a lower quantity
disagreement than the maximum likelihood maps, reducing it to near-
zero in most cases. It also shows that maximum likelihood maps based
on probabilities predicted by local models tended to be more accurate
than those based on probabilities predicted by the general model.

4. Discussion

4.1. Algorithm design and performance

We found that IMP yielded higher accuracy compared to highest
probability class assignment.

Where the use of prior probabilities to adjust classification thresh-
olds such as summarized by Mingguo et al. (2009) does not guarantee
method proposed by Horvath et al. (2021) leaves considerable gaps due
to overlapping ‘best probability’ pixels for several classes, our iterative
approach with a decaying threshold minimizes this problem by clas-
sifying the best pixels for every class first. Any remaining unclassified
pixels can be filled in with the highest likelihood class without severely
affecting the distribution of classes. The number of iterations can be
increased to improve convergence to area estimates, which might be



International Journal of Applied Earth Observation and Geoinformation 131 (2024) 103932M. Witjes et al.
Fig. 9. Weighted precision (User’s accuracy) of the land cover maps classified with maximum likelihood (𝑋-axis) and the iterative mapping (𝑌 -axis), validated on LUCAS and
S2GLC reference data. Maps based on probabilities predicted by the general model are shown in blue, while maps based on probabilities predicted by local models are shown in
orange. The boxplots at the top and right summarize the precision of maximum likelihood and proportional classification, respectively. The diagonal reference line shows where
the F1-score would be equal, while the horizontal and vertical line represent the average across all precision scores. Points above the diagonal reference line indicate maps where
proportional maps were more precise. Note that proportional maps generally had a lower precision than maximum likelihood maps, and that this difference was bigger for maps
based on probabilities predicted by local models. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
.

Table 5
Comparison of F1-scores for different countries, validation datasets, and model types.
The table presents the F1-scores for both highest likelihood and proportional maps
across five countries, using two validation datasets (S2GLC and LUCAS) and two model
types (local and general). The ‘‘Difference’’ column quantifies the difference in F1-scores
between the highest likelihood and proportional maps. Note that the LUCAS values are
averages of the 4 years that were mapped and validated: 2009, 2012, 2015 and 2018

Country Dataset Model Type F1-score

Proportional Highest likelihood Difference

NL
S2GLC local 0.85 0.86 −0.01

general 0.86 0.80 0.06

LUCAS local 0.71 0.72 −0.01
general 0.73 0.67 0.06

LU
S2GLC local 0.95 0.98 −0.03

general 0.97 0.91 0.06

LUCAS local 0.75 0.73 0.02
general 0.73 0.68 0.05

DE
S2GLC local 0.94 0.93 0.01

general 0.93 0.83 0.10

LUCAS local 0.77 0.77 0.00
general 0.76 0.70 0.06

BE
S2GLC local 0.90 0.87 0.03

general 0.92 0.87 0.05

LUCAS local 0.71 0.71 0.00
general 0.72 0.70 0.02

CZ
S2GLC local 0.94 0.91 0.03

general 0.96 0.88 0.08

LUCAS local 0.78 0.78 0.00
general 0.78 0.73 0.05
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needed if there are relatively few pixels with probabilities for one or
more classes. Using models that push probability mass away from 0
and 1 like boosting (Niculescu-Mizil and Caruana, 2005), as was used
in this work, may play a role as well.

We did not expect the proportional maps to be consistently either
equally or more accurate than those created by highest likelihood
classification. A possible explanation for this improvement in accuracy
is that by forcing the classification to be stratified according to an
accurate area estimate, we reduce the bias of the model. This is sup-
ported by the fact that the difference in accuracy between proportional
and highest likelihood class maps was higher when using probabilities
predicted by the general model: A general model, having been trained
on a dataset that is less representative of any given country, is therefore
likely to be more biased (He and Garcia, 2009), which gives more space
for the iterative algorithm to improve the map. This corresponds to
claims by Sales et al. (2022) and Kleinewillinghöfer et al. (2022) that
area estimates are better derived from predictions by models that were
trained on datasets representative of the area of interest.

4.2. Limitations and potential improvements

While the proposed algorithm correctly mapped to area proportions
in most attempts, this is not generally guaranteed. Experiments with
different preprocessing workflows, model types, and parameters such as
the number of iterations, suggested that the algorithm performs better
in both quantity and allocation accuracy when, respectively, more
pixels in the area of interest have a predicted probability for multiple
classes (see Figs. 6 and ??), and when these probabilities are properly

ranked within each class. We did not include these initial experiments
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Fig. 10. Weighted recall (Producer’s accuracy) of the land cover maps classified with maximum likelihood (𝑋-axis) and the iterative mapping (𝑌 -axis), validated on LUCAS and
S2GLC reference data. Maps based on probabilities predicted by the general model are shown in blue, while maps based on probabilities predicted by local models are shown
in orange. The boxplots at the top and right summarize the recall of maximum likelihood and proportional classification, respectively. The diagonal reference line shows where
the F1-score would be equal, while the horizontal and vertical line represent the average across all recall scores. Points above the diagonal reference line indicate maps where
proportional maps had a higher recall. Observations include: (1) Proportional class maps generally exhibit a marginally higher F1-score, (2) The range of quantity error for
proportional class maps narrow compared to highest probability class maps, and (3) Highest probability maps generated by the general model were less accurate in terms of both
quantity and allocation disagreement than those generated by local models. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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for the sake of brevity, but this should be taken into account when
applying our method to other probability predictions. Based on our
omitted findings about the quantity of pixels with predicted probabil-
ities for any given class, we expect techniques that push probability
mass away from extreme values, such as label smoothing (Müller et al.,
2020) might help the algorithm converge to the area estimates, as more
pixels will be available with probabilities for more classes. This might
not lead to more accurate maps by itself, however. It is possible that
accuracy of proportional maps could be increased by using probabilities
that more closely meet the assumption that probabilities are properly
ranked, such as those produced by Platt Scaling (Niculescu-Mizil and
Caruana, 2005).

4.3. Potential applications

The primary purpose for which this algorithm was designed is to
create, or update, land cover maps based on predicted probabilities,
using a given area estimate. This area estimate can be derived from
an external source, such as a sample-based measurement, like in the
case of this study. However, the algorithm might also be used to
update a map used to derive area estimates with post-stratification
sampling (Olofsson et al., 2014), using the corrected area estimates
and the original probabilities that were used to make the initial map.
Besides this purpose, however, we suggest interested parties consider
the following:
12

p

Our results show that the single, bigger general model was often
ess accurate when mapping a single area of interest than the local
odels that were trained only on data from their corresponding country.
owever, this difference in accuracy disappeared in proportional maps,
nd the general model successfully detected a rare class that was not
resent in the training data for Luxembourg, whereas the local model
imply skipped these classes.

Additionally, the iterative nature of IMP enables the production
f spatially explicit uncertainty assessments. Pixel-level uncertainty is
seful because it can be propagated in spatial models that use land
over as a covariate (Herold et al., 2016). During this study, we found
hat the pixels classified in earlier iterations have a higher validation
llocation disagreement than those classified in later iterations (see
ig. 12 for an example). It is therefore possible to calculate separate
recision (User’s accuracy) scores per class and per iteration, leading
o a more fine-grained indicator of each pixel’s reliability for decision
akers or use in subsequent modeling. The combination these ‘iteration
aps’ (see Fig. 5E) with the user’s accuracy of each iteration needs

urther study.
Furthermore, it is possible that our proposed algorithm might im-

rove the temporal consistency of land cover classification, leading
o better land cover change mapping. Due to variations in satellite
eflectance per mapped time period, spurious changes are often in-
luded in land cover change maps that do not implement proper
ost-processing techniques. While many such techniques already exist,
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Fig. 11. Class-wise allocation disagreement of maximum likelihood (𝑋-axis) and proportional (𝑌 -axis) maps based on probabilities predicted by the general model (blue) and local
models (orange). Allocation disagreement is quantified as area percent error: the percent point difference between the target area estimate and the amount of pixels classified on
the map. Note that proportional maps had errors close to zero, with the exception of Luxembourg (indicated with +), and that highest likelihood maps based on probabilities
predicted by local models had lower quantity disagreement than those based on predictions by the general model. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
they often rely on contiguous time series of predictions or are com-
putationally intensive. Our proposed algorithm does not have these
limitations, only requiring an up-to-date area estimate of each year, or
an interpolation such as the one used to make maps of the year 2017 in
this study. If further research indicates that the algorithm can reduce
spurious change, it would therefore be a useful addition to the existing
methods.

Lastly, during this study it became clear that the method might be
suitable for more than only making maps whose proportions match
area estimates. The observed improvement in accuracy of proportional
maps output by IMP over highest likelihood classification suggests
that forcibly improving quantity disagreement with posterior quantity
estimates can improve allocation disagreement to a certain extent. This
means that IMP could be used to validate area estimates themselves.
When provided with (1) a validation dataset that was not used in the
area estimation process and suitable for the mapped resolution (such as
the S2GLC points in this study), (2) predicted probabilities of sufficient
quality, and (3) multiple area estimates, the best area estimate should
lead to the most accurate proportional map possible. Exploring this
13
further was beyond the scope of this study but may prove a promising
use case.

5. Conclusion

We present an algorithm that can transform predicted probabilities
by a given machine learning model into maps whose class propor-
tions match area estimates. Our validation on two independent test
datasets (LUCAS and S2GLC points) across five years and five countries
show that these maps were also equally, if not more, accurate than
maps classified according to the maximum probability per pixel. In
our experiments, this increase in accuracy was achieved by sacrificing
some degree of precision (User’s accuracy) for relatively larger gains in
recall (Producer’s accuracy). Because pixels classified at each iteration
have different precision and recall values, the iteration at which a
pixel was classified can be used to approximate pixel-wise uncertainty.
IMP greatly improves the accuracy of models trained on a bigger, but
imbalanced, training dataset. This means that it can be used to optimize
predictions by big models to local contexts if reliable area estimates
are available. This offers potential for the increasing number of global



International Journal of Applied Earth Observation and Geoinformation 131 (2024) 103932M. Witjes et al.

l
d
h
g
p
d
e

a
a
t
n
t
w
I

C

d
r

Fig. 12. Validation performance of proportional maps compared to the highest like-
ihood baseline. This example of the weighted F1 score of the partially filled-in map
uring each iteration of IMP, and a comparison with the weighted F1-score of the
ighest likelihood map when derived from probabilities predicted by the local (a) and
eneral (b) model. The lines represent validations of all maps of Czechia. Note that the
ixels classified at early iterations achieve a higher score, and that the score gradually
ecreases as a greater number of pixels is classified, stabilizing at or above baseline
stablished by highest likelihood maps.

nd continental-scale maps which are trained on a rich feature space
nd achieve high overall accuracy, but have also been criticized for
heir relatively low accuracy and/or usefulness at more local scales. By
egating the bias from large scale models, IMP can therefore contribute
o make accurate and useful maps of smaller regions. This, combined
ith the potential to generate pixel-based error estimates, suggests that

MP can be a valuable tool for decision makers and other stakeholders.
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Appendix A. Training point filtering

See Table A.6.

Appendix B. IMP algorithm in pseudocode

Algorithm 1 Iterative Mapping of Probabilities
Input:
• 𝑃 , predicted probabilities for each class 𝐶
• 𝐸, the target area estimate
• 𝐼 , the number of iterations
Output:
• 𝑀 , the land cover map whose class proportions should match 𝐸.

1: Initialize the empty output map 𝑀
2: for iteration 𝑖 = 1 to 𝐼 + 1 do
2.1 Set ratio 𝑟𝑖 to 𝑖

𝐼
2.2 for each 𝐶 do
2.2.1 𝐸𝐶 = The target number of pixels of 𝐶 in the output 𝑀

according to 𝐸
2.2.2𝑀𝐶𝑖 = Number of pixels in 𝑀 already classified as 𝐶 at

𝑖
2.2.3 𝑁𝐶𝑖 = Number of pixels that must still be classified as

𝐶 to match 𝐸𝐶
2.2.4 𝑃𝐶 = All pixels in 𝑃 with probability for 𝐶 above 0
2.2.5 𝑃𝐶𝑖 = All unclassified pixels in 𝑃𝐶
2.2.6 𝐸𝐶𝑖 = Number of pixels to classify in 𝑖 = 𝑁𝐶 × 𝑟𝑖
2.2.7 𝑄 = the top 𝐸𝐶𝑖

𝑃𝐶𝑖
-th percentile of 𝑃𝐶𝑖

2.2.8 𝑃𝑄 = The lowest probability among pixels in 𝑄
2.2.9 𝑁𝐶𝑄 = Number of pixels in 𝑃 with probability values

≥ 𝑃𝑄 for 𝐶.
2.2.10 if 𝑁𝐶𝑄 > 𝑁𝐶𝑖 do
• Select all pixels with probability ≥ 𝑃𝑄 + 1 & update
𝑁𝐶𝑄

• Randomly sample 𝑁𝐶𝑄 −𝑁𝐶𝑖 pixels with probability
𝑃𝑄

• Classify both pixel groups as 𝐶
else
• Classify all pixels in 𝑃𝐶𝑖 with probability ≥ 𝑃𝑄 as 𝐶.

3: Classify all remaining unclassified pixels using highest
likelihood classification.

https://zenodo.org/records/10641340


International Journal of Applied Earth Observation and Geoinformation 131 (2024) 103932M. Witjes et al.
Table A.6
Point filtering rules per class used to remove potential label errors from the CORINE centroids before using them as training
data, as well as the number of points that resulted.

LUCAS class Condition dataset Source Removed

Artificial > 150 OSM Buildings/Cop Imp. Witjes et al. (2022) 68,444
Artificial < 50 OSM buildings/Cop Imp. Witjes et al. (2022) 333,526
Non-Artificial > 50 < 150 OSM buildings/Cop Imp. Witjes et al. (2022) 9,594
Non-Artificial > 30 Rasterized OSM Roads Witjes et al. (2022) 161,576
Non-Artificial > 30 Rasterized OSM Railroads Witjes et al. (2022) 2,759
Woodland < 1 Cop Tree Cover Programme (2023) 62,731
Shrubland > 50 Cop Tree Cover Programme (2023) 121,464
Shrubland > 50 Cop Grassland Programme (2023) 48,734
Grassland < 1 Cop Grassland Programme (2023) 174,616
Grassland > 30 Cop Tree Cover Programme (2023) 48,443
Bare Land > 1 Cop Tree Cover Programme (2023) 16,156
Bare Land > 1 Cop Grassland Programme (2023) 11,052
Wetlands < 1 Cop Temp and Perm Wetness Programme (2023) 7,973
Water < 50 Cop Permanent Water Programme (2023) 9,511
Table C.7
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for BE in 2009.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 9.39 9.92 10.45 16.32 11.58 9.92 9.95 Local Prop.
Cropland 26.05 26.72 27.38 20.41 19.16 26.72 26.72 Tie Prop.
Woodland 23.88 24.54 25.2 25.0 21.31 24.54 24.54 Tie Prop.
Shrubland 0.79 0.94 1.09 0.96 3.27 0.94 0.96 Local Prop.
Grassland 34.37 35.29 36.2 36.82 43.51 35.27 35.23 Local Prop.
Bare land 0.9 1.13 1.37 0.0 0.13 1.14 1.14 Tie Prop.
Wetlands 0.05 0.07 0.09 0.0 0.08 0.08 0.08 Tie Tie
Water 1.23 1.4 1.57 0.49 0.95 1.4 1.4 Tie Prop.
Table C.8
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for BE in 2012.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 10.33 10.84 11.35 16.15 11.48 10.85 10.85 Tie Prop.
Cropland 28.7 29.44 30.18 19.95 16.9 29.44 29.42 Local Prop.
Woodland 23.75 24.31 24.87 25.23 21.2 24.31 24.31 Tie Prop.
Shrubland 0.74 0.85 0.97 1.39 3.83 0.86 0.86 Tie Prop.
Grassland 31.08 31.98 32.88 36.7 45.42 31.96 31.98 General Prop.
Bare land 0.7 0.81 0.91 0.0 0.11 0.81 0.81 Tie Prop.
Wetlands 0.28 0.34 0.4 0.0 0.12 0.35 0.35 Tie Prop.
Water 1.24 1.43 1.62 0.58 0.94 1.43 1.43 Tie Prop.
Appendix C. Full area results

This appendix shows the area per land cover as estimated by Eu-
rostat, predicted by both the country’s local model and the general
model, and processed into a hard-class map by both highest likelihood
classification and iterative mapping of probabilities. The ‘Best’ columns
show which combination of model type and mapping type resulted
in a mapped area that most closely matched the mean estimated by
Eurostat. The Eurostat ‘Min’ and ‘Max’ columns are the estimated mean
minus and plus the reported variance of the estimate; these indicate the
range that should ideally contain the mapped area.

C.1. Belgium

Proportional maps of Belgium consistently matched Eurostat area
estimates more closely than highest likelihood maps. Out of 5 years for
8 classes, classes mapped from predictions by general models matched
Eurostat estimates more closely than those made from predictions by lo-
cal models 8 times, while classes mapped from local model predictions
had a closer match 6 times (see Tables C.7–C.11).
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C.2. Czechia

Proportional maps of Czechia consistently matched Eurostat area
estimates more closely than highest likelihood maps. Out of 5 years for
8 classes, classes mapped from predictions by general models matched
Eurostat estimates more closely than those made from predictions by lo-
cal models 4 times, while classes mapped from local model predictions
had a closer match 9 times (see Tables C.12–C.16).

C.3. Germany

Proportional maps of Germany consistently matched Eurostat area
estimates more closely than highest likelihood maps, with the exception
of a tie for Artificial land cover in 2017. Out of 5 years for 8 classes,
classes mapped from predictions by general models matched Eurostat
estimates more closely than those made from predictions by local
models 7 times, while classes mapped from local model predictions had
a closer match 6 times (see Tables C.17–C.21).
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Table C.9
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for BE in 2015.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 10.9 11.39 11.88 14.49 10.59 11.5 11.39 General Prop.
Cropland 28.2 28.54 28.88 21.9 19.75 28.54 28.53 Local Prop.
Woodland 24.42 24.67 24.92 25.21 21.94 24.68 24.67 General Prop.
Shrubland 1.56 1.63 1.7 1.14 2.94 1.63 1.63 Tie Prop.
Grassland 30.4 31.02 31.64 36.67 43.57 30.89 31.03 General Prop.
Bare land 0.75 0.83 0.91 0.0 0.11 0.83 0.83 Tie Prop.
Wetlands 0.27 0.47 0.67 0.0 0.08 0.47 0.47 Tie Prop.
Water 1.29 1.45 1.61 0.59 1.01 1.46 1.46 Tie Prop.
Table C.10
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for BE in 2017.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 11.13 11.62 12.12 14.75 10.74 11.76 11.63 General Prop.
Cropland 28.53 28.89 29.26 19.49 18.67 28.9 28.88 Local Prop.
Woodland 25.6 25.86 26.12 23.47 19.67 25.86 25.86 Tie Prop.
Shrubland 1.33 1.39 1.45 1.13 3.24 1.39 1.39 Tie Prop.
Grassland 28.51 29.11 29.71 40.63 46.39 28.96 29.11 General Prop.
Bare land 1.33 1.44 1.55 0.0 0.11 1.45 1.45 Tie Prop.
Wetlands 0.31 0.46 0.6 0.0 0.16 0.46 0.46 Tie Prop.
Water 1.1 1.22 1.34 0.54 1.02 1.23 1.23 Tie Prop.
Table C.11
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for BE in 2018.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 11.25 11.74 12.24 15.07 10.72 11.79 11.75 General Prop.
Cropland 28.69 29.07 29.44 22.4 21.55 28.99 29.05 General Prop.
Woodland 26.19 26.46 26.72 25.02 21.66 26.46 26.46 Tie Prop.
Shrubland 1.21 1.27 1.33 1.39 3.41 1.28 1.28 Tie Prop.
Grassland 27.56 28.15 28.74 35.54 41.43 28.16 28.16 Tie Prop.
Bare land 1.63 1.75 1.87 0.0 0.12 1.76 1.76 Tie Prop.
Wetlands 0.33 0.45 0.57 0.0 0.09 0.46 0.46 Tie Prop.
Water 1.01 1.11 1.21 0.58 1.01 1.11 1.11 Tie Prop.
Table C.12
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for CZ in 2009.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 4.05 4.26 4.47 4.41 4.0 4.31 4.27 General Prop.
Cropland 33.16 33.63 34.11 31.7 26.96 33.64 33.56 Local Prop.
Woodland 36.35 36.8 37.24 34.74 23.82 36.8 36.8 Tie Prop.
Shrubland 0.6 0.69 0.78 1.77 7.78 0.87 0.69 General Prop.
Grassland 21.77 22.26 22.75 26.28 36.44 22.02 22.33 General Prop.
Bare land 0.7 0.81 0.92 0.0 0.05 0.81 0.81 Tie Prop.
Wetlands 0.19 0.26 0.32 0.28 0.06 0.26 0.26 Tie Prop.
Water 1.19 1.29 1.39 0.83 0.89 1.3 1.3 Tie Prop.
Table C.13
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for CZ in 2012.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 4.21 4.41 4.61 4.42 4.13 4.41 4.41 Tie Prop.
Cropland 32.21 32.84 33.46 30.03 25.35 32.79 32.75 Local Prop.
Woodland 37.0 37.72 38.43 35.21 25.57 37.72 37.72 Tie Prop.
Shrubland 0.67 0.78 0.89 1.63 6.43 0.79 0.79 Tie Prop.
Grassland 20.95 21.99 23.02 27.6 37.47 22.02 22.06 Local Prop.
Bare land 0.6 0.7 0.79 0.0 0.06 0.7 0.7 Tie Prop.
Wetlands 0.14 0.18 0.21 0.25 0.06 0.18 0.18 Tie Prop.
Water 1.14 1.39 1.65 0.86 0.95 1.4 1.4 Tie Prop.
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Table C.14
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for CZ in 2015.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 4.42 4.62 4.83 3.82 3.71 4.63 4.63 Tie Prop.
Cropland 31.77 32.03 32.29 31.72 27.78 32.04 31.92 Local Prop.
Woodland 37.27 37.53 37.79 34.64 26.23 37.53 37.53 Tie Prop.
Shrubland 0.93 1.0 1.07 1.49 5.63 0.96 1.0 General Prop.
Grassland 22.07 22.31 22.56 27.25 35.57 22.34 22.4 Local Prop.
Bare land 0.81 0.87 0.92 0.0 0.06 0.87 0.87 Tie Prop.
Wetlands 0.23 0.26 0.29 0.21 0.07 0.26 0.26 Tie Prop.
Water 1.33 1.38 1.43 0.86 0.95 1.38 1.38 Tie Prop.
Table C.15
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for CZ in 2017.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 4.32 4.46 4.59 4.22 3.91 4.46 4.46 Tie Prop.
Cropland 32.93 33.17 33.41 30.9 27.57 33.17 33.12 Local Prop.
Woodland 37.82 38.06 38.31 34.82 27.07 38.07 38.07 Tie Prop.
Shrubland 0.94 1.0 1.06 1.11 4.36 1.0 1.0 Tie Prop.
Grassland 20.64 20.86 21.08 27.87 36.04 20.84 20.9 Local Prop.
Bare land 0.82 0.87 0.93 0.0 0.04 0.88 0.88 Tie Prop.
Wetlands 0.27 0.29 0.32 0.19 0.06 0.3 0.3 Tie Prop.
Water 1.24 1.29 1.33 0.89 0.96 1.29 1.29 Tie Prop.
Table C.16
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for CZ in 2018.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 4.28 4.37 4.47 4.41 4.16 4.38 4.38 Tie Prop.
Cropland 33.5 33.74 33.97 31.13 28.08 33.72 33.65 Local Prop.
Woodland 38.1 38.33 38.56 34.67 26.14 38.34 38.34 Tie Prop.
Shrubland 0.95 1.0 1.06 1.41 5.21 1.0 1.0 Tie Prop.
Grassland 19.93 20.13 20.33 27.34 35.37 20.15 20.21 Local Prop.
Bare land 0.82 0.88 0.93 0.0 0.05 0.88 0.88 Tie Prop.
Wetlands 0.28 0.31 0.33 0.17 0.05 0.31 0.31 Tie Prop.
Water 1.2 1.24 1.28 0.86 0.93 1.24 1.24 Tie Prop.
Table C.17
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for DE in 2009.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 6.7 6.84 6.98 7.6 5.69 6.91 6.84 General Prop.
Cropland 32.04 32.27 32.5 35.96 26.77 32.34 32.19 Local Prop.
Woodland 32.09 32.28 32.47 30.7 20.18 32.28 32.28 Tie Prop.
Shrubland 0.86 0.91 0.97 0.94 6.29 0.92 0.92 Tie Prop.
Grassland 24.49 24.74 24.99 23.32 39.26 24.6 24.81 General Prop.
Bare land 0.76 0.81 0.85 0.11 0.33 0.81 0.81 Tie Prop.
Wetlands 0.36 0.38 0.41 0.15 0.25 0.39 0.39 Tie Prop.
Water 1.7 1.76 1.83 1.2 1.23 1.77 1.77 Tie Prop.
Table C.18
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for DE in 2012.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 6.93 7.06 7.19 7.8 5.78 7.23 7.06 General Prop.
Cropland 31.88 32.21 32.53 33.38 24.65 32.27 32.1 Local Prop.
Woodland 32.51 32.8 33.1 31.43 21.35 32.81 32.81 Tie Prop.
Shrubland 1.01 1.12 1.22 0.98 6.54 1.12 1.12 Tie Prop.
Grassland 23.27 23.62 23.97 24.88 39.8 23.38 23.72 General Prop.
Bare land 0.83 0.89 0.94 0.11 0.34 0.89 0.89 Tie Prop.
Wetlands 0.48 0.53 0.58 0.16 0.27 0.53 0.53 Tie Prop.
Water 1.65 1.78 1.9 1.25 1.27 1.78 1.78 Tie Prop.
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Table C.19
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for DE in 2015.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 7.2 7.38 7.57 7.73 5.75 7.4 7.38 General Prop.
Cropland 31.72 32.27 32.82 34.37 27.34 32.27 32.18 Local Prop.
Woodland 32.54 33.79 35.04 30.41 21.87 33.79 33.79 Tie Prop.
Shrubland 0.92 1.06 1.2 0.92 5.22 1.06 1.06 Tie Prop.
Grassland 21.14 21.88 22.63 25.04 37.99 21.85 21.95 Local Prop.
Bare land 1.03 1.23 1.43 0.09 0.29 1.24 1.24 Tie Prop.
Wetlands 0.46 0.57 0.69 0.17 0.23 0.58 0.58 Tie Prop.
Water 1.55 1.82 2.08 1.27 1.31 1.82 1.82 Tie Prop.
Table C.20
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for DE in 2017.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 7.11 7.5 7.88 7.5 5.65 7.5 7.5 Tie Tie
Cropland 31.77 32.27 32.78 34.03 25.65 32.41 32.22 General Prop.
Woodland 33.21 34.34 35.47 30.61 21.22 34.34 34.34 Tie Prop.
Shrubland 0.94 1.07 1.19 0.87 5.09 1.07 1.07 Tie Prop.
Grassland 20.47 21.13 21.79 25.42 40.51 20.99 21.18 General Prop.
Bare land 1.18 1.38 1.57 0.11 0.32 1.38 1.38 Tie Prop.
Wetlands 0.48 0.57 0.66 0.18 0.28 0.57 0.57 Tie Prop.
Water 1.53 1.75 1.97 1.27 1.29 1.75 1.75 Tie Prop.
Table C.21
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for DE in 2018.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 7.07 7.56 8.04 7.5 5.61 7.56 7.56 Tie Prop.
Cropland 31.79 32.27 32.76 34.72 28.01 32.21 32.17 Local Prop.
Woodland 33.54 34.61 35.69 30.95 20.83 34.62 34.62 Tie Prop.
Shrubland 0.95 1.07 1.19 0.83 7.07 1.08 1.08 Tie Prop.
Grassland 20.13 20.76 21.38 24.47 36.63 20.81 20.85 Local Prop.
Bare land 1.25 1.45 1.64 0.1 0.33 1.45 1.45 Tie Prop.
Wetlands 0.49 0.56 0.64 0.16 0.22 0.57 0.57 Tie Prop.
Water 1.51 1.72 1.92 1.26 1.3 1.72 1.72 Tie Prop.
Table C.22
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for LU in 2009.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 7.59 8.86 10.13 5.56 5.65 8.86 8.86 Tie Prop.
Cropland 16.53 18.45 20.37 25.96 10.93 18.61 18.43 General Prop.
Woodland 31.34 33.55 35.77 38.16 32.97 34.65 33.56 General Prop.
Shrubland 0.44 0.69 0.94 0.01 1.58 0.7 0.7 Tie Prop.
Grassland 33.51 36.86 40.22 30.11 48.5 36.87 36.87 Tie Prop.
Bare land −0.08 1.27 2.63 0.0 0.02 0.0 1.28 General Prop.
Wetlands 0.0 0.0 0.0 0.2 0.0 0.0 0.0 Tie Tie
Water −0.0 0.31 0.62 0.0 0.34 0.31 0.31 Tie Prop.
C.4. Luxembourg

Proportional maps of the Netherlands consistently matched Eurostat
area estimates more closely than highest likelihood maps, with the
exception of ties for the Wetlands class, which was estimated at zero
percent by Eurostat and not predicted inside Luxembourg by any of
the general models. Out of 5 years for 8 classes, classes mapped from
predictions by general model matched Eurostat estimates more closely
18

than those made from predictions by local models 12 times, while
classes mapped from local model predictions had a closer match 6 times
(see Tables C.22–C.26).

C.5. Netherlands

Proportional maps of the Netherlands consistently matched Euro-
stat area estimates more closely than highest likelihood maps. Out
of 5 years for 8 classes, classes mapped from predictions by general

models matched Eurostat estimates more closely than those made from
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Table C.23
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for LU in 2012.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 8.29 9.71 11.12 5.62 5.53 9.71 9.71 Tie Prop.
Cropland 19.05 20.8 22.55 25.17 10.03 20.8 20.79 Local Prop.
Woodland 31.09 32.55 34.01 39.48 34.24 33.74 32.55 General Prop.
Shrubland 0.62 1.23 1.84 0.01 1.18 1.24 1.23 General Prop.
Grassland 31.53 33.9 36.27 29.5 48.65 33.9 33.9 Tie Prop.
Bare land 0.28 1.19 2.1 0.0 0.02 0.0 1.2 General Prop.
Wetlands 0.0 0.0 0.0 0.23 0.0 0.0 0.0 Tie Tie
Water 0.34 0.62 0.89 0.0 0.34 0.62 0.62 Tie Prop.
Table C.24
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for LU in 2015.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 8.74 9.82 10.9 5.74 6.0 9.83 9.83 Tie Prop.
Cropland 22.4 23.31 24.21 24.89 11.38 23.31 23.29 Local Prop.
Woodland 33.53 33.94 34.34 38.52 31.49 34.35 33.94 General Prop.
Shrubland 3.05 3.31 3.57 0.01 2.09 3.32 3.32 Tie Prop.
Grassland 28.26 28.89 29.53 30.62 48.69 28.89 28.9 Local Prop.
Bare land 0.36 0.42 0.49 0.0 0.01 0.0 0.43 General Prop.
Wetlands 0.0 0.0 0.0 0.22 0.0 0.0 0.0 Tie Tie
Water 0.29 0.31 0.33 0.0 0.33 0.31 0.31 Tie Prop.
Table C.25
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for LU in 2017.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 7.37 8.23 9.1 6.07 5.9 8.24 8.24 Tie Prop.
Cropland 21.47 22.28 23.09 23.93 10.32 22.29 22.26 Local Prop.
Woodland 34.17 34.54 34.9 39.32 32.79 35.03 34.54 General Prop.
Shrubland 2.18 2.41 2.64 0.01 2.05 2.42 2.42 Tie Prop.
Grassland 30.83 31.54 32.26 30.46 48.57 31.55 31.55 Tie Prop.
Bare land 0.43 0.5 0.57 0.0 0.01 0.0 0.51 General Prop.
Wetlands 0.0 0.0 0.0 0.2 0.0 0.0 0.0 Tie Tie
Water 0.46 0.49 0.52 0.0 0.35 0.49 0.49 Tie Prop.
Table C.26
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for LU in 2018.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 6.68 7.44 8.2 5.59 5.42 7.44 7.44 Tie Prop.
Cropland 21.01 21.77 22.53 26.5 11.65 21.77 21.77 Tie Prop.
Woodland 34.49 34.84 35.18 38.98 33.08 35.37 34.84 General Prop.
Shrubland 1.75 1.97 2.18 0.0 2.2 1.97 1.94 Local Prop.
Grassland 32.11 32.87 33.63 28.78 47.31 32.88 32.91 Local Prop.
Bare land 0.46 0.54 0.62 0.0 0.01 0.0 0.54 General Prop.
Wetlands 0.0 0.0 0.0 0.14 0.0 0.0 0.0 Tie Tie
Water 0.54 0.58 0.62 0.0 0.34 0.58 0.58 Tie Prop.
Table C.27
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for NL in 2009.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 10.39 10.83 11.27 12.47 10.93 10.83 10.83 Tie Prop.
Cropland 23.04 23.73 24.41 21.38 13.52 23.73 23.73 Tie Prop.
Woodland 11.37 11.85 12.32 15.0 7.68 11.87 11.85 General Prop.
Shrubland 1.75 2.0 2.26 0.82 3.57 2.01 2.01 Tie Prop.
Grassland 38.8 39.72 40.63 40.05 53.21 39.65 39.68 General Prop.
Bare land 1.0 1.25 1.51 0.32 0.72 1.26 1.26 Tie Prop.
Wetlands 0.19 0.24 0.3 1.81 1.25 0.27 0.25 General Prop.
Water 9.92 10.38 10.84 8.16 9.12 10.39 10.38 General Prop.
19



International Journal of Applied Earth Observation and Geoinformation 131 (2024) 103932M. Witjes et al.

A

A

A

Table C.28
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for NL in 2012.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 11.04 11.48 11.92 12.0 10.88 11.48 11.48 Tie Prop.
Cropland 23.56 24.19 24.82 19.43 12.1 24.2 24.18 Local Prop.
Woodland 11.7 12.13 12.55 15.44 7.97 12.17 12.13 General Prop.
Shrubland 1.76 1.96 2.17 0.9 3.44 1.97 1.97 Tie Prop.
Grassland 36.35 37.24 38.13 41.84 54.31 37.16 37.24 General Prop.
Bare land 1.34 1.5 1.65 0.34 0.8 1.5 1.5 Tie Prop.
Wetlands 0.48 0.58 0.67 1.73 1.37 0.6 0.58 General Prop.
Water 10.02 10.92 11.83 8.32 9.12 10.93 10.93 Tie Prop.
Table C.29
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for NL in 2015.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 11.67 12.14 12.6 12.19 10.65 12.14 12.14 Tie Prop.
Cropland 23.98 24.17 24.36 20.25 12.91 24.17 24.17 Tie Prop.
Woodland 12.91 13.02 13.12 15.37 8.39 13.06 13.02 General Prop.
Shrubland 1.88 2.02 2.17 0.91 3.31 2.03 1.97 Local Prop.
Grassland 35.89 36.29 36.69 40.7 53.15 36.23 36.33 General Prop.
Bare land 0.86 0.94 1.01 0.34 0.72 0.94 0.94 Tie Prop.
Wetlands 0.92 1.05 1.19 1.75 1.46 1.06 1.06 Tie Prop.
Water 9.96 10.37 10.79 8.5 9.4 10.38 10.38 Tie Prop.
Table C.30
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for NL in 2017.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 12.01 12.45 12.89 12.06 10.41 12.45 12.45 Tie Prop.
Cropland 23.03 23.22 23.4 18.55 10.64 23.22 23.2 Local Prop.
Woodland 14.29 14.39 14.5 15.29 7.53 14.4 14.4 Tie Prop.
Shrubland 1.69 1.81 1.93 0.8 3.17 1.82 1.81 General Prop.
Grassland 34.95 35.34 35.73 42.44 56.19 35.23 35.34 General Prop.
Bare land 1.67 1.8 1.92 0.32 0.77 1.8 1.8 Tie Prop.
Wetlands 0.75 0.83 0.92 2.14 1.92 0.92 0.84 General Prop.
Water 9.77 10.16 10.55 8.39 9.36 10.17 10.17 Tie Prop.
Table C.31
Land cover area estimated by Eurostat and classified by both model (local and general) and map (highest likelihood
and proportional) types for NL in 2018.

Eurostat Highest likelihood Proportional Best

Min Mean Max Local General Local General Model Map

Artificial 12.18 12.6 13.03 11.88 10.29 12.61 12.61 Tie Prop.
Cropland 22.56 22.74 22.92 22.47 15.78 22.75 22.73 Local Prop.
Woodland 14.98 15.08 15.19 15.71 9.18 15.09 15.09 Tie Prop.
Shrubland 1.6 1.7 1.81 0.97 3.3 1.71 1.7 General Prop.
Grassland 34.48 34.86 35.25 38.26 49.53 34.78 34.87 General Prop.
Bare land 2.07 2.23 2.38 0.34 0.78 2.23 2.23 Tie Prop.
Wetlands 0.66 0.73 0.79 2.01 1.75 0.78 0.73 General Prop.
Water 9.68 10.05 10.43 8.35 9.4 10.06 10.06 Tie Prop.
predictions by local models 15 times, while classes mapped from local
model predictions had a closer match 4 times (see Tables C.27–C.31).
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