

PRESB, a highly efficient preconditioner - September 27, 2023 1/17

Leibniz Institute for Applied Geophysics

Background	Method 00000	Robustness	Efficiency & Scalability	Conclusions & Outlook
Solution technic	ques for linear sy	stems of equatio	ns	
 Direct solvers Very robus Time and direct solve 3D Scalability ⇒ Use compute bottle nect 	It and easy to us memory complex er are $\mathcal{O}(N^2)$ and is non-optimal uter clusters to a	e kities of sparse d $\mathcal{O}(N^{4/3})$ in void memory	 Iterative solvers Lack robustness Only need storage for system matrix and servectors Scalable matrix-vector and vector operations ⇒ Ensure robustness and convergence rate usin preconditioning technology 	non-zero entries of veral additional r multiplications d improve g appropriate iques
PRESB, a highly effic	ient preconditioner - Septer	nber 27, 2023 2/17	Į	Leibniz Institute for Applied Geophysics
Background Motivation	Method 00000	Robustness 0000	Efficiency & Scalability	Conclusions & Outlook O

- Increasingly larger data sets
 - \Rightarrow Leads to larger computational models
 - $\Rightarrow\,$ Large-scale problems with huge number of degrees of freedom
 - $\Rightarrow\,$ Require vast amounts of computational resources
- Iterative solution methods as solution
 - \Rightarrow Reduce computational costs (time and memory requirements)
 - \Rightarrow Enable modelling of large data sets

PRESB, a highly efficient preconditioner - September 27, 2023 3/17

Method Efficiency & Scalability Conclusions & Outlook Background Robustness Linear system of equations for CSEM Complex-valued notation $(\mathbf{K} + i\mathbf{M}_{\sigma} - \mathbf{M}_{\varepsilon})\mathbf{e} = \mathbf{b},$ and real-equivalent two-by-two block system formulations $\begin{bmatrix} \mathbf{K} - \mathbf{M}_{\varepsilon} & -\mathbf{M}_{\sigma} \\ \mathbf{M}_{\sigma} & \mathbf{K} - \mathbf{M}_{\varepsilon} \end{bmatrix} \begin{bmatrix} \mathbf{e}_{\mathbf{R}} \\ \mathbf{e}_{\mathbf{I}} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{\mathbf{R}} \\ \mathbf{b}_{\mathbf{I}} \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \mathbf{M}_{\sigma} & \mathbf{K} - \mathbf{M}_{\varepsilon} \\ \mathbf{K} - \mathbf{M}_{\varepsilon} & -\mathbf{M}_{\sigma} \end{bmatrix} \begin{bmatrix} \mathbf{e}_{\mathbf{R}} \\ \mathbf{e}_{\mathbf{I}} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{\mathbf{I}} \\ \mathbf{b}_{\mathbf{R}} \end{bmatrix}$ Using $\mathbf{\hat{e}}_{l} = -\mathbf{e}_{l}$ one obtains $\begin{bmatrix} \mathbf{M}_{\sigma} & -(\mathbf{K} - \mathbf{M}_{\varepsilon}) \\ \mathbf{K} - \mathbf{M}_{\varepsilon} & \mathbf{M}_{\sigma} \end{bmatrix} \begin{bmatrix} \mathbf{e}_{\mathbf{R}} \\ \hat{\mathbf{e}}_{l} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{\mathbf{l}} \\ \mathbf{b}_{\mathbf{R}} \end{bmatrix}$ **AC** Leibniz Institute for Applied Geophysics 4/17

PRESB, a highly efficient preconditioner - September 27, 2023

Method Background Robustness Efficiency & Scalability Conclusions & Outlook **PREconditioning for Square Blocks**

More generally:

$$\mathbf{A} = \begin{bmatrix} \mathbf{A} & -b \ \mathbf{B}_2 \\ a \ \mathbf{B}_1 & \mathbf{A} \end{bmatrix},$$

subject to assumptions of matrix \mathbf{A} being symmetric positive semi-definite and scalars a and b being of the same sign.

Then, PRESB short for PREconditioning for Square Blocks (e.g. Axelsson et al., 2016) of form

J

$$\mathcal{P} = \begin{bmatrix} \mathbf{A} & -\mathbf{B}_2 \\ \mathbf{B}_1 & \mathbf{A} + \sqrt{ab}(\mathbf{B}_1 + \mathbf{B}_2) \end{bmatrix}$$

is an efficient preconditioner for the above general systems due to the following properties

- $\lambda(\mathcal{P}^{-1}\mathcal{A}) \in [0.5, 1]$
- independent of mesh discretisation and material properties

5/17 PRESB, a highly efficient preconditioner - September 27, 2023

Background 000 Iterative algor	Method ⁰⁰⁰⁰⁰⁰ rithm & applying I	Robustness 0000 PRESB	Efficiency & Scalability 0000	Conclusions & Outlook O		
Appl	lying PRESB requ $\mathbf{P}\begin{bmatrix}\mathbf{w}_1\\\mathbf{w}_2\end{bmatrix} = \begin{bmatrix}\mathbf{f}_1\\\mathbf{f}_2\end{bmatrix}$	ires solving],	Matrix H : <i>H</i> ₀ (curl, Ω) • Efficiently solvabl auxiliary-space ap Vassilevski, 2009)) problem le using the pproach (Kolev and)		
which of Algorith r	consists of the alg n 2: Solve syster	orithm: n with P	 The auxiliary-space Maxwell solver (AMS) in hypre (Falgout and Yang, 2002) based on it ⇒ AMS used to precondition GCR algorithm (inner solver) Alternative solver for system H is direct solver MUMPS (Amestoy et al., 2000) 			
 Set H = I Solve Hg Compute Solve Hh Compute 		$_{ au}\mathbf{g}$ v $_{2}=-\mathbf{h}$				

PRESB, a highly efficient preconditioner - September 27, 2023 7/17

Weiss et al., Iterative solution techniques for 3D controlled-source electromagnetic modelling

Background 000 Implementation	Method ∞∞∞o•	Robustness 0000	Efficiency & Scalability 0000	Conclusions & Outlook O
 ⇒ Iterative in the Py ⇒ Parallelis ⇒ Utilising 	framework impl rthon toolbox cr ed using Messa open-source lib	emented in a stand-a ustEM (Rochlitz et al ge Passing Interface (raries PETSc with acc	lone Fortran code (We ., 2019) MPI) cess to hypre and MUN	iss et al., 2023) and MPS
PRESB, a highly eff	icient preconditioner - Sep	otember 27, 2023 8/17		Leibniz Institute for Applied Geophysics
Background	Method	Robustness	Efficiency & Scalability	Conclusions & Outlook
Robustness wit	ooooo h respect to fre	•ooo equency	0000	0
	Con 10 0 10 -2 10 -4 10 -10 10 -10 10 -12 10 -14 10 -12 10 -14 5	vergence of Outer Solver	Nu	x (a) Layered Earth (a) Layered Earth (b) Layered Earth (c) Layered (c) Lay
PRESB, a highly eff	icient preconditioner - Sep	otember 27, 2023 9/17		Leibniz Institute for Applied Geophysics

Background		Method 00000	Robustness Efficiency & St		& Scalability	Conclusions & Outlook		
Robustness	with re	espect to	o frequency					
								(a) Layered Earth $\sigma_{\rm air} = 10^{-8} \text{ S/m}$
Inner solver	Iterat	ive solver:	AMS-GCR	Dire	ect solver: D	MUMPS		↓ _z
freq [Hz]	N ^{outer}	time [s]	mem [GB]	N ^{outer}	time [s]	mem [GB]		$\frac{\sigma_{\text{Earth}} = 10^{-4} \text{ S/m}}{\sigma_{\text{max}} = 0.01 \text{ S/m}} 500 \text{ m}$
0.1	7	40.0	4.3	6	121.8	14.1		$\frac{\sigma_{\text{rayel}}}{\sigma_{\text{Earth}} = 10^{-4} \text{ S/m}}$ 1000 m
1	10	56.7	4.4	9	147.3	14.1		
10	16	79.3	4.4	15	145.3	14.0		Numerical parameters:
100	22	93.5	4.5	18	157.2	14.1		• Domain size: $30 \times 30 \times 30$
1000	19	70.2	4.4	17	166.7	14.0		Km ⁻ Grounded cable extending
5000	18	62.8	4.4	17	153.0	14.0		from $(-100, 0, 0)$ to
8000	18	96.8	4.4	18	157.8	14.2		moment of 100 Am
10,000	18	460.7	4.4	18	168.7	14.1		 DOF: 980,100 Bup with two MPL processes
								 Outer stopping criterion is
	Deteri	oration	of inner					10^{-12} and inner tolerance is 10^{-3}
pred	conditic	ned iter	ative solve	r!				10
Background		Method 00000	Ro	bustness	5	Efficiency &	& Scalability	Conclusions & Outlook
Robustness	of solv	er with	respect to	problem	ı size			
			froe	uloncy [H	-1			(a) Layered Earth $\sigma_{air} = 10^{-8} \text{ S/m}$ $\sigma_{Earth} = 10^{-4} \text{ S/m}$ $\sigma_{layer} = 0.01 \text{ S/m}$ $\sigma_{warb} = 10^{-4} \text{ S/m}$ 1000 m
	0 1		10		<u>-1000</u>	800	00	
#DOF	Nouter	time[s]	N ^{outer} time	[s] Nout	ter time[s]	Nouter	time[s]	Numerical parameters:
980 100	7	42.2	16 79.3	19 19	70.2	18	96.8	• Domain size: $30 \times 30 \times 30$
3.641.400	8	152.9	15 286.4	4 18	272.6	19	310.2	km [*]
6,879,600	8	343.4	16 646.	5 18	521.8	18	790.5	from $(-100, 0, 0)$ to (100 0, 0) with summer
			JI.			1		moment of 100 Am
		Simula	ation time w	increase ith prol	es approxi olem size	mately lii	nearly	 DOF: 980,100 Run with two MPI processes Outer stopping criterion is 10⁻¹² and inner tolerance is 10⁻³
PRESB, a high	nly efficient	preconditione	r - September 27,	2023 1	1/17			Leibniz Institute for Applied Geophysics

ackground	N	1ethod	Rot	ustness		Efficiency & Scalability	Conclusions & Outloo
Robustness	of solve	r with resp	ect to r	naterial p	roperties	5	
							(b) 3D model $\sigma_{\rm air} = 10^{-8} \text{ S/m}$
relative dielec of air, cover,	ctric permi host rock	ttivity and ore body	$\varepsilon_r^{\rm air} = 1$	L, $\varepsilon_r^{\text{cover}} = 2$	0, $\varepsilon_r^{\text{host rock}}$	= 5, $\varepsilon_r^{\rm ore\ body} = 1$	$\sigma_{cover} = 0.01 \text{ S/m} $ $\sigma_{ore} = 1 \text{ S/m} $ $\sigma_{Earth} = 10^{-4} \text{ S/m} $
relative magn	netic perm	eability	μ _r	=1	$\mu_r = 10$		Numerical parameters:
frequency [H:	z]		N _{it} ^{outer} time[s]		N ^{outer} time[s]		• Domain size: $30 \times 30 \times 36$
0.1			9	590.4	11	691.6	Km ² Grounded cable extending
10			16	282.3	16	279.8	from $(-79, 0, 0)$ to $(52, 0, 0)$
100			23	278.5	24	285.1	Am
8000			18	341.0	18	322.4	• DOF: 2,033,986
							• Outer stopping criterion is 10^{-12} and inner tolerance is 10^{-3}
		stand	Dahustu		Efficie	ancy & Scalability	Conductors 0. Oral
oo	OC		0000		•000		O O
ime and n	nemory i	requiremen	ts for it	erative ar	nd direct	solution metho	ds
							(a) Layered Earth $\sigma_{air} = 10^{-8} \text{ S/m}$
		Iterative Me	thod: GC	R	Direct S	olver: ZMUMPS	$\sigma_{\text{Earth}} = 10^{-5} \text{ S/m}$ $\sigma_{\text{layer}} = 0.01 \text{ S/m}$ 100^{-4} G/m
Inner solver	Precond	itioned GCR	DM	UMPS		-	$o_{\text{Earth}} = 10$ ~ S/m
#DOF	time[s]	mem[GB]	time[s]	mem[GB]	time[s]	mem[GB]	Numerical parameters:
980,100	93.5	4.4	157.2	14.1	166.8	9.0	• Domain size: $30 \times 30 \times 30$
3,641,400	368.4	16.4	1625.0	74.8	1874.1	55.5	Grounded cable extending
6,879,600	661.0	30.1	-	out of memory	-	out of memory	from $(-100, 0, 0)$ to (100, 0, 0) with source moment of 100 Am
							 DOF: 980,100 Run with two MPI processes Outer stopping criterion is 10⁻¹² and inner tolerance is 10⁻³
PRESB, a high	nly efficient p	r econditioner - Sep	otember 27, 2	023 13/1	7		Leibniz Institute for Applied Geophysics

total run time [s] Memory used [GB] Numerical parameters: Peak Memory MUMPS: 281.5 GB Peak Memory PRESB-AMS: 28.5 GB 200 ۲ Crooked loop example (Rochlitz et al., 2019) MUMPS ۲ DOF: 13,447,978 PRESB-AMS ۲ Run with variable MPI 16 24 32 40 48 56 64 0.2 0.4 0.6 0.8 processes # of cores Normalised time ۲ Outer stopping criterion is 10^{-8} and inner tolerance is 10^{-3} Leibniz Institute for Applied Geophysics 15/17 PRESB, a highly efficient preconditioner - September 27, 2023

Background	Method 00000	Robustness	Efficiency & Scalability	Conclusions & Outlook
Conclusions	& outlook	_	_	_
Iterative fram \Rightarrow Robust $\Rightarrow \approx 3$ $\Rightarrow \text{Rec}$ me \Rightarrow Suited for \Rightarrow User friction	nework based c and highly effic 3 times faster quires about one mory for large-scale p endly: Two sim	n PRESB and AM ient order of magnitude roblems ple switches in cu	1S Iess stEM stEM steady and an analysis steady an an analysis steady an analysis steady an analysis steady an analysis steady an analysis steady an analysis steady an	<pre>example 2</pre>
Future devel ⇒ Potentia ⇒ Strateg sides	opments al as forward op ies for dealing v	perator for inversion vith multiple right	-hand restriction protocol and restriction of the second o	acconsticlely with the mech preventers 3500 file ref: seconds: seconds: N-fields N-fields seconds: (for - tic:0.4f) seconds")

PRESB, a highly efficient preconditioner - September 27, 2023 17/17

References								
References								
Amestoy, P. R., Duff, I. S., and L'excellent, JY. (2000). Multifrontal parallel distributed symmetric and unsymmetric solvers. <i>Computer Methods in Applied Mechanics and Engineering</i> , 184(2-4):501–520.								
Axelsson, O., Farouq, S., and Neytcheva, M. (2016). Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems. <i>Numerical Algorithms</i> , 73(3):631–663.								
Falgout, R. D. and Yang, U. M. (2002). hypre: A library of high performance preconditioners. In <i>International Conference on Computational Science</i> , pages 632–641. Springer.								
Grayver, A. V. and Bürg, M. (2014). Robust and scalable 3-D geo-electromagnetic modelling approach using the finite element method. <i>Geophysical Journal International</i> , 198(1):110–125.								
Kolev, T. V. and Vassilevski, P. S. (2009). Parallel auxiliary space AMG for H (curl) problems. <i>Journal of Computational Mathematics</i> , pages 604–623.								
Rochlitz, R., Skibbe, N., and Günther, T. (2019). custEM: Customizable finite-element simulation of complex controlled-source electromagnetic data. <i>Geophysics</i> , 84(2):F17–F33.								
Weiss, M., Neytcheva, M., and Kalscheuer, T. (2023). Iterative solution methods for 3D controlled-source electromagnetic forward modelling of geophysical exploration scenarios. <i>Computational Geosciences</i> , 27:81–102.								
PRESB, a highly efficient preconditioner - September 27, 2023 1/1								
Acknowledgements								

This work was partly funded by Uppsala's Center for Interdisciplinary Mathematics (CIM) and by the Germany Ministry for Education and Research (BMBF) as part of the DESMEX II project in the framework of the research and development program Fona-r4 under grant 033R130DN.

