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Preface: drone-borne data

Benefits and challenges 
in drone-based surveys:

 payload and flight duration

 visibility and weather conditions

 system-related EM noise

 advantages of airborne data 
acquisition

 high agility during flight

 personnel and operating expenses
➢ no additional superposition 

(anthropogenic noise, vehicle noise, 
motion noise, device currents, .. )

➢ no field direction misalignment

➢ signal > sensor sensitivity

➢ no loss of information due to logging

Desired field information is preserved

when

p. 1/18

30. Schmucker-Weidelt-Kolloquium
St. Marienthal, 25. - 29. September 2023

65



Preface: drone-borne data

Fig. 1: Survey site in Merfeld (Germany, 2021). The 
EM transmitter is located about 1 km to the south.

Fig. 2: Field spectra of the ground site. Shown is a time-dependent (top) and an 
averaged (bottom) spectrum of the vertical magnetic flux density.
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Preface: drone-borne data

Fig. 3: Field spectra during flight. Shown is a time-dependent (top) and an 
averaged (bottom) spectrum of the vertical magnetic flux density.
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Preface: drone-borne data

Fig. 3: Field spectra during flight. Shown is a time-dependent (top) and an 
averaged (bottom) spectrum of the vertical magnetic flux density.
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The semi-airborne EM technique
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The semi-airborne EM technique
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Employed sensor platforms

Fig. 4: Employed drone fleet. Displayed is a system 
recording the total field (V1) and two systems 
measuring field components (V2, V3).

V1
Scalar total field magnetometer (OPM)

V2 and V3
Vector induction coil triple (IC)

➢ Frequency range: 
1 to 250 Hz

➢ Frequency range: 
30 Hz to 6 kHz
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Employed sensor platforms

Fig. 4: Employed drone fleet. Displayed is a system 
recording the total field (V1) and two systems 
measuring field components (V2, V3).

[a]: Carrier (uncrewed aircraft)
Battery-powered octocopter

[b]: Sensor (scalar magnetometer) 
 Optically pumped magnetometer (OPM)

[c]: Data logger
24/32 Bit A/D converter

[d]: Sensor (spatial navigation)
Inertial measurement unit (IMU)

[e]: Sensor (vector magnetometer)
Induction coil (IC) triple

[f]: Sensor casing (vector magnetometer)
IC triple + IMU
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Data consistency of differing sensors

Fig. 5: Survey site at the Hope ore deposit 
(Namibia, 2021/2023). Shown are deployed EM 
transmitters (Tx0 - Tx7) and profile lines (P3 – P23) 
composed of several overlapping flight paths 
(black lines).

Fig. 6: Comparison of transfer function estimates. Depicted 
are TFs (in local total field direction) estimated using the 
OPM-based system (black lines) and one IC-based system 
(blue lines) along a profile line (P3) segment. Estimates for 
one active transmitter (Tx1) at 32 Hz are represented.
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Data consistency of differing sensors

Fig. 5: Survey site at the Hope ore deposit 
(Namibia, 2021/2023). Shown are deployed EM 
transmitters (Tx0 - Tx7) and profile lines (P3 – P23) 
composed of several overlapping flight paths 
(black lines).

Fig. 7: Comparison of transfer function estimates. Depicted 
are TFs (in local total field direction) estimated using the 
OPM-based system (black lines) and one IC-based system 
(blue lines). Estimates at one location (50 m profile distance) 
along Profile 3 and for one active transmitter (Tx1) are shown.
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System-related EM noise

Fig. 8: Survey site near Huelva (Spain, 2022). The 
shown flight path was traversed employing 
different sensor platforms.

Fig. 9: Field spectra of different sensor platforms. Depicted are median 
PSD values of the magnetic field along local total field direction.
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Fig. 4: Employed drone fleet.
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System-related EM noise

Fig. 8: Survey site near Huelva (Spain, 2022). The 
shown flight path was traversed employing 
different sensor platforms.

Fig. 10: Field and motion 
spectra. Depicted are 
median PSD values of the 
magnetic field along local 
total field direction (top). 
Also shown are frequency-
dependent Euler angles 
(bottom).
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System-related EM noise

Fig. 8: Survey site near Huelva (Spain, 2022). The 
shown flight path was traversed employing 
different sensor platforms.

start

Fig. 11: Field and motion 
spectra. Depicted are 
median PSD values of the 
magnetic field along local 
total field direction (top). 
Also shown are frequency-
dependent acceleration 
amplitudes (central) and 
angular rates (bottom) 
utilizing the V3 aircraft 
system.

end
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System-related EM noise

Fig. 12: Survey site near Huelva (Spain, 2022). Two 
overlapping flight paths employing differing 
aircraft systems are displayed.

Fig. 13: Comparison of transfer function estimates. Depicted 
are non-binned TFs (in local total field direction) estimated for 
the V2 system (blue) and the V3 system (orange). Estimates 
along a profile line are shown.
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System-related EM noise

Fig. 12: Survey site near Huelva (Spain, 2022). Two 
overlapping flight paths employing differing 
aircraft systems are displayed.

Fig. 14: Comparison of transfer function estimates. Depicted 
are non-binned TFs (in local total field direction) estimated for 
the V2 system (blue) and the V3 system (orange). Estimates at 
one location (1150 m distance to transmitter) are shown.
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Conclusion & Outlook

 High data consistency among the utilized 
sensor platforms

 Severe influence of system-related EM noise
(motion & emission)

 System-related advantages and disadvantages 
(flight velocity, field components measured, 
sensor sensitivity, noise behavior, ..)

 Operational capabilities for the semi-airborne 
EM method up to 6 kHz and 2.5 km transmitter 
distance

➢ < 400 Hz (motion predominant)

➢ > 400 Hz (emission predominant) 

 Elaboration of suitable data weighting for 
inversion

 Reduction of the instrument load and 
optimization of the suspension

 Widening the scope of application for drone-
based EM systems 
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