
### **Open hardware:** bringing scientific instruments back into the open science conversation

Dr. Julieta Arancio, Open Research Funders Group



Helmholtz Open Science Online Seminars

#### **Global consensus towards open science**







#### **Open hardware in the UNESCO recommendation**



"The design specifications of a physical object which are licensed in such a way that said object can be studied, modified, created and distributed by anyone, providing as many people as possible with the ability to construct, remix and share their knowledge of hardware design and function."

#### **Open hardware as open science today**

- Precedent: FOSS in science
- Most scientific instrumentation is proprietary
- More development of tools than consumption
- Still emergent, less mature than open access/data/software
- Cultural difference: how to work open with the constraints of the material world?



# Why do you think researchers engage in open hardware?

#### Why open hardware: one question, multiple answers

- 1. Hyper customization
- 2. Access to research
- 3. Greater impact
- 4. Risk reduction
- 5. Education

#### Why open hardware: customization

- Why limiting the questions you can ask to what proprietary tech allows you to do?
- Greater control over experiments
- Easier collaboration: reduce friction with open licenses
- A flexible way of trying new ideas
  - Not dealing with vendors' timelines
  - No need for extra funding
  - Rapid prototyping accelerates the process

#### Why open hardware: access to research

- Access to scientific instruments is asymmetrical
  - Import restrictions
  - Shipping costs
  - Availability of components
- Lack of funding prevents teams from doing science
- Prototype instruments with tools developed locally
  - Easier maintenance
  - Adapted to the context
  - Developing local capabilities

#### Why open hardware: impact

- Proprietary equipment is expensive
- Some studies require an isolated function rather than the full features
- With the same budget, more powerful studies
- Particularly relevant when:
  - Huge sample number needed,
  - Geographically distributed

#### Why open hardware: risk reduction

- Proprietary equipment makes labs dependent on vendors
- Vendors can go out of business
- Users are niche, can't really influence vendors
  - Delays
  - Costs

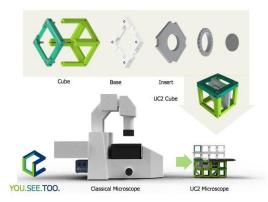
#### Why open hardware: education

- Develop customized setups for students
- Focus on the process gives students useful skills
- Particularly useful during the pandemic



## In your opinion, what is the most challenging aspect of sharing hardware in open science?

#### How open hardware?


- Documentation
  - schematics,
  - parts lists,
  - assembly and user instructions
- Licensing: CERN suite (<u>https://cern-ohl.web.cern.ch/</u>)
- Sharing: protocols for discoverability, specialised journals

#### **Open hardware in science - examples**



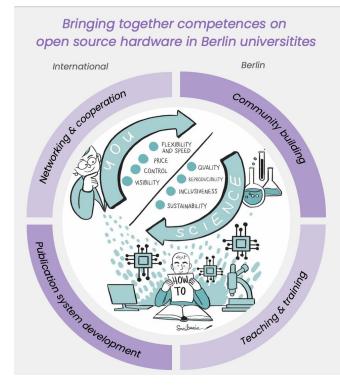






#### **Open hardware in science - communities**










#### Internet of Production Alliance

#### **Open hardware in science - research**



#### Analysis - 15 cases

| #  | Project name                     | Co |
|----|----------------------------------|----|
| 1. | Open MRI /PTB                    | DI |
| 2. | OpenFlexure /Univ. of Bath       | U  |
| 3. | <u>VentMon</u>                   | CA |
| 4. | Plastic Scanner /TU Delft        | N  |
| 5. | White Rabbit /CERN               | CH |
| 6. | unOrick                          | FF |
| 7. | M19 Oxygen                       | IN |
| 8. | Libre Solar                      | DI |
| 9. | <u>Farmbot</u>                   | U  |
| 10 | . <u>Smart Citizen Kit /IAAC</u> | ES |
| 11 | . Craniobot /Univ. of Minnesota  | U  |
| 12 | . AudioMoth /Oxford Univ.        | U  |
| 13 | . <u>Gorgas Tracker</u>          | PE |
| 14 | . <u>Hackteria</u>               | Cł |
| 15 | . <u>Gaudi Labs</u>              | Cł |
|    |                                  |    |

| ountry | Description                                              |
|--------|----------------------------------------------------------|
| E      | magnetic resonance imaging (MRI) device                  |
| K      | optical microscope for research and teaching             |
| A      | testing device & standard for breathing ventilator aids  |
| L      | device for detecting different types of plastic          |
| H/FR   | sub-nanoseconds time synchronization system              |
| R      | ultrasound imaging development kit                       |
| V      | do-it-yourself oxygen concentrator                       |
| Е      | portable solar generator                                 |
| S      | CNC precision farming robot                              |
| S      | environmental monitoring device for open data sharing    |
| S      | milling machine for automated cranial surgery of rodents |
| K      | acoustic logger for insects and bat sounds               |
| E      | GPS tracker for research on population movement in rura  |
| н      | biological art hacking web platform / wiki               |
| н      | small portable polymerase chain reaction (PCR) machine   |
|        |                                                          |

14







ral areas

#### https://www.openmake.de/

# Open Hardware: Open questions

# Thank you!

#### Dr. Julieta Arancio

julieta@orfg.org

Helmholtz Open Science Online Seminars Shared under a <u>Creative Commons</u> <u>Attribution 4.0 International</u> licence

