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Abstract Volcanoes produce a variety of seismic signals and, therefore, continuous seismograms provide
crucial information for monitoring the state of a volcano. According to their source mechanism and signal
properties, seismo‐volcanic signals can be categorized into distinct classes, which works particularly well for
short transients. Applying classification approaches to long‐duration continuous signals containing volcanic
tremors, characterized by varying signal characteristics, proves challenging due to the complex nature of these
signals. That makes it difficult to attribute them to a single volcanic process and questions the feasibility of
classification. In the present study, we consider the whole seismic time series as valuable information about the
plumbing system (the combination of plumbing structure and activity distribution). The considered data are
year‐long seismograms recorded at individual stations near the Klyuchevskoy Volcanic Group (Kamchatka,
Russia). With a scattering network and a Uniform Manifold Approximation and Projection (UMAP), we
transform the continuous data into a two‐dimensional representation (a seismogram atlas), which helps us to
identify sudden and continuous changes in the signal properties. We observe an ever‐changing seismic
wavefield that we relate to a continuously evolving plumbing system. Through additional data, we can relate
signal variations to various state changes of the volcano including transitions from deep to shallow activity, deep
reactivation, weak signals during quiet times, and eruptive activity. The atlases serve as a visual tool for
analyzing extensive seismic time series, allowing us to associate specific atlas areas, indicative of similar signal
characteristics, with distinct volcanic activities and variations in the volcanic plumbing system.

Plain Language Summary Volcanoes generate diverse seismic signals, and analyzing continuous
seismograms can offer valuable insights into a volcano's behavior. However, classifying and cataloging these
signals is challenging, particularly for long‐period signals such as volcanic tremors with varying signal
characteristics. In this study, we utilize seismic time series data from the Klyuchevskoy Volcanic Group in
Russia, employing machine learning and signal processing methods to transform and represent the time series
data. The resulting “seismogram atlas” helps identify changes in signal properties, revealing a dynamic seismic
wavefield linked to the evolving plumbing system of the volcano. This approach provides a comprehensive
understanding of the volcanic behavior in time by connecting signal variations to different volcanic states, such
as shifts in activity depth, reactivation, and eruptive periods. These findings highlight the unique characteristics
of continuous seismograms near the volcano, suggesting that there is valuable information in the complete
seismic time series that conventional methods and event catalogs may miss.

1. Introduction
Volcanoes and their eruptions are surface manifestations of dynamics of underlying complex plumbing systems.
Most volcanoes are fed by the magma generated in the upper mantle that is then arising through the crust toward
the surface. Large volumes of magma can be stored at intermediate depths and exhibit chemical transformations
via crystallization, degassing, differentiation, and interaction with surrounding rocks resulting in formation of
complex plumbing systems. Our knowledge about their deep structure remains limited. “End‐member” concepts
of this structure (e.g., Holness et al., 2019) are: magma storage occurring mainly in relatively shallow and long‐
lived reservoirs known as “magma chambers,” and trans‐crustal systems largely composed of a mixture of melt,
crystals, and volatiles known as “crystal mush” (e.g., Cashman et al., 2017).
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Modern volcano monitoring employs various surface and satellite‐based observations to detect and anticipate
volcanic unrest. When possible, efforts are made to interpret the observations in terms of the physical pro-
cesses occurring inside the volcanic plumbing systems, which lead to eruptions. The latter task is particularly
challenging, given our limited understanding of the structure of the mentioned plumbing systems. Conse-
quently, monitoring relies heavily on the empirical recognition of patterns in accumulated observational data
sets. In this regard, modern machine learning methods, both supervised and unsupervised, are actively
utilized.

Volcanoes produce a wide range of seismic signals (e.g., Chouet & Matoza, 2013; Journeau et al., 2022;
McNutt, 2005; Wilding et al., 2022). Volcano‐seismologists have classified seismic signals with volcanic origin
into distinct classes based on the source mechanism and signal characteristics. These classes include various types
of impulsive events such as volcano‐tectonic earthquakes, long‐period (LP) events, hybrid events, tornillos,
rockfalls, and a large family of nearly continuous signals known as volcanic tremors (e.g., Hotovec et al., 2013;
Julian, 1994; Konstantinou & Schlindwein, 2003; Shapiro et al., 2023; Unglert & Jellinek, 2015). Some studies
observed a continuous transition from discrete LP events to tremor episodes and back, making the boundary
between these two signal classes blurry (e.g., Beroza & Ide, 2011; Fehler, 1983; Latter, 1979). Very often, many
different seismo‐volcanic sources act simultaneously, with potential interactions, resulting in non‐stationary
signals (e.g., Chouet & Matoza, 2013; Konstantinou & Schlindwein, 2003) composed of a mixture of impul-
sive “earthquake” and continuous “tremors.”

Tools adapted from earthquake seismology can detect the short‐duration impulsive signals in continuous seis-
mograms and most often locate their underlying sources, resulting in a discrete event catalog. In recent years,
supervised learning strategies have been used extensively for event detection and classification tasks (e.g.,
Curilem et al., 2009; Falcin et al., 2021; Hibert et al., 2017; Lara et al., 2020; Maggi et al., 2017; Malfante
et al., 2018; Titos et al., 2018). Applying such approaches to long‐duration continuous signals that contain
volcanic tremors and environmental noise and have a varying appearance in frequency and amplitude is, however,
more problematic. The complex nature of these continuous signals makes it difficult to link them to a single
volcanic process and challenges the applicability of the classification.

Due to advancements in information processing and the introduction of continuous recordings, some studies have
shown that continuous seismograms contain relevant information beyond classical event catalogs. The entropy of
the seismic noise and the seismic background level seems to vary significantly prior to eruptions (Glynn &
Konstantinou, 2016; Ichihara et al., 2023; Rey‐Devesa et al., 2023). Machine learning strategies, in particular
unsupervised learning, provide a promising approach for automatically analyzing large amounts of continuous
seismograms and inferring such patterns without requiring predefined labels (e.g., Holtzman et al., 2018; Jenkins
et al., 2021; Köhler et al., 2010; Ren et al., 2020; Seydoux et al., 2020; Steinmann, Seydoux, Beaucé, & Cam-
pillo, 2022; Steinmann, Seydoux, & Campillo, 2022; Zali et al., 2023).

In this study, we propose a new unsupervised machine learning approach for monitoring the state of active
volcanic plumbing systems based on continuous seismological observations. An important idea behind our
approach is that a modification in the state of a plumbing system will result in a modification of properties of
continuous seismic signals recorded in the vicinity of volcanoes. These latter are composed of seismic waves
generated by a variety of internal and environmental sources and propagating through different parts of the
plumbing system. A change in the volcanic activity will affect the properties of the seismo‐volcanic sources while
a change in the plumbing structure will affect the media through which the seismic waves propagate. This implies
that these signals are very sensitive to the state of the plumbing system. Therefore, even in the absence of precise
knowledge regarding the specific changes and locations within a plumbing system, we can identify such changes
through observed modifications in the properties of seismic signals.

We employ a mathematical decomposition and transformation of segments from continuous signals to represent
them in parametric spaces. Subsequently, we investigate a potential mapping between these signal parameter
spaces and the states of the volcanic plumbing system. The underlying idea is that a particular state of the
plumbing system, characterized by a combination of plumbing structure and activity distribution, generates
signals with distinct properties, positioning them in a unique location within the signal parameter space. Although
the precise mapping and its connection to physical processes may elude exact description, we can still analyze it to
identify changes in the plumbing system state over time. In practical terms, if the signal segments of an obser-
vation period are positioned at the same location in the signal parameter space, the plumbing system state is
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considered “stationary.” Conversely, any modification in volcanic activity distribution or plumbing structure lead
to a shift in the signal parameter space position.

We employ mathematical tools like scattering networks (Andén & Mallat, 2014), independent component
analysis (ICA; Comon, 1994), and Uniform Manifold Approximation and Projection (UMAP; McInnes
et al., 2018). Given the rich and various appearance of seismicity in a volcanic environment, we test the hy-
pothesis that the data‐driven analysis of continuous seismograms offers new and different insights into the inner
workings of a volcano than what current discrete event catalogs or supervised classification schemes can provide.
ICA retrieves continuous features from the seismic time series, describing the temporal evolution of signal
patterns. We are motivated by the results presented in Steinmann, Seydoux, and Campillo (2022) where the
authors capture the signal‐altering effect of surface freezing and thawing onto a single independent component. In
a similar mindset, Hyvärinen et al. (2010) applied ICA to the Short‐Term Fourier Transform of electroenceph-
alography (EEG) and magnetoencephalography (MEG) time series data, revealing interesting information related
to brain activity. Additionally, ICA has shown successful applications in analyzing various types of time series
data, such as the examination of InSAR image time series (Ebmeier, 2016; Gaddes et al., 2018; Ghosh
et al., 2021). Besides the interpretation of independent components, the seismogram atlas —a two‐dimensional
data representation of the seismic time series obtained using UMAP— offers a novel way to visualize the
signal content of large seismic time series. By avoiding clustering and focusing on the analysis of the features and
the seismogram atlas, we can observe the continuous evolution of the signal characteristics over time, providing a
more complete picture of the mixing of different non‐stationary seismic sources in seismo‐volcanic signals.

We apply these machine learning methods to individual year‐long continuous seismograms recorded in the vi-
cinity of Klyuchevskoy volcano (Kamchatka, Russia) during an eruption and its preparation period. Both the
results of the ICA analysis and the seismogram atlases clearly show continuously evolving signals with many
pattern changes. To interpret these changes and to try to understand their origin, we compare them with known
eruptive history and the satellite‐inferred lava emission rates as well as with the catalog of volcanic tremors of
Journeau et al. (2022) that provides key information about the depth where the observed changes are occurring.

2. Klyuchevskoy Volcano Group (KVG) and Its Seismic Activity
The KVG is one of the largest and most active clusters of subduction volcanoes in the World (e.g., Fedotov
et al., 2010; Shapiro, Sens‐Schönfelder, et al., 2017). Its origin is related to the unique tectonic setting at the corner
between the Kuril‐Kamchatka and Aleutian trenches. The enhanced supply of the melt from the mantle might be
caused by the around‐slab‐edge asthenospheric flow (Levin et al., 2002; Yogodzinski et al., 2001) and related
crustal extension (Green et al., 2020; Koulakov et al., 2020) or by fluids released from the thick, highly hydrated
Hawaiian‐Emperor crust subducted beneath this corner (Dorendorf et al., 2000). There is also evidence that the
distinct volcanoes of KVG interact with each other on various time scales, affecting their steady state regimes and
magma output (Coppola et al., 2021).

The sustained volcanic activity of the KVG results in nearly constantly occurring seismicity including long
periods of seismo‐volcanic tremors (Droznin et al., 2015; Journeau et al., 2022; Soubestre et al., 2018, 2019) and
numerous earthquakes (Koulakov et al., 2021; Senyukov, 2013; Senyukov et al., 2009; Thelen et al., 2010). In
particular, the deep long‐period earthquakes (DLP) have been observed at the crust‐mantle boundary beneath the
Klyuchevskoy volcano (Frank et al., 2018; Galina et al., 2020; Gorelchik et al., 2004; Levin et al., 2014; Melnik
et al., 2020; Shapiro, Droznin, et al., 2017). The temporal correlation between the deep and shallow seismic
activity has been attributed to the transfer of the fluid pressure from the deep‐seated parts of the magmatic system
toward shallow magmatic reservoirs beneath the active volcanoes (Journeau et al., 2022; Shapiro, Droznin,
et al., 2017).

3. From Continuous Seismograms to Data‐Driven Features and Seismogram Atlases
3.1. An Ideal Data Representation With a Scattering Network

In the following, we want to outline how we create data‐driven features with ICA and seismogram atlases with
UMAP from continuous seismograms. For two main reasons, waveform data is a poor data representation to
perform those tasks. First, waveform data is sensitive to translation, meaning it encodes information about the
signal's position in time. Second, waveform data is sensitive to small signal deformations, meaning that small
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deformations cause large variations in the data representation. To address these challenges, it is essential to find a
representation that is both translation‐invariant and stable to small deformations. While the amplitude spectrum of
the Fourier transform is translation‐invariant, it lacks stability to signal deformations, particularly at higher
frequencies (Bruna & Mallat, 2013). The wavelet transform replaces the non‐localized sine waves of the Fourier
transform with localized waveforms, offering stability to deformations. However, the wavelet transform is not
inherently translation‐invariant. By adding non‐linear averaging operators to the wavelet transform, we achieve
both translation invariance and stability and create an architecture similar to Convolutional Neural Networks
(CNNs). However, it's worth noting that the non‐linear averaging operator can potentially remove important
signal information. To mitigate this information loss, we repeat the wavelet transform in combination with the
averaging non‐linear operators and extract information at each layer. This iterative approach allows us to recover
most of the lost information, resulting in a representation that is both translation‐invariant and stable to small
deformations. Bruna and Mallat (2013) and Andén and Mallat (2014) introduced this architecture and it has been
recently applied to continuous seismograms, capturing intriguing patterns (Barkaoui et al., 2021; Moreau
et al., 2022; Rodríguez et al., 2021; Seydoux et al., 2020; Steinmann, Seydoux, Beaucé, & Campillo, 2022;
Steinmann, Seydoux, & Campillo, 2022). Moreover, scattering coefficients performed better for classification
and data exploration tasks in comparison to spectral coefficients from the Fourier transform (Andén & Mal-
lat, 2014; Steinmann, Seydoux, Beaucé, & Campillo, 2022). We apply a scattering network with a sliding window
to the continuous three‐component seismograms to retrieve the scattering coefficients (Figure 2). Each layer
produces an output and the convolutional filters, classically learned in the case of CNNs, are restricted to a set of
predefined wavelets. Considering a mother wavelet ψ(t), we can define a set of filter bank ψλ(t) = λψ(λt) by
dilating the mother wavelet ψ(t) with a set of dilation factors λ∈R. In the frequency domain, the set of wavelet
banks would be ψ̂λ (ω) = ψ̂(ω/λ). The dilation factor λ can then be defined as

λ = 2
k
Q, k = {0,1, …, JQ − 1}, (1)

withQ∈N being the number of wavelets per octave and J∈N being the number of octaves. This definition of the
dilation factor provides a logarithmic grid of the center frequencies for the set of wavelet filter banks.

By convolving a time series x(t)∈R with a set of wavelet filter banks ψλ(t) and taking the modulus (which plays
the role of an activation function), we obtain a real‐valued time‐frequency representation Uλ(t) of the time series
called a scalogram such as

Uλ(t) = |x⋆ψλ|(t), (2)

defining the first convolutional layer of the scattering network with ⋆ standing for convolution operation. In
Andén and Mallat (2014) the authors introduce a low‐pass filter ϕ(t) to retrieve the first‐order scattering co-
efficients, as

S1x(t, λ) = (Uλ ⋆ϕ)(t) = (
⃒
⃒x⋆ψλ| ⋆ϕ)(t), (3)

where the low pass filter ϕ(t) smooths the representation and makes it more stable for small deformation of the
signal. However, it also removes other small‐scale structures of the signal which might be important for pattern
recognition tasks. This information is recovered by repeating the convolution and modulus operation, retrieving
higher‐order scattering coefficients. Note that the set of dilation factors λ differs with the layer of the scattering
network. With two sets of wavelet filter banks, ψλ1(t) at the first layer and ψλ2(t) at the second layer, we can
calculate the second‐order scattering coefficients

S2x(t, λ1, λ2) = (
⃦
⃦x⋆ψλ1| ⋆ψλ2| ⋆ϕ)(t). (4)

By repeating this operation many times, we can retrieve higher‐order scattering coefficients which add more and
more information. However, Andén and Mallat (2014) already concluded that the information gain beyond
second‐order scattering coefficients is marginal compared to the increasing computational costs. Therefore, we
build a two‐layer scattering network recovering first‐ and second‐order scattering coefficients. The wavelets of
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the scattering network are Gabor wavelets as initially proposed in Andén andMallat (2014). The Gabor wavelet ψ
(t) with a center frequency f is a complex exponential multiplied with a Gaussian window, defined by

ψ(t) = exp(− i2πf t)exp (− t2/a2). (5)

While f are the center frequencies defining the modulation of the Gabor wavelet, a defines the exponential drop‐
off of the waveform. We define a as a function of the wavelet's bandwidth d and its center frequency f, which in
turn depends on the Nyquist frequency fN of the signal x(t) and the dilation factor λ

aj =
d
f
=
d
λfN

. (6)

In this work, we design a two‐layered scattering network with a sliding window of 20 min and an overlap of
10 min, resulting in a temporal resolution of 10 min of the scattering coefficient matrix. The first layer wavelets
are adapted to the possible frequency content of the tremors; the wavelet's center frequencies range from 0.78 to
10 Hz with a logarithmic grid. The second layer wavelets start at much lower frequencies since they gather in-
formation about the modulation and shape of the signal. The first layer covers four octaves and is densely spaced
with four wavelets per octave. The second layer covers eight octaves and is sparsely sampled with one wavelet per
octave. With three‐component seismograms, this results in a scattering coefficient matrix of 480 dimensions.

3.2. Pooling as a Low Pass Filter in the Scattering Network

We use a pooling operation with a one‐dimensional kernel as the low‐pass filter ϕ(t) retrieving the scattering
coefficients from the scalogram at each layer. The pooling operation retrieves a single value for each scale in the
scalogram and, thus, acts as a low pass filter and downsampling operation (Dumoulin & Visin, 2016), ensuring a
stable and translation‐invariant representation. There are many different types of pooling operations, filtering
different types of information and preserving different signal characteristics. In Seydoux et al. (2020), the authors
applied the scattering network with an average pooling and other possibilities are maximum pooling or median
pooling, taking the maximum or median value of each scale in the scalogram. As an example case, we analyze the
scattering coefficient retrieved with maximum and median pooling for a 20 min seismogram recorded at station
SV13 (Figure 1). The dominant signal in this 20 min seismogram is a broadband transient event arriving after
800 s and lasting for 100 s. Moreover, there are also persistent harmonic signals, possibly of volcanic origin,
around 0.8 and 2 Hz with a lower amplitude than the transient event. Besides the broadband transient and the
harmonics, we can identify changing amplitudes at frequencies around 10 Hz. This example shows the variety of
signals of a single seismogram and we must acknowledge that any representation without time information ‐ such
as the Fourier spectrum or scattering coefficients ‐ will simplify the data. The information retrieved by the
scattering coefficients depends largely on the settings of the scattering network: number of wavelets, frequency
range of wavelets, and pooling operation. Figures 1c–1e show the median and maximum pooled scattering co-
efficients together with the Fourier spectrum. The first‐order maximum pooled coefficients resemble a smoothed
Fourier spectrum (Figure 1c). The first‐order median pooled coefficients are lower in amplitude and contain
different local maxima and minima. They show larger amplitude for the two harmonics and lower amplitudes in
between. The transient event with large amplitudes between 0.2 and 10 Hz seems to have no influence on the
median pooled coefficients. In contrast, the maximum pooled coefficients have an amplitude distribution that
matches much better the transient event. The type of pooling operation, which transforms the scalogram into
scattering coefficients, filters the data and stores different types of information. Median pooled coefficients
contain the information of the background wavefield and ignore any short‐lived transients in the seismogram.
Maximum pooled coefficients are sensitive to any type of short‐lived transient in the seismogram which mask the
background wavefield. Note also that maximum pooling would save the information of two transient events, if
they appear in different frequency ranges. Thus, it could be a representation of a mixture of large amplitude events
with different frequency content. Both pooling operations are valid, however, we need to acknowledge that both
representations are biased and simplify the nature of the seismic data, an important fact to consider for exploratory
data analysis. In this work, we will consider median pooling to mitigate the effects of impulsive short‐term
signals.
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3.3. Feature Extraction With Independent Component Analysis

The scattering coefficients are collected in a data matrix X in such a way that the rows contain the scattering
coefficient time series and the columns contain all scattering coefficients for one sliding time window (Figure 2).
We refer to the time series of the independent sources as features for the following text. The aim of ICA is the
separation of multivariate signals into independent, non‐Gaussian source signals, which can be formalized in the
following way

X = AS, (7)

where X∈RF×N are the N observations of dimension F, A∈RF×C is the mixing matrix, and S∈RC×N are the C
independent sources. ICA estimates S by applying the inverse or pseudo‐inverse of the mixing matrix, called
unmixing matrix, W∈RC×F to the observed data in X

S =WX. (8)

ICA solves this equation by maximizing the statistical independence of the sources in S. The independence is
estimated by a measurement of non‐Gaussianity such as the kurtosis or negentropy (Hyvärinen & Oja, 2000).
The number of sources C is not known and is one of the most important parameters impacting the results of
ICA. Often, this parameter is set according to a measurement estimating the information loss such as the
explained variance score. Note that ICA is often described as a generalization of principal component analysis
(PCA), since the independent components (sources) have no constraints of orthogonality (Comon, 1994). Also
in contrast to PCA, the sign and amplitude of the independent sources cannot be determined, because both S
and A are unknown and a scaling factor can always be canceled out. Therefore, ICA does not provide any

Figure 1. Comparison between spectral and scattering coefficients of a seismic signal: panel (a) shows an example
seismogram with normalized amplitude in time domain; panel (b) shows its corresponding Fourier spectrogram; panel
(c) shows the Fourier amplitude spectrum and the first‐order median and maximum pooled scattering coefficients of the
signal shown in (a); panel (d) shows the second‐order maximum pooled scattering coefficients and panel (e) shows the
second‐order median pooled scattering coefficients as a function of the wavelet's center frequencies f1 and f2.
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Figure 2. Detailed view of a two‐layered scattering network applied to continuous three‐component seismograms with a sliding window. The dashed line in the first‐
order scalogram indicates that each first‐order scale is convolved with the second‐layer wavelet banks, creating multiple second‐order scalograms. The final scattering
coefficient matrix contains the first‐ and second‐order scattering coefficients from the three‐component seismogram.
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ranking to the retrieved sources. It is common practice to center and whiten the data in X since it constrains the
unmixing matrix to be orthogonal and therefore the number of free parameters reduces (Hyvärinen &
Oja, 2000).

3.4. Seismogram Atlases With Uniform Manifold Approximation and Projection (UMAP)

UMAP is a manifold learning technique, which has been introduced in the work of McInnes et al. (2018). Similar
to ICA, UMAP is a tool to reduce the dimensions of a high‐dimensional data set for downstream tasks such as
visualization. Since we are interested in a visualization of the high dimensional scattering coefficient matrix, we
restrict the number of dimensions to two. Any dimensionality reduction technique comes with a loss of infor-
mation and the loss depends on the objective of the dimensionality reduction technique. Because ICA performs a
linear mapping, it preserves well the pair‐wise distances, but it loses information about local structures. UMAP
learns the manifold of the given data and, thus, performs better in preserving local structures at the price of
distorting the global structure. Hence, the distances between neighboring points are more reliable than distances
between clusters of data points or the area of a cluster. Without going into further details, the inner workings of
UMAP are based on topological data analysis and Riemannian Geometry, providing a complex but safe and sound
mathematical background (see the original work of McInnes et al., 2018, for more details). It shares similarities
with the t‐distributed Stochastic Neighbor Embedding (t‐SNE), which has been used extensively for visualiza-
tions since its appearance in the 2000s (Van der Maaten & Hinton, 2008). However, compared to UMAP, t‐SNE
performs poorly in preserving global structures and its computation time is much slower (Becht et al., 2019;
McInnes et al., 2018). Despite its relatively recent introduction, UMAP has been already utilized in many sci-
entific domains to create a two‐dimensional representations, simplifying the visualization of large and high‐
dimensional data sets. The resulting two‐dimensional UMAP spaces have been coined “atlases” such as the
activation atlas of neural networks (Carter et al., 2019), the mouse organogenesis cell atlas (Cao et al., 2019), or
the metagenomic atlas (Lin et al., 2022).

UMAP comes with a set of hyperparameters to tune such as the number of neighbors and the minimum
distance, drawing the focus either toward preserving local or global structures. The number of neighbors limits
the number of neighboring points when UMAP learns the local manifold structure. A low number draws the
focus to the local structure while losing the bigger picture. A large number draws the focus on the global
structure while losing finer details. The minimum distance controls how closely UMAP is allowed to bring data
points together. A low number results in a more dense and clumpier representation and preserves better the
local structure of the data. A large number avoids putting points close to each other and draws a broader picture
of the data.

4. The Data: Continuous Seismograms, Tremor Catalog, and Lava Discharge Rate
In this work, we apply exploratory data analysis to the continuous seismograms of a joint Russian‐German‐French
temporary seismic experiment named KISS (Klyuchevskoy Investigation—Seismic Structure of an Extraordinary
Volcanic System; Shapiro, Sens‐Schönfelder, et al., 2017), including short period and broadband sensors and
covering the time period between August 2015 and July 2016. We focus on continuous three‐component seis-
mograms recorded by six individual broadband stations (Figure 3). The seismograms are demeaned, detrended,
and down‐sampled to a sampling rate of 25 Hz. Additional data such as a tremor catalog from Journeau
et al. (2022) and the time‐averaged lava discharge rate (TADR) from Coppola et al. (2021) will support the
exploratory data analysis, connecting signal patterns to known state changes of the volcanic system. Due to the
remoteness of the KVG, seismic and satellite data are the only available data sources.

4.1. The Scattering Coefficients

To visualize the continuous seismograms and introduce the concept of scattering coefficients, we depict the first‐
and second‐order coefficient time series of the east channel of station SV 13 in Figures 4a and 4b. We choose
station SV13 since it is located directly above the cataloged tremor activity (Figure 3). The first‐order scattering
coefficient time series resembles a spectrogram with spectral coefficients based on Fourier analysis (Figure 4a).
The second‐order scattering coefficient time series appear as multiples of the first‐order scattering coefficients
due to the application of the second‐order wavelet transform to the first‐order scalogram (Figure 4b).
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4.2. The Tremor Catalog

The authors of Journeau et al. (2022) used the network's spectral covariance matrix (Journeau et al., 2020;
Seydoux et al., 2016; Soubestre et al., 2018, 2019) to detect and locate the coherent signals in a continuously
moving time window and built a catalog of volcanic tremors including locations of their sources. We want to
emphasize here that the catalog is a valuable source of information in validating the results of our work, however,
it does not hold the ground truth, either. Figure 4c depicts the time‐depth evolution of the catalog, showing periods
of shallow and deep activity. Before December 2015, the tremors are mainly located in the deeper part of the
Klyuchevskoy plumbing system with periods of increased tremor activity in August and September 2015. The
whole plumbing system becomes active after 4 December 2015 with shallow and deep tremor sources. After a
short absence of tremors, they restart in March 2016 and last until the end of the cataloged time period. All
scattering coefficient amplitudes are elevated during the presence of tremors (Figures 4a–4c).

4.3. Lava Discharge Rate Time Series and Daily Activity Level

We also use the time‐averaged lava discharge rate (TADR) time series of Coppola et al. (2021), indicating the
timing and strength of the eruption. The TADR data is estimated from infrared satellite data, assuming that the
radiated energy of a lava body is linearly correlated to the bulk erupted volume. In the first half of April 2016, an
eruption unfolded at the Klyuchevskoy volcano, indicated by TADR values above 0.1 m3 s− 1 and lasted
throughout the remaining recording time of the KISS experiment (Figure 4d). However, the exact starting time is
not known. The scattering coefficients depict the largest amplitudes during the first half of April 2016 and show
elevated amplitudes for the remaining recording time. Moreover, the Kamchatka Branch of the Russian
Geophysical Survey (KBGS) determines the daily activity level for the Klyuchevskoy volcano based on detected
seismic activity combined with visual and satellite observations, when available. The orange color in Figure 4d
corresponds to an ongoing eruption.

5. Exploratory Data Analysis With ICA and Seismogram Atlases
5.1. Hierarchical ICA With Increasing Number of Components

The complete scattering coefficient matrix of station SV13, including the east, north and vertical channels, is the
input for the ICA model. We apply ICA models with four (M4), 12 (M12), and 50 (M50) independent sources to
explore the impact of dimensionality.M4 reaches an explained variance score of 94 %,M12 reaches an explained

Figure 3. Map of the Klyuchevskoy volcano group with the seismic stations (SV13, IR18, IR12, SV7, OR18, and ESO)
considered in this study, shown with white triangles. The orange triangle shows the location of the Klyuchevskoy volcano.
The averaged spatial density of the tremor source location according to Journeau et al. (2022) is shown with a colormap.
Black circles and purple crosses indicate hypocenters of individual detections of tremors and deep long‐period earthquakes
(DLP), respectively.
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variance score of 98 % andM50 reaches an explained variance score of 99.6 %. Figure 5 shows the smoothed time
history of the independent sources (features) of each model. The features show negative and positive values of
arbitrary units centered around zero due to the centering and whitening of the scattering coefficient matrix. We
sort the features according to their maximum absolute amplitude appearance in time, helping the visualization of
any time‐dependent processes.

The features of the three models show very different time series and in the following, we want to use the models to
understand better the underlying seismic data. First of all, we provide a qualitative comparison between the
features of the three models. While there is no single feature matching betweenM4 andM50 (Figures 5b and 5d),
we can find similar features betweenM4 andM12 such as feature 2 in both models (Figures 5b and 5c).M50 is very
different from the other two models, since its features appear more sparse, that is, they are mostly centered around
zero except for a short duration. Moreover, it is striking that if one feature shows large amplitudes in a negative or

Figure 4. Time series of SV13 scattering coefficients and other data sources: panel (a) shows the time series of first‐order scattering coefficients of the east channel of
SV13; panel (b) shows the time series of second‐order scattering coefficients of the east channel of SV13. The y‐axis represents the center frequency of the first‐order
wavelets f1 and the center frequency of the second‐order wavelets f2 lies between two f1 values (details in Section 3.1). However, due to reasons of clarity, we do not
show the f2 ticks. Panel (c) show the localized tremors from Journeau et al. (2022) as a function of calendar time and depth; panel (d) shows the TADR time series from
Coppola et al. (2021) as black dots and the daily activity level from the KBGS as color‐coded dots. Green corresponds to low volcanic activity, yellow corresponds to
medium volcanic activity, orange corresponds to ongoing eruption, and red corresponds to an explosion on 7 July 2016.
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positive direction (saturated blue and red colors), almost every other feature is centered around zero. These
characteristics of M50 together with the sorting of the features result in a this color‐saturated diagonal line in the
time‐feature space (Figure 5d). In contrast, the data points represented by the features ofM4 andM12 do have non‐
zero values for more than one dimension. The M50 model indicates that the seismic time series witness an ever‐
changing seismic wavefield with new signal characteristics throughout the recording time. The comparison with

Figure 5. Hierarchical Independent Component Analysis (ICA) for station SV13: in panel (a) the gray histogram describes the daily number of localized tremors based
on Journeau et al. (2022) and the colored circles indicate the daily activity level of the Klyuchevskoy volcano, where green represents low activity, yellow represents
medium activity, orange represents an ongoing eruption, and red represents an explosion on 7 July 2016. The black dots correspond to the time‐averaged lava discharge
rate (TADR) from Coppola et al. (2021). By applying multiple ICA models to the SV13 scattering coefficient matrix, we retrieve time histories of the independent
sources (features), describing signal patterns in the seismogram. Panel (b) shows the features of the 4‐component model M4, panel (c) shows the features of the 12‐
component model M12, and panel (d) shows the features of the 50‐component model M50. Note that the features were sorted with respect to their absolute maximum
value in time for better visualization.
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the tremor count per day and the lava discharge rate in Figure 5a reveals an interesting relation between the
features and known state changes. For instance, feature 2 of M4 and M12 models shows positive values mainly
during the tremor activity in August and September 2015, suggesting signal characteristics different from the later
tremor periods. The seismic reactivation of the plumbing system at 4 December 2015 is characterized by a rapid
succession of features in the M50 model, indicating rapid pattern changes in the seismograms. In contrast, the
eruption period starting in April 2016 is characterized by M50 features showing constant amplitudes for longer
periods (feature 40 to 50 in Figure 5d). This suggests more stable signal patterns lasting for longer periods
compared to the plumbing system reactivation in early December. Interestingly, periods of a high tremor count
correlate with a positive sign on the diagonal line of theM50 model Overall, we find correlations between feature
changes—indicating signal pattern changes in the seismograms—and state changes of the Klyuchevskoy volcano.
Moreover, we see that the number of components has an effect on the retrieved features, showing different time
histories. The different ICA realization can be seen as a hierarchical ICA, where a model with a larger number of
components—such as M50—can account for smaller differences in the signal characteristics.

5.2. Interpreting M4 Features With the Mixing Matrix

To understand better what the features represent, we recall the equation of ICA (see Equations 7 and 8). The
whitened and centered scattering coefficient matrix X is estimated as the sum of rank‐1 matrices, resulting from
the outer product of a feature (rows in S) with the corresponding columns in the mixing matrix A. Hence, the
columns of A reveal how each feature contributes to the estimation of X. The visualization of the columns of A
and its outer product with the corresponding feature can help to understand better the underlying signal char-
acteristic of each feature. In Steinmann, Seydoux, and Campillo (2022), we used this method to reveal the
changing signal patterns due to the freezing and thawing of the near subsurface. In Figure 6, we visualize the
mixing weights of the M4 model according to the center frequencies of the first‐ and second‐order wavelets. We
can use the shown mixing weights to attribute signal characteristics to the features of M4 in Figure 5b. For
example, feature 3 in Figure 5b shows a general correlation with the occurrence of tremors. The corresponding
mixing weights show mainly negative amplitudes peaking at f1 = 2 Hz in all components and for both first‐ and
second‐order scattering coefficients (Figure 6). Figures 7b–7d show the reconstructed first‐order scattering co-
efficients, resulting from the outer product of feature 3 with its mixing weights. We disregard the second‐order
scattering coefficients for visualization purposes, however, we want to emphasize that they contain important
signal information. We also add the mean over the scattering coefficients, which we subtracted before the ICA
during the whitening process. The reconstruction makes clear that the tremor periods are characterized by a
broadband amplitude increase peaking around 2 Hz (Figures 7b–7d). Note that both the mixing weights (source 3
in Figure 6) and the feature amplitudes during tremor‐active periods (source 3 in Figure 5b) are negative, resulting
in positive amplitudes of the reconstructed scattering coefficients due to the matrix multiplication (Figures 7b–
7d). This example shows the ambiguity of the sign attached to the sources: any change of sign in feature 3 can
be equalized with a change of sign of the corresponding column vector of the mixing matrix, resulting in the same

Figure 6. Mixing weights for theM4 model for its four independent sources at station SV13. The matrix multiplication of the
mixing weights with the M4 features in Figure 5b estimates the scattering coefficient matrix (see Equation 7). For
visualization purposes, we reshaped the mixing matrix to display the weights related to the first‐order coefficients in the left
column, and the weights related to the second‐order coefficients are split into three different subplots according to the
seismometer's component.
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rank‐1 matrix. The reconstruction shows that feature 3 ofM4, correlating with general tremor occurrence, relates
to broadband amplitude changes. We do not need machine learning approaches to observe a correlation between a
broadband amplitude increase and tremor occurrence, however, we want to show that the features represent
meaningful patterns.

A more interesting example is feature 2, which correlates only with the tremor sequences in August and
September 2015 (feature 2 in Figure 5b). The corresponding mixing weights show positive and negative am-
plitudes depending on the frequencies f1 and f2 and the channel (source 2 in Figure 6). Similar to before, we can

Figure 7. Reconstructed first‐order scattering coefficients based on the outer product of an M4 feature with its mixing weights for station SV13: panel (a) shows the
localized tremors; panels (b), (c), and (d) show the reconstruction of the first‐order coefficients of the east, north, and vertical channel, based on feature 3 (Figure 5b);
panels (e), (f), and (g) show the reconstruction of the first‐order coefficients of the east, north, and vertical channel, based on feature 2 (Figure 5b).
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visualize the first‐order scattering coefficients of the obtained rank‐1 matrix by the outer product of the mixing
weights with feature 2 (Figures 7e–7g). We see a clear anti‐correlation for scattering coefficients below and above
1 Hz for the east channel (Figure 7e): an amplitude increase above 1 Hz occurs together with an amplitude
decrease below 1 Hz (e.g., the tremor‐dominated periods in August and September 2015). Similarly, an amplitude
increase below 1 Hz occurs together with an amplitude decrease above 1 Hz (e.g., October–December 2015). This
anti‐correlation can be already observed by the negative and positive weights of the mixing matrix (source 2,
Figure 6). Weights with the same sign indicate the scattering coefficients which correlate with the corresponding
independent source. The observed anti‐correlation is nothing physical and this rank‐1 matrix reflects only a part of
the data without taking into account the other independent sources. Nonetheless, Figures 7e–7g suggest that the
deep tremor activity in August and September 2015 is different from the other tremor episodes mainly due to
different patterns at the east channel around 1 Hz. The reconstruction can indicate the underlying pattern changes
in the seismogram and seems to be useful for ICA models with a low number of components. However, this
becomes unfeasible for ICA models with a large number of components such as for M50.

5.3. Comparing M50 Models of Multiple Seismic Stations

The M50 model of station SV13 (Figure 5d) pictures a seismic time series with many pattern changes, indicating
an ever‐changing seismic wavefield. This seems surprising and it might be a particular characteristic of the data
recorded close to the active Klyuchevskoy volcano. By retrieving M50 models from different stations with an
increasing distance to the volcano, we can verify this assumption. The considered stations—named SV13, IR12,
IR18, SV7, OR18, and ESO in Figure 3—are located between 5 and 122 km away from the active volcano.
Figure 8 shows the correspondingM50 models, revealing a diagonal line in the time feature space degrading with
increasing distance to the volcano. This confirms our assumption that the large amount of pattern changes,
represented by the diagonal line in the time‐feature space, are only recorded in direct proximity to the active
volcano. The activation of the whole plumbing system in December and the eruption period are characterized by
dominant features even for stations further away such as SV7 and OR18. However, the large number of features
makes it cumbersome to understand the pattern changes and relate them to physical processes in the volcano.
Manifold learning techniques such as UMAPmight help to overcome this issue by capturing more information on
fewer dimensions.

5.4. Seismogram Atlases of Individual Stations

We obtain seismogram atlases for the six station with UMAP and color‐code the data points with their corre-
sponding calendar time, highlighting the temporal evolution of the seismic time series (Figure 9). The seismo-
gram atlases share the same hyperparameters: the minimum distance is set to 0.5 and the number of neighbors to
50. We tested different hyperparameters for the data of station SV13 (see Figure 10). The atlases depict different
cluster shapes and distances with regard to the hyperparameters, emphasizing the trade‐off between local and
global structures in the atlas. However, all the examples confirm the smooth time gradient and little to no overlap
of different periods. We opted for a minimum distance of 0.5 and 50 neighboring points, a decision primarily
guided by visual assessment, much like the process commonly used in many other dimensionality reduction
techniques. The chosen parameters seem to be a good choice for preserving local and global structures without
resulting in too many disjoint clusters, as observed with 10 neighboring points. The seismogram atlases of SV13,
IR18, and IR12 picture a variety of shapes with many linear and curved structures, where data points with
different colors hardly overlap (Figures 9a–9c). Many data points with a similar color seem to be located close to
each other, which gives rise to a smooth color gradient across the atlas. Therefore, neighboring data points in the
atlas are likely neighboring data points in time, suggesting smooth and slow signal changes. However, there are
also isolated or disconnected structures, indicating more sudden signal changes from time to time, especially for
stations IR12 and IR18. The atlases of the data recorded at SV7, OR18, and ESO look different: there are less
linear or curved structures and different colors overlap more often (Figures 9e and 9f). The two‐dimensional
seismogram atlases confirm our interpretation of the 50‐dimensional ICA models: close to the active volcano,
the seismograms witness many pattern changes, which are not visible by stations further away.

5.5. Connecting the Seismogram Atlas to Known Physical Processes

To provide a meaningful interpretation, we color‐code the data points in the atlas with other physical parameters
such as the TADR and the depth of the located tremors. Since the TADR time series are sampled irregularly, we
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interpolate the TADR data linearly, matching a TADR value with a data point in the atlas. We do that for the
station closest to the volcano ‐ SV13 ‐ and for the station furthest from the volcano ‐ ESO (see Figures 11a and
11b). For station SV13, we can identify the eruption activity (TADR >0.1 m3 s− 1) in the eastern area with multiple

Figure 8. By applying a 50‐component Independent Component Analysis model to the scattering coefficient matrices, we retrieve M50 features for the continuous
seismograms recorded at station SV13 (a), IR18 (b), IR12 (c), SV7 (d), OR18 (e) and ESO (f). Each feature represents a signal pattern, which dominates when the color
is saturated. The results are ordered according to the distance to the active Klyuchevskoy volcano mentioned in the title of the subfigures. Panel (g) shows the number of
localized tremors per day as a gray histogram, the time‐averaged lava discharge rate (TADR) from Coppola et al. (2021) as black dots and the daily activity level from
the KBGS as color‐coded dots. Green corresponds to low volcanic activity, yellow corresponds to medium volcanic activity, orange corresponds to ongoing eruption,
and red corresponds to an explosion on 7 July 2016.
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linear and cluster structures. For station ESO, we can only identify areas of strong eruption activity (TADR
>1 m3 s− 1) with no linear or curved structures, which would indicate continuous pattern changes in the seis-
mograms. Figures 11c and 11d show the atlases color‐coded with deep and shallow tremors. For station SV13, we
can identify areas with either dominating deep or shallow tremor activity (areas with mainly blue or orange color
in Figure 11c) and we can identify areas with a mix of deep and shallow activity. Moreover, the tremor signals
cover a large part of the atlas and only a small part does not correspond to tremor signals (gray data points). For
station ESO, deep and shallow tremor activity is nowhere separated, indicating that ESO is too far to sense fine
tremor signal variations.

6. Discussion
The seismogram atlases and the ICA features reveal a permanently evolving seismic wavefield with many pattern
changes in the vicinity of the active Klyuchevskoy volcano. This suggests that the continuous seismograms from
close stations contain relevant information about the dynamic processes occurring in the volcano plumbing
system. We found particularly interesting the difference between the atlases obtained for stations located in the
close vicinity of the active Klyuchevskoy volcano and those from distant stations. The latter look like “diffuse”
clouds of points without distinctive structures. The former contains many well‐defined “lineaments.” We hy-
pothesize that these “lineaments” in the seismogram atlases of nearby stations are associated with dynamic
processes occurring within the volcano plumbing system. During such periods of “dynamic activity” the system
evolution is characterized by certain “continuity” that is reflected in the “continuity” of the seismogram atlas
“lineaments.”

Figure 9. By applying the manifold learning technique UMAP to the scattering coefficient matrices, we obtain individual seismogram atlases for the continuous
seismograms recorded at station (a) SV13, (b) IR18, (c) IR12, (d) SV7, (e) OR18, and (f) ESO. Each data point in the two‐dimensional representation corresponds to
20 min three‐component seismograms and the color‐code reflects the calendar starting time of the 20 min window. The distance in the atlas reflects the similarity of the
three‐component seismograms. The panels are ordered according to the distance to the active Klyuchevskoy volcano mentioned in their titles.

Journal of Geophysical Research: Solid Earth 10.1029/2023JB027167

STEINMANN ET AL. 16 of 27

 21699356, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JB

027167 by H
elm

holtz-Z
entrum

 Potsdam
 G

FZ
, W

iley O
nline L

ibrary on [12/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



In order to quantify this continuity, we use two parameters. We start with computing all vectors (steps) connecting
two atlas points consecutive in time. Then, we compute the amplitudes of these steps. Small steps correspond to a
more continuous atlas evolution. Therefore, we average the step amplitudes over N consecutive points and call the
inverse of this value the “seismogram atlas continuity.” Then we evaluate if consecutive steps follow a prefer-
ential direction. For this, we compute an Euclidean distance between points separated by N steps and compare it
with the sum of amplitudes of these N steps. If all steps are perfectly aligned in the same direction these two
quantities are perfectly equal. If the directions of steps are random, the distance between the first and last points is

Figure 10. Seismogram atlases obtained with changing UMAP hyperparameters for the data recorded at SV13. Each data point in the two‐dimensional representation
corresponds to 20 min three‐component seismograms and the color‐code reflects the calendar starting time of the 20 min window. The results shown in Figure 9a
correspond to min_dist = 0.5 and n_neighbors = 50.
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much smaller than the sum of step amplitudes. We compute the ratio between these two quantities and call it
“seismogram atlas gradient continuity”. Its value maximizes at 1 for a perfectly straight atlas “lineament”.

6.1. Interpretation of the SV13 Seismogram Atlas

Our data analysis showed that station SV13, the closest station to the active Klyuchevskoy volcano, witnesses
many pattern changes and we have seen correlations with other data sources such as the event catalogs and the
TADR time series. In the following, we try to synthesize all data sources to identify meaningful areas within the
SV13 seismogram atlas. Moreover, we visualize the spectrograms of some data points, showing characteristic
examples of various atlas areas (Figures 12 and 13). In both Figures, we connect the data points in the atlas to
known cataloged volcanic tremors from Journeau et al. (2022). The example spectrograms focus on tremor active
periods and we connect the different data points with arrows, highlighting the temporal evolution of the tremor
signals.

The SV13 seismogram atlas shows an interesting data landscape of continuous and isolated linear and curved
structures with temporal smooth gradients, correlating with the occurrence of tremors (Figure 11c). The time
series of atlas continuity and atlas gradient continuity for the three stations in the vicinity of the active volcano are
depicted in Figures 14a–14c. As a comparison, Figure 14d shows the daily count of shallow tremors in blue
(above 10 km depth) and deep tremors in red (below 10 km depth), highlighting periods of deep or shallow
activity. Figure 15 provides an interpretation with the same labels for the SV13 seismogram atlas by connecting
certain periods to volcanic activity. The interpretations of both Figures are based on the temporal evolution
depicted in Figure 9a, the catalog association with example spectrograms shown in Figures 12 and 13, the TADR
and tremor depth association in Figures 11a and 11c, and the Movie S1, highlighting the temporal evolution of the
atlas. We also used information from the daily reports of the Kamchatka Branch of the Russian Geophysical
Survey available at their website (in Russian): http://www.emsd.ru/˜ssl/monitoring/main.htm and publications
about the Klyuchevskoy activity in 2015–2016 (Girina et al., 2019, 2023). In the following, we relate the pattern
evolution of the continuous seismograms with distinct phases of the Klyuchevskoy volcano.

Figure 11. Seismogram atlases color‐coded with interpolated time‐averaged lava discharge rate (TADR) and localized
tremors for two stations. Seismogram atlas with interpolated TADR for station SV13 in (a) and ESO in (b), highlighting areas
in the atlas with strong eruptive activity. Seismogram atlas with shallow and deep tremors for station SV13 in (c) and ESO in
(d), highlighting areas with rather shallow or deep volcanic activity. We color‐code a data point with tremor activity in case
they matched in time. Deep and shallow tremors are separated at 10 km depth.
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Figure 12. The seismogram atlas with example spectrograms of tremor signals from the period between August 2015 and
February 2016. The upper image shows the SV13 seismogram atlas. Data points matching in time with localized tremors are
black and data points with weak or unknown signals are gray. Each data point represents 20 min of three‐component
seismograms. For some data points (marked with the colored arrows) we visualized the east‐component spectrograms with
their calendar date on the top of the subfigure. The color‐coding of the arrows matches the color‐coding of the spectrogram's
frame and the arrows point toward the next data point in time.
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Figure 13. The seismogram atlas with example spectrograms of tremor signals from the period between February 2016 and
July 2016. The upper image shows the SV13 seismogram atlas. Data points matching in time with localized tremors are black
and data points with weak or unknown signals are gray. Each data point represents 20 min of three‐component seismograms.
For some data points (marked with the colored arrows) we visualized the east‐component spectrograms with their calendar
date on the top of the subfigure. The color‐coding of the arrows matches the color‐coding of the spectrogram's frame and the
arrows point toward the next data point in time.
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From August to the end of September 2015, tremor activity occurs mainly at greater depth (marked with a blue 1
in Figure 14d). The same period corresponds to a connected point cloud with multiple linear and curved structures
in the atlas (marked with a blue 1 in Figure 15). The spectrograms in that area picture narrow‐banded continuous
tremor signals centered around 1 Hz, which is different from the other tremor signals (blue framed spectrograms
in Figure 12). This confirms our interpretation of the reconstructed scattering coefficients in Figure 7, indicating a
signal difference around 1 Hz between the early deep tremor period and the tremors after the reactivation in
December 2015.

At the end of September 2015, the deep tremor activity decreases and only a few isolated days denote tremor
activity. Since there is no strong seismic activity in this period (marked with a gray 2 in Figure 14d), we can
assume that it is mainly dominated by weak seismo‐volcanic signals and ambient seismic noise. For the same
period, the atlas depicts a gray point cloud below the deep tremor activity (marked with a gray 2 in Figure 15).
Interestingly, this period is placed close to the deep tremor activity with overlapping structures. In fact, the gray

Figure 14. Time series of the atlas continuity and atlas gradient continuity of the three stations (a) SV13, (b) IR18, and (c) IR12. The continuity has been averaged over
250 consecutive steps (1.74 days). The gradient continuity has been averaged over 500 steps (3.47 days). Signal RMS amplitudes (averaged over 250 steps and
normalized) are shown with light gray areas, for reference. Panel (d) shows the tremor count per day. Deep (below 10 km) and shallow (above 10 km) tremors are shown
with blue and red shaded areas, respectively. The black continuous line shows the difference between the deep and shallow tremor counts. Colored numbers indicate
different events and episodes of the activity of the Klychevskoy volcano plumbing system. The vertical dashed lines correspond to specific events and the horizontal
numbered bars correspond to specific periods in the interpreted SV13 atlas in Figure 15.
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linear structures reaching into the blue area are related to the deep tremor activity in October and November (see
Movie S1).

After a period of quiescence, the tremor catalog shows a short phase of increased deep tremor activity at 4
December 2015, starting a longer period of increased tremor activity at various depths (Figure 14d). That deep
reactivation of the plumbing system at 4 December 2015 is characterized by a jump in the atlas from the seismic
noise area to a linear structure in the northern area (marked by a blue 3 in Figure 15), suggesting a sudden pattern
change in the seismograms. A high continuity value on all three stations reflects the temporal‐spatial discon-
nection in the seismogram atlas (blue 3 in Figures 14a–14c). After that date the atlas depicts a complex trajectory
where we can identify shallow and deep tremor phases (marked with 4, 5, and 6 in Figures 14 and 15), indicating
an ever‐changing seismic wavefield with continuous pattern changes. In the same period, the spectrograms in

Figure 15. Synthesis of the results: interpreted seismogram atlas of SV13 with identification of volcanic activity and its relation to the plumbing system of the
Klyuchevskoy volcano.
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Figure 12 indicate a transition from pure continuous signals to continuous signals with impulses. We hypothesize
that the continuous pattern change of the tremor signals indicates a continuously changing plumbing system.
However, we can not link the signal changes directly to physical processes. Either a shift in the sources generating
tremor signals, alterations in the plumbing structure sensed by seismic waves, or potentially a combination of both
may be occurring. The tremor catalog in Figure 14d indicates a deceasing tremor activity in February 2016,
marked by neon‐green 6 and gray 7.

From the deep reactivation in December 2015 until the quiet period in February 2016, the atlas depicts a
continuous trajectory, ending close to the area of low seismo‐volcanic activity in October/November 2015
(Figure 15). The purple‐framed spectrograms of Figure 12 confirm the gradual decrease of continuous signals,
which are characteristic of volcanic tremors. It is interesting to note that the linear trajectory in the atlas continues,
even after the catalog does not show any tremor detections (see Movie S1). This suggests continuing and not
cataloged weak tremor activity. Since station SV13 is located close to the center of tremor activity, this station
likely records weak tremor activity, which does not generate a coherent signal across an array of stations. It is also
interesting that the data points of the quiet period in February/March 2016 (marked with a gray 7) do barely mix
with the data points of the October/November 2015 period (marked with a gray 2), indicating a different type of
ambient seismic noise or different weak seismo‐volcanic signals. We can exclude the oceanic microseisms or
large‐scale meteorological phenomena for this behavior since the center frequencies of the first‐order wavelets do
not cover frequencies below 0.78 Hz. Other studies have shown that the signal properties of the ambient seismic
noise can change due to volcanic activity (Glynn & Konstantinou, 2016; Ichihara et al., 2023).

Toward the end of the quiet period, the data points move away from the noise area toward an area where we have
mainly pre‐eruptive shallow tremors (yellow 9 in Figure 15 and Movie S1), indicating slowly emerging and not
cataloged tremor signals. This slow transition is interrupted by a deep reactivation starting on 17 March 2016,
indicated by a sudden increase of deep tremors after a period of quiescence (Figure 14d). During that period, the
atlas depicts a jump in the atlas to the curved purple structure marked with an 8. In fact, the deep reactivation is
characterized by a spatial‐temporal disconnection in the atlas for the three stations close to the volcano, suggesting
a sudden pattern change on the three stations similar to the 4 December 2015 reactivation (Figure 14). The deep
reactivation is characterized by pure broadband continuous signals compared to the times before and after (blue‐
framed spectrograms in Figure 13). After the sudden pattern changes, the SV13 atlas indicates a more continuous
pattern change until the start of the eruption (yellow 9 and magenta 10 in Figure 15). The spectrograms of the
same period show a continuous transition from repeating impulsive signals to more continuous tremor signals
(orange‐framed spectrograms in Figure 13). After the eruption started on 4 April 2016 (Girina et al., 2019, 2023),
the spectrograms show mainly continuous tremor signals (green‐ and red‐framed spectrograms in Figure 13). The
April/May 2016 co‐eruptive tremor period is located on the far left in the atlas and a neighboring linear structure
characterizes a period of shallow tremor activity with an increase in the lava discharge rate occurring at the end of
May 2016. After this event, the co‐eruptive tremor signals build a point cloud with no linear structures (light‐pink
14 in Figure 15), indicating no continuous pattern evolution for a longer time. This behavior is very different from
the previous tremor‐dominated periods, characterized by mainly linear or curved structures and continuous or
sudden pattern changes. During that time in June 2016, most tremor sources are at a shallow depth (Figure 14d).
The significant increase of the atlas continuity and gradient continuity seen at all three stations at the beginning of
July 2016 (Figure 14) marks a sudden pattern change before the strong explosion that took place on 7 July 2016 at
the crater of the active Klyuchevskoy volcano. On this date, an ash column reached 10 km in altitude according to
KBGS and the ash cloud traveled more than 400 km (Girina et al., 2019). The atlas denotes a jump back to the
eruption area around 4 July 2016, indicating similar types of signals before the explosion (red‐yellow 15 in
Figure 15).

The seismogram atlas of station SV13 shows that the seismograms follow a complex signal evolution with many
pattern changes due to volcanic activity and a changing plumbing system. The atlas shows no overlap of the
various tremor periods, indicating changing tremor signal patterns throughout the recording time. We see both
smooth and sudden transitions between different activities, reflecting smooth and sudden regime transitions of the
volcanic system. The interpretation shows that UMAP preserves global and local structures. Globally, we can
identify seismograms with continuous signal characteristics in the outer circle of the atlas and seismograms with
impulsive characteristics in an area inside the circle. Locally, we can identify certain periods of volcanic activity
such as shallow or deep tremor activity, and see continuous or sudden changes between these different periods. In
some areas we have continuous transitions between continuous and impulsive signals, indicating seismograms
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containing both types of signal characteristics. Journeau et al. (2022) observed a similar signal separation and
transition within the variables space obtained from the network's covariance matrix. In our case, the second‐order
scattering coefficients contain information about impulsive and continuous signal characteristics and, therefore,
the separation of seismograms according to these characteristics is reasonable. Our findings show that the ma-
jority of the recording time is dominated by tremor signals. This agrees with the findings of Makus et al. (2023)
where their reference correlation function for the same data set is dominated by tremor activity.

7. Conclusion
With data‐driven features and seismogram atlases, we have analyzed the signal content of continuous seismo-
grams recorded during the KISS experiment close to the active Klyuchevskoy volcano. A scattering network
transformed the continuous seismograms into a stable data representation (scattering coefficient matrix) for
exploratory data analysis. With an ICA, we extracted features describing data‐driven signal characteristics of the
seismogram. These features have shown a continuously evolving seismogram with many pattern changes, in
particular for stations a few kilometers away from the active Klyuchevskoy volcano. A larger number of features
was necessary to observe this behavior. Simultaneously, the large number made the interpretation and analysis
more difficult. Therefore, we utilized a non‐linear dimensionality reduction technique called UMAP to create a
two‐dimensional representation of the scattering coefficient matrix, which we call a seismogram atlas. In the
seismogram atlas, we find various structures with closeby data points representing similar seismograms and
distant data points representing dissimilar seismograms. The atlases offer a visual tool to analyze long seismic
time series and they confirmed our observation of an ever‐changing wavefield. We were able to relate certain atlas
areas, representing similar signal characteristics, to different volcanic activities and changes in the volcanic
plumbing system.While the seismic wavefield seems to change throughout the recording time, the atlas helped us
to identify sudden and continuous pattern changes. Deep reactivations are characterized by sudden pattern
changes and tremor depth changes are mainly characterized by continuous pattern changes. We also want to
emphasize that each tremor period seems to have its own signal characteristics, resulting in distinct structures in
the seismogram atlas.

Data Availability Statement
The KISS data set (Shapiro et al., 2015) is available from the GEOFON data center of GFZ‐Potsdam (https://
geofon.gfz‐potsdam.de). The data was processed with Python and visualized with Matplotlib (Hunter, 2007),
available under the Matplotlib license at https://matplotlib.org/. The python packages ScatSeisnNet
(Steinmann, Seydoux, & Campillo, 2022), ObsPy (Beyreuther et al., 2010) and Scikit-learn (Pedregosa
et al., 2011) were heavily used for processing the data.
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