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Abstract: The continuous monitoring of the terrestrial Earth system by a growing number of optical
satellite missions provides valuable insights into vegetation and cropland characteristics. Satellite
missions typically provide different levels of data, such as level 1 top-of-atmosphere (TOA) radiance
and level 2 bottom-of-atmosphere (BOA) reflectance products. Exploiting TOA radiance data directly
offers the advantage of bypassing the complex atmospheric correction step, where errors can propa-
gate and compromise the subsequent retrieval process. Therefore, the objective of our study was to
develop models capable of retrieving vegetation traits directly from TOA radiance data from imaging
spectroscopy satellite missions. To achieve this, we constructed hybrid models based on radiative
transfer model (RTM) simulated data, thereby employing the vegetation SCOPE RTM coupled with
the atmosphere LibRadtran RTM in conjunction with Gaussian process regression (GPR). The re-
trieval evaluation focused on vegetation canopy traits, including the leaf area index (LAI), canopy
chlorophyll content (CCC), canopy water content (CWC), the fraction of absorbed photosynthetically
active radiation (FAPAR), and the fraction of vegetation cover (FVC). Employing band settings from
the upcoming Copernicus Hyperspectral Imaging Mission (CHIME), two types of hybrid GPR models
were assessed: (1) one trained at level 1 (L1) using TOA radiance data and (2) one trained at level 2
(L2) using BOA reflectance data. Both the TOA- and BOA-based GPR models were validated against
in situ data with corresponding hyperspectral data obtained from field campaigns. The TOA-based
hybrid GPR models revealed a range of performance from moderate to optimal results, thus reaching
R2 = 0.92 (LAI), R2 = 0.72 (CCC) and 0.68 (CWC), R2 = 0.94 (FAPAR), and R2 = 0.95 (FVC). To
demonstrate the models’ applicability, the TOA- and BOA-based GPR models were subsequently
applied to imagery from the scientific precursor missions PRISMA and EnMAP. The resulting trait
maps showed sufficient consistency between the TOA- and BOA-based models, with relative errors
between 4% and 16% (R2 between 0.68 and 0.97). Altogether, these findings illuminate the path
for the development and enhancement of machine learning hybrid models for the estimation of
vegetation traits directly tailored at the TOA level.

Keywords: top-of-atmosphere; atmospheric correction; machine learning models; Gaussian processes;
radiative transfer model; SCOPE; PRISMA; EnMAp

1. Introduction

Satellite-based optical remote sensing from missions such as ESA’s Sentinel-2 (S2) have
emerged as valuable tools for continuously monitoring the Earth’s surface, thus making
them particularly useful for quantifying key cropland traits in the context of sustainable
agriculture [1]. Upcoming operational imaging spectroscopy satellite missions will have an
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improved capability to routinely acquire spectral data over vast cultivated regions, thereby
providing an entire suite of products for agricultural system management [2]. The Coperni-
cus Hyperspectral Imaging Mission for the Environment (CHIME) [3] will complement
the multispectral Copernicus S2 mission, thus providing enhanced services for sustain-
able agriculture [4,5]. To use satellite spectral data for quantifying vegetation traits, it is
crucial to mitigate the absorption and scattering effects caused by molecules and aerosols
in the atmosphere from the measured satellite data. This data processing step, known as
atmospheric correction, converts top-of-atmosphere (TOA) radiance data into bottom-of-
atmosphere (BOA) reflectance, and it is one of the most challenging satellite data processing
steps e.g., [6–8]. Atmospheric correction relies on the inversion of an atmospheric radiative
transfer model (RTM) leading to the obtaining of surface reflectance, typically through the
interpolation of large precomputed lookup tables (LUTs) [9,10]. The LUT interpolation
errors, the intrinsic uncertainties from the atmospheric RTMs, and the ill posedness of the in-
version of atmospheric characteristics generate uncertainties in atmospheric correction [11].
Also, usually topographic, adjacency, and bidirectional surface reflectance corrections are
applied sequentially in processing chains, which can potentially accumulate errors in the
BOA reflectance data [6]. Thus, despite its importance, the inversion of surface reflectance
data unavoidably introduces uncertainties that can affect downstream analyses and impact
the accuracy and reliability of subsequent products and algorithms, such as vegetation trait
retrieval [12]. To put it another way, owing to the critical role of atmospheric correction
in remote sensing, the accuracy of vegetation trait retrievals is prone to uncertainty when
atmospheric correction is not properly performed [13].

Although advanced atmospheric correction schemes became an integral part of the
operational processing of satellite missions e.g., [9,14,15], standardised exhaustive atmo-
spheric correction schemes in drone, airborne, or scientific satellite missions remain less
prevalent e.g., [16,17]. The complexity of atmospheric correction further increases when
moving from multispectral to hyperspectral data, where rigorous atmospheric correction
needs to be applied to hundreds of narrow contiguous spectral bands e.g., [6,8,18]. For this
reason, and to bypass these challenges, several studies have instead proposed to infer vege-
tation traits directly from radiance data at the top of the atmosphere [12,19–26]. Though the
latter studies exemplify the diversity of TOA-based trait retrieval methods that have been
proposed, the overarching rationale is that the direct retrieval of radiance data presents
the advantage of circumventing the complex process of atmospheric correction, thereby
mitigating the potential transmission of errors to subsequent retrieval processes.

Regardless of the specific methodological implementation, all those proposed TOA-
based retrieval studies have in common that they account for the fundamental physical
principles governing radiative transfer [12,19,21–23,25,26]. This entails the integration of a
vegetation RTM with an atmospheric RTM [20,27–29]. Atmospheric RTMs systematically
model the atmospheric influences on surface-reflected radiance, thus calculating the inter-
action of radiation with the atmosphere while accounting for diverse gaseous absorptions
under assumptions of anisotropic or Lambertian surfaces [30]. Some of the most relevant
atmospheric models include the MODerate resolution atmospheric TRANsmission (MOD-
TRAN) [31], the Second Simulation of a Satellite Signal in the Solar Spectrum (6SV) [32],
and the libRadtran (Library for Radiative Transfer) [33]. The principle of TOA-based trait
retrievals lies in the coupling of vegetation RTMs with such an atmospheric RTM, with the
latter explicitly modelling the atmospheric effects on the radiance received by the sen-
sor. This coupling enables the generation of a LUT of TOA radiance simulations, which
forms the foundation for subsequent retrieval strategies or sensitivity analysis studies. For
instance, the theoretical validation of TOA-based trait retrieval was established through
a global sensitivity analysis [20,34]; atmospheric parameters demonstrate sensitivity in
distinctive, largely nonoverlapping spectral bands, such as those associated with ozone
column concentration and water vapour. Furthermore, the spectral signal experiences
comparatively minimal impact from most atmospheric variables when contrasted with the
more influential canopy or leaf-level variables. These vegetation variables, particularly
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prominent in the visible and shortwave infrared regions, exert a predominant effect, thus
implying that, in principle, they can be retrieved directly from TOA radiance data [20,34].

Building upon these theoretical foundations, recent experimental studies have demon-
strated that hybrid retrieval methods can function as powerful processors to process TOA
radiance data into quantifiable vegetation variables [29,35–38]. In essence, hybrid methods
combine RTM simulations with machine learning regression algorithms (MLRAs). These
methods are usually applied to the processing of BOA reflectance data e.g., [39–42], where
hybrid models achieved accurate estimations of plant functional traits due to their robust-
ness, transferability, and fast processing (see reviews in [43–45]). Yet recently, pursuing the
hybrid strategy, some studies inferred vegetation traits directly from TOA satellite imagery
with adequate spectral coverage but with only a limited number of bands, such as Coperni-
cus Sentinel-2 or Sentinel-3 [29,35–38]. The core algorithm of these hybrid models is usually
the Bayesian MLRA Gaussian process regression (GPR) [46]. GPR is typically preferred in
hybrid models because of its proven excellent prediction accuracies and insights in relevant
bands e.g., [41,42,47–49]. Furthermore, associated model uncertainties can be derived from
the GPR models, which is useful to understand the quality of the variable prediction when
transferring models to different sites and under diverse conditions e.g., [36,50].

While the studies have demonstrated the effectiveness of hybrid or TOA-based models,
their application has been limited to the processing of multispectral or BOA data. Recently,
satellite imaging spectroscopy missions have been designed and partly launched, thereby
possessing hundreds of spectral bands that provide a vast amount of data of high detail
and accuracy. In addition to CHIME, these missions include the launched PRecursore
IperSpctrale de la Missione Applicativa (PRISMA) [51], the Environmental Mapping and
Analysis Program (EnMAP) [52], and the planned Surface Biology and Geology (SBG) [53].
In light of the challenges associated with atmospheric correction and the recent successes
in developing TOA-based hybrid retrieval models, the natural progression would be to
explore and develop hyperspectral TOA-based hybrid models.

Altogether, given the upcoming era of imaging spectroscopy, this work is determined
to develop TOA-based hybrid retrieval models that enable the accurate and fast processing
of hyperspectral images directly from TOA radiance data, thus bypassing the need for an
atmospheric correction. Specifically, we aim to address some of the most relevant vegetation
traits in the field of agriculture, such as the leaf area index (LAI), the canopy water content
(CWC), the fraction of absorbed active photosynthetic radiation (FAPAR), the fractional
vegetation cover (FVC), and the canopy chlorophyll content (CCC). It has recently been
demonstrated that these traits can be successfully retrieved from atmospherically corrected
imaging spectroscopy reflectance data using hybrid GPR models [49]. As a next step, we
aim to provide evidence that these traits can be directly predicted from hyperspectral TOA
radiance data, which brings us to the following objectives: (1) to develop and evaluate TOA-
based hybrid GPR models for estimating vegetation traits using simulated hyperspectral
TOA data and (2) to assess the generalisability of the TOA-based hybrid models to different
imaging spectroscopy datasets, including PRISMA and EnMAP imagery. Finally, (3) we
will address the feasibility of the TOA-based hybrid retrieval schemes for upcoming global
imaging spectroscopy missions, such as CHIME.

2. Material and Methods
2.1. Study Design and Workflow

To build TOA-based hybrid retrieval models, we have developed a workflow that
consists of three main steps, as illustrated in Figure 1 and briefly outlined below. Further
details can be found in Sections 2.2–2.7.
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Figure 1. Workflow scheme of the two pursued hybrid TOA and BOA retrieval strategies.

The first step consists of the generation of the BOA and TOA training datasets using
RTM simulations. In brief, a BOA training database was first generated using the integrated
soil–leaf–canopy RTM SCOPE [54]. This initial dataset was then optimized and reduced us-
ing active learning techniques. Active learning allows for the selection of the most informa-
tive data points from the original simulated dataset. This focus on informative data can help
reduce bias in the resulting training set [48]. This step was executed within the Automated
Radiative Transfer Model Operator (ARTMO) [55] (https://artmotoolbox.com/, accessed
on 26 March 2024). The Atmospheric Lookup Table Generator (ALG) toolbox [56] was
employed to run the atmospheric RTM LibRadtran [33,57] (http://www.libradtran.org/,
accessed on 26 March 2024). Subsequently, both the SCOPE and the atmospheric simula-
tions were then coupled with ARTMO’s so-called “TOC2TOA” toolbox to achieve a TOA
radiance LUT.

The second step involved the training and validation of the hybrid BOA and TOA
models for each of the vegetation traits. This step was also done through the ARTMO
platform. GPR was used as the core algorithm for retrieval and uncertainty estimation in
the hybrid models. Regarding the training of GPR, an optimal way to deal with the spectral
redundancy of hyperspectral data is to apply principal component analysis (PCA) as a
spectral dimensionality reduction technique before entering the spectral data into a GPR
model [49]. Once the final BOA- and TOA-based GPR models have been trained, they are
subsequently validated against field data.

Finally, the third step focused on applying the validated hybrid GPR models based on
the BOA and TOA to PRISMA and EnMAP images previously resampled to CHIME bands,
both at the BOA and TOA scales. The resulting maps were then compared by analyzing
different goodness-of-fit statistics to evaluate the consistency of the estimates retrieved
from the BOA and TOA scales. We analyzed the comparison of the root mean square
error (RMSE), relative RMSE (RRMSE), and normalized RMSE (NRMSE), together with the
coefficient of determination R² and, additionally, the mean absolute error (MAE) used in
the scatterplots against in situ data.

2.2. Top-of-Canopy Radiative Transfer Modeling: SCOPE

Regarding the generation of top-of-canopy simulations, we selected the Soil Canopy
Observation, Photochemistry, and Energy fluxes (SCOPE) model (version 1.7) [54,58].
The SCOPE model is a comprehensive RTM that simulates the radiative transfer of solar
and thermal radiation in vegetated canopies. The model also simulates the energy balance
and fluxes of water and carbon dioxide between the canopy and the atmosphere. SCOPE

https://artmotoolbox.com/
http://www.libradtran.org/
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exhibits a modular architecture that integrates knowledge from radiative transfer, microm-
eteorology, and plant physiology. The individual modules can be executed independently
or interconnected in a cascading manner, thus allowing for the exchange of inputs and
outputs. SCOPE is based on the concept of a turbid medium, which means that the veg-
etation canopy is treated as a collection of scattering and absorbing particles. The soil
reflectance was characterised using the Brightness–Shape–Moisture (BSM) soil reflectance
model [59,60]. The optical properties of leaves were modeled using PROSPECT-PRO [61]
and Fluspect [62], while the structural characteristics of the canopy were described by
SAIL [63].

Key retrievable leaf variables involve the leaf chlorophyll content (Cab) and leaf water
content (Cw). These driving variables of leaf optical properties cause leaf spectral variability,
and they are also strong indicators of plant health e.g., [64,65]. However, estimating leaf
variables from space is a challenging task, given the numerous confounding factors driving
the reflectance of a pixel-scale vegetated surface, such as leaf density, orientation, 3D
heterogeneity, and soil background. Therefore, leaf variables are usually more successfully
estimated at the canopy scale e.g., [35,66]. Concerning the variables associated with canopy
structure, the LAI and the leaf inclination distribution function parameters (LIDFa/b) are
part of the SAIL model [63]. The LAI is indispensable for upscaling the leaf-level variables
to the canopy level (see Table 1). The upscaling of the leaf Cab and Cw variables to the
canopy level was achieved by multiplying the corresponding leaf variables with the LAI in
g/m2, thereby leading to deriving the canopy chlorophyll content (i.e., CCC) and canopy
water content (i.e., CWC). Further, the usage of the SCOPE model facilitated the indirect
determination of the fraction of absorbed photosynthetically active radiation (FAPAR)
and the fractional vegetation cover (FVC) based on the primary variables LAI and Cab.
See also [39,49] for further details regarding the calculation of these variables. Regarding
the illumination and viewing variables, i.e., the sun zenith angle (SZA), the observer
zenith angle (OZA), and the relative azimuth between the sun and observer (RAA), those
were varied to encompass the full range of possible sun–sensor–target configurations
for the imagery. These variables were assigned uniform distributions, with no preferred
observation direction. Table 1 summarises the particular ranges of variables used in the
RTM configuration used to generate the initial training dataset.

Table 1. Parameterisation of SCOPE and BSM soil reflectance models, with notations, units, ranges and
distributions of inputs used to simulate the spectral training database. x̄: mean. SD: standard deviation.

Model Variables Units Range (Min–Max) Distribution

Leaf Variables
N Leaf structure parameter unitless 1.0–2.7 Gaussian (x̄: 1.5, SD: 0.5)
Cab Leaf chlorophyll content [µg/cm2] 0–80 Gaussian (x̄: 45, SD: 35)
Cm Leaf dry matter content [g/cm2] 0.002–0.02 Gaussian (x̄: 0.0075, SD: 0.005)
Cw Leaf water content [g/cm2] 0.005–0.035 Gaussian (x̄: 0.015, SD: 0.0075)
Cxc Leaf carotenoid content [µg/cm2] 0-20 Uniform
Canopy Variables
LAI Leaf area index [m2/m2] 0.1–8 Uniform
LIDF Leaf Inclination rad −1–1 Uniform
αsoil Soil scaling factor unitless 0–1 Uniform
SZA Sun zenith angle [◦] 0–80 Uniform
OZA Observer zenith angle [◦] 0–20 Uniform
RAA Relative azimuth angle [◦] 0–180 Uniform
Soil variables
SMC Soil moisture content [%] 5–55 Gaussian (x̄: 25, SD: 12.5)
BSM BSM brightness [%] 0–0.9 Gaussian (x̄: 0.5, SD: 0.25)
BSM lat BSM latitude [◦] 20–40 Gaussian (x̄: 25, SD: 12.5)
BSM long BSM longitude [◦] 45–65 Gaussian (x̄: 50, SD: 10)

For the creation of the training database, the ranges of the target variables were
defined based on similar previous works, e.g., [39,49,67–72]. Following the provided
ranges in Table 1, a total of 2000 simulations were randomly selected from the combinations
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of variables. While previous studies [71,72] conducted a substantially larger number
of simulations (e.g., in the order of 100,000), it has been demonstrated that competitive
results can be achieved with a smaller, carefully selected sample size for hybrid retrieval
strategies [48,73,74]. Therefore, as elaborated in [49], the generated 2000 samples in this
training dataset were subsequently used as input for a specific active learning (AL) method
to identify the most relevant samples. The AL step consists of optimising and reducing the
training data set against a validation dataset, thus implying that this step was only possible
for the variables where field data were available (i.e., LAI, CCC, and CWC). At the same
time, 26 additional nonvegetated spectra (e.g., soils, water, man-made surfaces, etc.) were
added to account for nonvegetated surface covers in the image. See also [49] for details.

2.3. Top-of-Atmosphere Radiative Transfer Modeling: LibRadtran

For upscaling the above-described SCOPE reflectance simulations to TOA radiance,
we employed the ALG software tool [34]. ALG was developed as an interface to facilitate
and streamline the utilization of atmospheric RTMs, thereby providing an easy-to-use
interface for configuring, running, and storing atmospheric RTM simulations. We selected
the open source libRadtran RTM [33,57]. LibRadtran produces spectrally resolved data with
enough resolution to model hyperspectral satellite data. The RTM offers high resolution,
down to 1 cm−1 (0.01–0.6 nm in the 400–2500 nm spectral range) and allows users to define
and configure the atmospheric conditions (molecules, aerosols) and surface boundary con-
ditions. The key libRadtran input variables and their respective ranges are given in Table 2.
Based on Latin hypercube sampling (LHS) a total of 1500 simulations were generated,
thereby ensuring that the sun–target–sensor geometry of the canopy corresponded with
the geometry of the atmosphere. Note that no additional AL was applied at the TOA
scale, as we felt the need to keep all possible atmospheres in the LUT. As for the spectral
configuration, libRadtran simulations were carried out in two spectral intervals that were
later concatenated by ALG: 380–940 nm (at 5 cm−1) and 940–2505 nm at (15 cm−1). As the
output, the libRadtran LUT generated by ALG contains the so-called atmospheric transfer
functions: path radiance (L0), at-surface direct/diffuse solar irradiance (Edir/di f ), spherical
albedo (S), and target-to-sensor direct/diffuse transmittance (Tdir/di f ). These atmospheric
transfer functions allow for decoupling of the radiative transfer effects between the surface
and the atmosphere, which makes them particularly valuable for atmospheric correction
and forward modelling [32], as is aimed here.

The ALG’s output file, containing atmospheric transfer functions, was then read by
ARTMO’s TOC2TOA toolbox, together with the SCOPE datasets. Both datasets were
converted into the TOA radiance dataset according to Equation (1) [20]. This equation
assumes a homogeneous Lambertian surface with reflectance ρ. Here, µil is the cosine of
the SZA.

Ltoa = L0 +
(Edirµil + Edi f )(Tdir + Tdi f )ρ

π(1 − Sρ)
(1)

Once the TOA training dataset was produced, the next step was to create hybrid
GPR models that were generically applicable. These models were applied to PRISMA and
EnMAP imagery, thereby allowing the retrieval of targeted vegetation traits. It is important
to note that the PRISMA and EnMAP instruments have slightly different spectral configu-
rations. While PRISMA covers the 400–2500 nm spectral range with 239 bands, EnMAP is
in the 420–2450 nm range with 230 bands. To ensure consistency and aim for general appli-
cability, we resampled the final datasets according to the CHIME spectral settings by using
cubic spline interpolation, which contained a total of 295 bands distributed between 417
and 2475 nm. It should be noted that the absorption bands of oxygen and water vapour
have previously been eliminated from the original CHIME bands. The following band
ranges were eliminated: [936–938], [1124–1126], [1315–1500], [1750–1900], and [2440–2480]
(in nm). We also note that EnMAP does not fully cover the spectral range of CHIME. When
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resampling the bands from EnMAP to CHIME, the missing bands were removed in the
subsequent processing.

Table 2. Parameterisation of atmosphere libRadtran model, with notations, units, ranges, and distri-
butions of inputs used to simulate the spectral training database.

Model Variables Units Range (Min–Max) Distribution

Atmospheric Variables: libRadtran
03C O3 Column Concentration [atm-cm] 0.25–0.45 LHS
H2O H2O Column Concentration [g/cm2] 0.5–4 LHS
AOT Aerosol optical thickness unitless 0.05–0.5 LHS
Geometric Variables
GNDALT Ground altitude [km] 0–2.5 LHS
SZA Sun zenith angle [◦] 0–80 LHS
OZA Observer zenith angle [◦] 0–20 LHS
RAA Relative azimuth angle [◦] 0–180 LHS

2.4. Gaussian Process Regression (GPR)

GPR was chosen as the core algorithm in the hybrid retrieval scheme due to its
proven performance in variable retrieval studies and provision of per-pixel uncertainties,
e.g., [36,50,70,75,76]. For the rationale behind using GPR instead of alternative statistical
algorithms, the reader is referred to [20,43,77].

Expressed mathematically, the GPR model establishes a connection between the input
(B band spectra) x ∈ RB and the output variable (canopy variable to be retrieved) y ∈ R,
which is represented as (Equation (2)):

ŷ = f (x) =
N

∑
i=1

αiK(xi, xj), (2)

Here, {xi}N
i=1 are the spectra used during the training phase, the αi ∈ R, 1 ≤ i ≤ N

are the weights determined by GPR to each spectrum in the training set, and K is a kernel
function measuring the similarity between an unseen test spectrum x and all the spectra
in the training set. Each input training spectrum is represented as xi = [x1

i , x2
i , . . . , xB

i ]
⊤,

where i = 1, . . . , N, and B are the total number of satellite bands. The use of a particular
kernel function is crucial to fit the particular problem. In our case, we used the automatic
relevance determination (ARD) rational quadratic kernel:

K(xi, xj | θ) = σ2
f

(
1 +

1
2α

B

∑
m=1

(xm
i − xm

j )
2

σ2
m

)−α

(3)

This kernel is a blend of exponential quadratic kernels, where the mixture parameter
α > 0 establishes the weighting between them. The scaling factor σ2

f is derived from the

total variance, while σ2
m, 1 ≤ m ≤ B denotes feature-dependent length scales.

In our setting, we assumed that the observed variable was formed by additive noisy
observations of the true underlying function y = f (x) + ϵ. Moreover, we assumed the noise
to be additive and independently Gaussian distributed, with a zero mean and a variance of
σn. Let us define the stacked output values y = (y1, . . . , yn)⊤; the covariance terms of the
test point k∗ = [k(x∗, x1), . . . , k(x∗, xn)]⊤ and k∗∗ = k(x∗, x∗) represent the self-similarity
of x∗. From the previous model assumption, the output values are distributed according to
Equation (4): (

y
f (x∗)

)
∼ N

(
0,
(

K + σ2
nI k∗

k⊤
∗ k∗∗

))
. (4)
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For prediction purposes, each GPR model is obtained by computing the posterior
distribution over the unknown output y∗, p(y∗ |x∗,D), where D ≡ {(xn, yn)|n = 1, . . . , N}
is the training dataset. Interestingly, this posterior can be shown to be a Gaussian dis-
tribution, p(y∗|x∗,D) = N (y∗|µGP∗, σ2

GP∗), for which one can estimate the predictive mean
(pointwise predictions), as µGP∗ = k⊤∗ (K + σ2

nI)−1y. One of the advantages of GPR is
to provide the predictive variance (confidence intervals), which is estimated as σ2

GP∗ =
k∗∗ − k⊤

∗ (K + σ2
nI)−1k∗. The corresponding hyperparameters θ are optimised through the

marginal likelihood (also known as the evidence) of the observations [46].

2.5. Spectral Dimensionality Reduction: Principal Components Analysis (PCA)

PCA is a key part of the presented workflow, and it is used twofold. Firstly, it reduces
the effective dimension of the input spectra [78] by maintaining its original variability.
Secondly, it provides robustness to the proposed methodology, as it acts as a proven noise
reducer; see [39]. Specifically, PCA involves mapping spectral data to a lower-dimensional
feature space in which the original dataset variance is maximally preserved. Consequently,
PCA identifies dominant spectral features while also uncovering signals in other spectral
bands, the extent of which depends on the number of principal components considered. To
extract these dominant spectral characteristics, PCA addresses an optimisation task that
aims to maximize the variance within the transformed space. This optimisation can be
formulated as a Rayleigh quotient as follows:

arg max
w

w⊤Σw
w⊤w

. (5)

The solution of the above task 5 leads to solving the equation Σw = λw, thus involving
the computation of the eigenvalues and eigenvectors of the covariance matrix Σ. These
eigenvalues summarise the contribution of each principal component, i.e., each eigenvector,
to the total amount of retained variance. In our setting, we chose an optimised number of
principal components that attained relatively high explained variability (greater than 99%;
see Figure 5).

To optimally explore the spectral information of both BOA and TOA reflectance data
entered into the training of the GPR models, we first evaluated the explained spectral
variability as a function of the total number of PCs. At the same time, we evaluated the
spectral reconstruction accuracy, i.e., how well the original spectrum can be reconstructed.
For this purpose, 1 to 30 components were applied to the spectral training dataset, and GPR
algorithms were trained. The insights to be revealed by this analysis are expected to confirm
that using 20 components in GPR training is a conservative number to ensure that 99.95% of
the original spectral variance is kept, both for BOA and TOA. Another way to analyze the
relevance of these components is by inspecting the GPR band relevance, i.e., as obtained by
the ARD rational quadratic kernel—the σ2

m feature-dependent length scales (Equation (2)).
Since the features represent the components, we can inspect and compare what the driving
components are for each of the targeted traits in both the BOA- and TOA-based GPR models.
To visualise this, we calculated polar plots (Figure 6), in which a larger distance from the
center indicates a higher relevance of the component in the creation of the GPR model.

2.6. Campaign Data: Field Measurements and Hyperspectral Acquisitions

The field dataset used for validation purposes was obtained from comprehensive in situ
measurements carried out at two test sites. The first dataset was acquired in the northern re-
gion of Munich (southern Germany) at an agricultural test site located at N 48°16′ and E 11°42′,
which mainly comprises communal farmlands owned by the city of Munich. Over recent
years, the agricultural test site Munich-North-Isar (MNI) has evolved into a validation site
for the development of agricultural algorithms within the framework of the German hyper-
spectral EnMAP mission [79,80]. From the MNI site, 28 experimental sampling units (ESUs)
were available for all three variables (LAI, CCC, and CWC). The second campaign took place
in Italy at an agricultural site in the north of Grosseto located in central Italy (N 42°49.78′,
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E 11°4.21′) during the summer season of 2018. Sampling was performed within two corn
(Zea mays L.) fields of varying phenological cycles due to different sowing dates (i.e., early
May and mid-June). Regarding the measurements taken in Grosseto, leaf traits were scaled
up to the canopy level by multiplication with the LAI. Also in Grosseto, we obtained a total
of 31 measurements for the CWC and 87 for the LAI and CCC. The details of the field and
laboratory measurement protocols can be found in [79–81]. The dataset collected in Munich
was taken by a ASD FieldSpec 3 spectroradiometer (Analytical Spectral Devices Inc., Boulder,
CO, USA). The sensor provides an effective spectral resolution of 3 nm in the VIS domain
from 350 to 700 nm, and 10 nm from 700 to 2500 nm, i.e., near infrared (NIR) to SWIR.

Regarding the Italian campaigns in Grosseto, LAI measurements were carried out
(2–7 July 2018 and 31 July–1 August 2018) using the optical LAI-2200 instrument, which
estimates the effective LAI based on the canopy gap fraction. Thus, the obtained values
represent the effective plant area index [82,83]. The measurements were conducted both
above and below the canopy. In addition, hemispheric images were processed by employing
CAN-EYE software (https://www6.paca.inrae.fr/can-eye/ (accessed on 26 March 2024))
to estimate the LAI. Overall, we used the LAI observations of 87 ESUs.

The CCC values were derived from an empirical relationship between destructive Cab
measurements and SPAD readings collected in the field. The CWC was assessed through
destructive measurements on leaf discs within 31 ESUs, with the Cw calculated from initial
and postdrying weights. These techniques collectively provide a comprehensive approach
to evaluate critical canopy attributes. Simultaneously with plant trait sampling at Grosseto,
two airborne hyperspectral acquisitions were realised on 7 July and 30 July 2018 in clear sky
conditions using the HyPlant DUAL sensor [84]. The sensor covers a spectral range from
380 to 2530 nm (629 bands) with a FWHM of 3–10 nm and a ground sampling distance from
1 m (7 July) to 4.5 m (30 July). HyPlant raw images were geometrically and atmospherically
corrected to top-of-canopy reflectance through a dedicated processing chain described
in [84].

Both the MNI and Grosseto datasets were merged for validation purposes. Spectral
observations from the fields and HYPLANT were resampled to CHIME spectral configura-
tions. Due to the absence of TOA radiance measurements, the reflectance measurements
corresponding to the in situ data were propagated to TOA radiance following the same
TOC2TOA procedure that was performed to create the database of TOA training (see
Section 2.3). TOA radiance was also resampled to the CHIME spectral bands.

Table 3 provides an overview of the measured (and calculated) variables from the
Grosseto and MNI sites with the mean values, standard deviations, range, and number
of samples.

Table 3. Overview statistics of measured and targeted variables of Grosseto and MNI campaigns.

Variable (Abr) Unit Mean (SD) Range No. of Samples

Leaf area index (LAI) m2/m2 2.1 (1.6) 0–6 115
Canopy chloropyll content (CCC) g/m2 0.97 (0.7) 0–3.2 115
Canopy water content (CWC) g/m2 417 (271) 0–1113 59

2.7. Imagery Acquisition and Preprocessing

We explored the data provided by two different satellites: PRISMA [51], and
EnMAP [52]. As depicted in Figure 2, the PRISMA and EnMAP images have been chosen
firstly at the same time of year and secondly, although 2 years apart, they both mainly cover
croplands. As the developed models are supposed to be generically applicable in princi-
ple, they should be able to process both images and then allow for BOA- vs TOA-based
mapping comparison.

https://www6.paca.inrae.fr/can-eye/
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Figure 2. Zoom in with PRISMA scene at the test site in the North of Munich (Munich-North-Isar,
MNI), Germany. EnMAP scene in North of Munich, Germany. The Grosseto and MNI test sites are
marked with yellow dots.

2.7.1. PRISMA Acquisition

The PRISMA satellite is operated by the Italian Space Agency (ASI). PRISMA is an
imaging spectrometer with 239 contiguous wavebands spanning from 400 to 2500 nm. It
offers a spectral sampling interval of less than 11 nm and a full width at half maximum
(FWHM) of less than 15 nm. PRISMA provides high-resolution imagery, with a ground
spatial resolution of 30 m and a swath width of 30 km. Its capabilities include off-nadir
observations of up to ±14.7 degrees.

A PRISMA image was acquired over the MNI agricultural area on 1 August 2020,
during a 4-second interval, spanning from 10:25:51 to 10:25:55. This image was downloaded
at both the TOA level and the BOA level. The choice of this image is because it was taken
2 years after the validation data collection at exactly the same time of year. The image,
at the BOA scale, corresponds to the L2D PRISMA reflectance cube, while the TOA scale
image represents the L1 PRISMA radiance cube. These images were obtained in HDF5
format and read using the prismaread tool [85].

A key assumption of the hybrid GPR models is that the training dataset corresponds
with that of the imagery to be processed. Therefore, to justify the validity of our approach,
in Figure 3 we show two datasets as expressed by the averaged spectra, standard deviation
(shaded areas), and min–max ranges. In the first dataset, 70 random vegetation pixels
were chosen from the PRISMA image whose spectra are in shades of red, and the second
dataset shows the spectra of the RTM used for training, specifically of the CCC variable
whose spectra serve as a representative of the other target variables; these spectra are
represented in shades of blue. The figures represent the BOA reflectance spectra in plot
(A) and the TOA radiance spectra in (B). For both scales, the RTM training data matches
closely with that of PRISMA data, thereby supporting the validity of the training data for
processing PRISMA imagery. As expected, the RTM training data varies in a wider range,
i.e., this variability allows the generation of a valid and generic hybrid model. Altogether,
the figures support the usage of the BOA- and TOA-scale training datasets for GPR-based
processing of PRISMA imagery.
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(A) (B)

Figure 3. Comparative statistical analysis of spectral information. (A) Spectral comparison of
70 vegetation pixels from the PRISMA reflectance BOA image (in red) versus the SCOPE-simulated
reflectance database for BOA GPR-20PCA models training (in blue). (B) Spectral comparison of
70 vegetation pixels from the PRISMA radiance TOA image (in red) versus the coupled SCOPE-
libRadtran simulated reflectance database for training TOA GPR-20PCA models (in blue). [mW ·
m−2sr−1nm−1].

2.7.2. EnMAP Acquisition

The German hyperspectral EnMAP sensor is a pushbroom imaging spectrometer with
a total of 240 spectral bands divided in the VNIR range (420–1000 nm at 6.5 nm resolution)
and SWIR range (900–2450 nm at 10 nm resolution). It offers high radiometric resolution
and stability in both spectral ranges. EnMAP provides a swath width of 30 km with a
spatial resolution of 30 × 30 m. It supports rapid target review by pointing towards nadir
(30 degrees) and can acquire a sweep of 1 km per orbit and a total of 5 km per day.

The models developed in this study were applied to an EnMAP image captured on
28 July 2022. The selection of this image serves a dual purpose. Firstly, it was acquired
two years after the PRISMA image described above while retaining the same seasonality.
Secondly, it belongs to the same agricultural site in northern Germany. Two different level
EnMAP products were downloaded: the L2A BOA reflectance cube and the L1C TOA
radiance cube. These EnMAP data files were retrieved from the EnMAP mission portal
(https://planning.enmap.org/, accessed on 26 March 2024) in TIF format and read using
the QGIS application version 3.26, within the specialised EnMAP BOX package. The TOA
image was downloaded in digital number (DN) format and accordingly transformed into
radiance data through the gain and offset values included in the metadata .xml file.

Analogous to the PRISMA data, Figure 4 shows the comparison of the BOA and
TOA simulated datasets compared to the EnMAP data. For both scales, the RTM training
data matches closely with that of the EnMAP data, thereby supporting the validity of the
training data for processing EnMAP imagery. As expected, the RTM training dataset varies
in a wider range, i.e., this variability allows for the generation of a valid and generic hybrid
model. Altogether, the figures support the usage of the BOA- and TOA-scale training
datasets for the GPR-based processing of EnMAP imagery.

To provide insights into the computational efficiency of our approach, we recorded the
execution time on a personal computer (Ubuntu 20.04 LTS 64-bit operating system, Intel
i7-9700K CPU 3.60 GHz, 32 GB RAM). Efficient runtime is crucial for operational processing.
By optimising both the spectral and sampling domains, we ensured a streamlined and
efficient model, even though both models involve 20 functions in their implementation.

https://planning.enmap.org/
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(A) (B)

Figure 4. Comparative statistical analysis of spectral information. (A) Spectral comparison of
70 vegetation pixels from the EnMAP reflectance BOA image (in red) versus the SCOPE-simulated
reflectance database for BOA GPR-20PCA models training (in blue). (B) Spectral comparison of
70 vegetation pixels from the EnMAP radiance TOA image (in red) versus the coupled SCOPE–
libRadtran simulated reflectance database for training TOA GPR-20PCA models (in blue).

3. Results

This section starts with an analysis of the usefulness of using principal component
analysis for spectral dimensionality reduction and as an essential part of our hyperspectral
workflow. Here, we detail the number of principal components used in the experiments.
Also, we provide insights into the importance of each component in the GPR model training
at both the BOA and TOA scales. Following that, this section also offers results about the
validation of models with acquired in situ data. Finally, trait maps are generated using the
BOA- and TOA-based GPR models for both PRISMA and EnMAP imagery, and they are
crosscompared.

3.1. PCA and Component Relevance BOA- and TOA-Based GPR Models

We first evaluated the role of PCA spectral dimensionality reduction in the GPR
models at the BOA and TOA scales. Figure 5 shows the cumulative explained variability
(left axis) and reconstruction error (right axis) as functions of the number of principal
components. The total variability was maintained by projecting onto the PCA subspace.
The reconstruction accuracy (in R2 terms) was determined after projecting the original data
and performing the inverse PCA projection to assess the reconstruction achieved by the
low-rank projection. As observed, a subspace of 10 principal components was sufficient to
maintain both the explained variability of the original data and the reconstruction accuracy.
To be on the safe side, and in agreement with earlier analysis [49], we selected a total of
20 principal components to obtain a projection that satisfied both criteria: the explained
variability and the reconstruction error.

After the development of the BOA- and TOA-based hybrid GPR models with 20 PCA
components, we inspected the relative importance of the 20 components that built the final
GPR models (GPR-20PCA models). For each model, the relevance of the components can
be demonstrated in a polar plot, i.e., the more outwardly positioned, the more relevant
(Figure 6). The relevance of each component has been obtained according to [49]. This
value provides numerical evidence regarding the relevance assigned to each component:
the bigger the value, the more the relevancy. The polar plots allow us to compare the
strengths of the models between the BOA and TOA. Particularly for the LAI and FVC, the
BOA components were given more weight than the TOA models, especially in the case
of the FVC. Conversely, for the CCC, CWC, and FAPAR the TOA components received
slightly more weight than the BOA models. It is noteworthy that the first component was
not found in any of the models evaluated among the most important, that is, in none of
the cases did the first component preserve most of the spectral variance. Instead, the most
relevant components emerged beyond the fifth component. The relevant components all
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appeared up to component 20. While higher components can capture subtleties relevant
to the development of the models, they also capture noise present in the spectral data.
At the same time, some components hardly play a relevant role, i.e., they are located in
the center of the polar plots. It is worth noting that a more concise data representation
can be achieved by retaining only the most relevant components, thus resulting in a
reduced data representation while preserving a lower representation error. Yet, we kept the
20 components for all the models to standardise the model comparisons.
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Figure 5. Dual-axis plot showing the explained variability (in black, left axis) and reconstruction
accuracy measured by the coefficient of determination (R2) (in blue, right axis) at both BOA and
TOA levels.

LAI CCC CWC

FAPAR FVC

Figure 6. Polar plots of the principal components (P01–P20) explaining the spectral variability or each
variable in the GPR-20PCA models. Distance to origin represents the importance of each component:
the more outside, the more important.
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3.2. Validation of BOA- and TOA-Based GPR Models

The BOA-based GPR models were used as a reference for evaluating the TOA-based
models. They were developed in [49] and were spectrally adapted and retrained so that the
models could process both PRISMA and EnMAP imagery, i.e., nonmatching bands were
removed. Table 4 summarises the goodness-of-fit statistics, number of samples (N), root
mean square error RMSE, relative RMSE (RRMSE), normalised RMSE (NRMSE), R2, and the
computational time (s: seconds) for the algorithm training and model testing. The variables
LAI, CCC, and CWC have been accurately validated against in situ data at the BOA scale,
with the R2 ranging between 0.69 and 0.82. In situ data were absent for the variables FAPAR
and FVC, so they have only been theoretically validated, i.e., against SCOPE simulations.
The good validation results give confidence that these models, and subsequently the
derived maps, can serve as reference products to evaluate the performance of the TOA-
based models.

Table 4. Goodness-of-fit statistics for canopy variables in Grosseto and MNI in situ datasets (and
theoretical results for FVC and FAPAR) achieved with GPR-20PCA models at BOA scale.

Variable at BOA N Samples RMSE RRMSE (%) NRMSE (%) R2 Train Time (s) Test Time (s)

LAI 526 0.791 36.602 13.198 0.820 6.682 0.002
CCC 409 0.522 53.846 16.079 0.717 3.529 0.005
CWC 526 274.428 65.749 24.643 0.692 7.670 0.007

FAPAR 1036 0.036 4.689 3.758 0.979 12.366 0.006
FVC 1036 0.038 5.083 3.890 0.981 19.954 0.009

Following that, the TOA-based models were also validated. The existing BOA-level
validation database was augmented with atmospheric profiles derived from the combined
application of the ALG and TOC2TOA toolboxes. The upscaled spectral profiles allowed
for validation at the TOA scale. This validation database is only available for the following
variables: CCC, CWC and LAI. For the FAPAR and FVC, we did not have field data for
any of the levels, so only theoretical goodness-of-fit results are provided (Table 5). Upon
inspecting the validation results, it is encouraging that the TOA validation statistics are
similar to those of the BOA, with an improvement for the LAI (R2 of 0.92) and a slight
decline for the other variables, as noted by the error metrics (RMSE, RRMSE, and NRMSE).
The results give confidence that the models can be directly applied at the TOA scale. Also,
the training time took considerably longer than the BOA models, given the larger training
size (1500 samples), which in GPR training times increase cubically. Nevertheless, the
testing time (i.e., runtime) is still quasi-instant, thereby implying that full images were
processed in the order of minutes.

Table 5. Goodness-of-fit statistics for canopy variables in Grosseto and MNI in situ data sets (and
theoretical results for FVC and FAPAR) achieved with GPR-20PCA models at TOA scale: number of
samples (N), RMSE, RRMSE, NRMSE, R2, and computational time (s: seconds) for algorithm training
and model testing.

Variable at TOA N Samples RMSE RRMSE (%) NRMSE (%) R2 Train Time (s) Test Time (s)

LAI 1500 0.781 35.900 13.265 0.919 79.081 0.009
CCC 1500 0.835 83.882 26.099 0.722 57.908 0.007
CWC 1500 253.620 311.485 27.971 0.676 87.089 0.009

FAPAR 1500 0.058 7.456 6.000 0.946 32.797 0.011
FVC 1500 0.062 8.136 6.260 0.950 37.392 0.009

For a closer comparison of the models’ performances, Figure 7 displays the scatterplots
of the BOA- and TOA-based GPR models against corresponding validation data. The plots
also provide the same goodness-of-fit statistics, the number of validation samples n, and the
equation for the linear fitting line. Overall, the fitting line closely follows a 1:1 line, thereby
indicating robust validation. The colour bar, along with the estimates, represents the
associated standard deviation (SD), i.e., uncertainty, as produced by the GPR models. It can



Remote Sens. 2023, 16, 1211 15 of 27

be noted that the uncertainties are low for the large majority of retrievals. When comparing
the BOA against the TOA, it is of interest is that no systematic degradation at the TOA
scale can be noted, which suggests the consistency of the TOA models relative to the BOA
models. These results thus support the adequacy of the TOA-based GPR models for traits
mapping directly at the TOA radiance scale. In the next step, the BOA and TOA models
were applied to process the PRISMA and EnMAP imageries.
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Figure 7. Scatterplots with goodness-of-fit statistics for the GPR-20PCA models at BOA and TOA
levels with validation using in situ data from Grosseto and MNI measurements. In the case of FAPAR
and FVC, crossvalidation results are provided (no in situ data are available). The colour bar indicates
the standard deviation (SD), i.e., uncertainty, achieved by the GPR models.
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3.3. BOA- and TOA-Based Vegetation Trait Mapping Using PRISMA and EnMAP Imagery
and Comparison

The hybrid GPR models were applied at both the BOA and TOA levels of the PRISMA
and EnMAP imagery acquired in northern Munich to illustrate the mapping application.
To avoid anomalies related to the lack of PRISMA L1 geometry and geometric matching
between the BOA and TOA images, only a spatial subset of the PRISMA images was
processed. The output trait maps were then compared by computing a scatterplot and
goodness-of-fit statistics (RMSE, NRMSE, and R2). A visualisation analysis allows for the
evaluation of the accuracy of the processing surfaces with and without vegetation. Apart
from croplands dominating the image, the area is also characterized by strips of natural
vegetation along the river and some patches of forest.

3.3.1. PRISMA Mapping Results

The PRISMA image was acquired both at the BOA and TOA levels over the Jolanda
di Savoia site. Figure 8 illustrates the results of processing the PRISMA images through
the TOA- and BOA-based GPR models for the traits LAI, CCC, CWC, FAPAR, and FVC.
A visual inspection of the resulting maps indicates consistency between the vegetated and
nonvegetated surfaces mapped at both the BOA and TOA scales. For all traits, the NRMSE
relative errors between the BOA- and TOA-based maps were in the same order, around
10–16%. However, the LAI, CCC and CWC suffered from overestimations over the nonveg-
etation surfaces, such as barren land and water bodies.

The CWC exhibited the weakest performance in the TOA domain, with pronounced
overestimations over nonvegetated surfaces. Conversely, it is worth noting that the FAPAR
and FVC yielded comparable BOA- and TOA-based maps, even though the models of these
traits were not optimized against in situ data. Both models produced estimates within the 0
to 1 range, and the spatial patterns recovered matched closely between the BOA and TOA
retrievals. Furthermore, all traits displayed expected higher values in the vegetated regions,
particularly along the riverbanks and areas with trees and dense vegetation. In contrast,
the nonvegetated surfaces exhibited lower values or even near-zero values, especially for
the FVC and FAPAR. The third column of Figure 8 includes the scatterplots between the
maps and the numerical results. It can be noticed that the R2 reached a relatively high value
between the maps, thus being greater than R2 > 0.68 for all variables. This encouraging
correlation between the BOA and TOA maps supports the suitability of mapping vegetation
traits directly at the TOA scale.
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Figure 8. Results of estimated canopy variables LAI, CCC, CWC, FAPAR, and FVC, for the GPR-
20PCA model. The first and second columns show the trait maps retrieved from the PRISMA L2D
BOA image and PRISMA L1 TOA image, respectively. The third row illustrates the scatterplots of
both maps, the X axis corresponds to the BOA results, and the Y axis corresponds to the TOA results;
the scatterplot’s colour bar indicates the relative density of points.

3.3.2. EnMAP Mapping Results

To provide a wider comparison of the proposed methodology, the BOA- and TOA-
based GPR models were additionally applied to EnMAP L2A and L1C images acquired
in the same region located over the south of Munich. A visual inspection of the resulting
maps indicates consistency between the vegetated and nonvegetated surfaces, which were
consistently mapped at both scales (BOA and TOA). The comparison results achieved in all
variables can be considered good, as the R2 between BOA and TOA was above 0.85, and the
NRMSE relative errors were between 4 and 11% for all the traits. Furthermore, visual
inspection describes consistency between the maps at both levels for all the considered
traits. The scatterplots in Figure 9 (right column) demonstrate a strong correlation between
the maps and the corresponding numerical values by achieving relatively low values of the
RMSE and NRMSE error metrics.
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Figure 9. Mapping of estimated canopy variables LAI, CCC, CWC, FAPAR, and FVC, for the GPR-
20PCA models. The first and second columns show the trait maps retrieved from the EnMAP L2A
BOA image and the EnMAP L1C TOA image, respectively. The third row illustrates the scatterplots
of both maps, the X axis corresponds to the BOA results, and the Y axis corresponds to the TOA
results; the scatterplot’s colour bar indicates the relative density of points.

3.3.3. Mapping Runtime

The computational execution time was acquired both from the training and test phases.
Table 6 summarises the computational execution time of the hybrid models based on the
BOA and TOA for the EnMAP and PRISMA scenes. As can be observed, the computational
execution time for the retrievals of the PRISMA image was generally lower than the EnMAP;
this is due to its lower size scene in pixels. The PRISMA scene contains 383× 372 pixels and
the EnMAP scene contains 1216 × 1191 pixels, thereby affecting the CPU execution time.
Regarding the execution time in the training phase, it was higher for the hybrid models
based on TOA, since they involved a larger training dataset of 1500 samples (see Table 5),
and in the BOA models, they involved 409 samples for the CCC variable, 526 samples for
the LAI and CWC variables, and 1036 samples for the FAPAR and FVC (see Table 4). It is
worth mentioning that the GPR model used dominated the CPU execution time, thereby
having a cubic order concerning the number of samples; this implies a heavier calculation
when N grows.

Table 6. Computational execution time to process the images into trait maps. Times are reported in
seconds [s].

Sensor Size (Pixels) Level LAI CCC CWC FAPAR FVC

EnMAP 1216 × 1191 BOA 36.067 36.176 29.4507 45.814 46.471
TOA 103.051 102.524 99.708 70,056 69.432

PRISMA 383 × 372 BOA 5.136 5.070 4.177 6.369 6.469
TOA 13.397 13.410 13.479 9.059 9.053

4. Discussion

Despite the widespread practice of applying retrieval models to atmospherically
corrected images, in this study, we explored the development of hybrid models capable
of directly analyzing hyperspectral TOA radiance imagery. Essentially, such an approach
saves the atmospheric correction processing time and avoids potential errors derived from
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this process. This TOA-based retrieval approach has been laid out here in support of
the upcoming CHIME and evaluated with the scientific hyperspectral precursor mission
data from PRISMA and EnMAP. To the best of our knowledge, this is the first study
estimating multiple vegetation traits from satellite hyperspectral radiance data using a
hybrid workflow. Though comparison studies at the TOA scale are lacking, our results can
be compared against retrievals achieved at the BOA scale. The following sections discuss
the key aspects achieved in this study. Firstly, we examine the RTM and sensors’ data
comparison (Section 4.1); secondly, we examine the retrieval performance with the hybrid
workflow applied to the BOA and TOA (Section 4.2); thirdly, we examine the Gaussian
processes regression and delivered uncertainty (Section 4.4); and quarterly, we examine
the variable-specific mapping using PRISMA and EnMAP imagery (Section 4.3). Lastly,
the limitations and further research opportunities are discussed in Section 4.5).

4.1. RTM and Sensor Data Comparison

When aiming to move towards a routine processing of hyperspectral data into vegeta-
tion traits across the globe, the implemented retrieval algorithm has to be accurate, robust,
and fast, preferably with the provision of uncertainty intervals alongside the estimates [43].
To this end, hybrid models have been evaluated as the most promising, thereby combining
physically based RTMs with the flexibility of machine learning algorithms [44]. In this
context, the ability to generate realistic data from RTMs is crucial for developing highly
effective hybrid models. This was achieved by both optimizing in the spectral domain,
through PCA dimensionality reduction [49], and through optimising the training dataset.
In addition to applying a realistic sampling design within the RTM parameter spaces,
this can be accomplished by further optimising the selection of RTM training samples
through the AL procedure, as has been extensively demonstrated and discussed in previous
studies [47–49,73]. Using AL supports, we can accomplish the establishment of a repre-
sentative training dataset, which is the main prerequisite for the successful training of the
retrieval models. Furthermore, the RTM spectral output should be configured according to
the band settings of the imagery where the hybrid model will be applied to [39,49]. The us-
age of a proper RTM setting allows for the simulation of diverse, yet realistic vegetation
scenarios, which better represent real scenarios. The primary objective of this study was to
develop hybrid models tailored to the capabilities of the upcoming CHIME satellite. Since
the CHIME mission is still in its development phase and a proven atmospheric correction
method is unavailable, we explored the development of hybrid models directly at the TOA
scale and benchmarked them against BOA-based models. Anticipating the availability of
CHIME data, the developed models were evaluated using PRISMA and EnMAP imagery.
PRISMA and EnMAP image spectral bands were resampled to align with the spectral range
of previously validated CHIME models, thereby ensuring compatibility with the sensor
specifications [49].

Having a consistent band setting between the RTM training and satellite-recorded data
at both the BOA and TOA scales, Section 2.7 provided descriptive statistical comparisons
of the spectra for both PRISMA and EnMAP sensors to validate their spectral similarity
(Figures 3 and 4). These illustrations showcase the similarity between the simulated and
satellite-recorded spectra, thereby implying that the hybrid models can correctly interpret
and convert the spectral data into vegetation traits both at the BOA and TOA levels.

4.2. Retrieval Performance at BOA and TOA Scales

The hybrid models developed in this study combine the strengths of physical and
statistical models to achieve both portability and robustness. At the same time, the PCA di-
mensionality reduction step ensures optimal exploitation of the spectral domain, while the
AL step ensures optimal selection of the RTM training samples [49]. As a novelty compared
to previous studies, in this study both optimization steps were applied to the BOA and TOA
scales. For the traits LAI, CCC, and CWC, both the BOA and TOA models were adequately
validated against field data (e.g., R2 ranging between 0.69 and 0.92). Moreover, a slight
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tendency emerged favoring superior estimates derived from the TOA scale for the canopy
variable LAI. It is noteworthy that previous studies conducted by Estévez et al. [29,35]
using Sentinel-2 data also demonstrated superior LAI retrieval performance at the TOA
scale as opposed to the BOA scale. At the same time, the BOA validation showed slightly
higher accuracies for the other analyzed variables. However, the TOA scale demonstrated
comparable accuracy levels, thus highlighting its competitive performance. The high TOA-
based accuracies could be attributed to the potential degradation of BOA hyperspectral
data quality during the multiple processing stages involved in converting the L1C product
to L2A, which could have negatively impacted retrieval accuracy [11].

Related to this topic, hybrid models often add some degree of noise to the training
dataset, e.g., [29,35,39,86]. This spectral degradation of the training dataset can lead to
an improvement in the validation statistics, as it mitigates the tendency of overfitting
the model toward synthetic RTM data. In our TOA-based models, combining canopy
simulations with atmospheric simulations might likewise have acted somewhat as a noise
perturbation factor of the vegetation RTM spectra, i.e., this perturbation similarly mitigates
the tendency of overfitting.

Also, the observed moderate discrepancies between the BOA and TOA and the field
validation data require further explanation. On the one hand, these discrepancies may
be attributed to the use of different RTMs for the atmospheric simulation versus the
atmospheric correction in the PRISMA and EnMAP processors, which causes a net effect
similar to radiometric calibration errors. While in this study libRadtran was used to
generate the TOA training dataset, both PRISMA’s and EnMAP’s atmospheric corrections
are based on MODTRAN [87,88]. This suggests that further work should ensure consistency
among the atmospheric RTMs used for the generation of the training dataset and in the
atmospheric correction processors. On the other hand, as previously mentioned, the spectral
resampling to a common spectral configuration (CHIME) introduces additional noise in
the PRISMA/EnMAP images, particularly in the vicinity of gas absorption regions. This
noise is enhanced by effects such as spectral calibration errors and smile. Although major
absorption bands have been filtered out (Section 2.3) to reduce the impact of this noise,
residual H2O and O2 bands were still present in the data and might have contributed to an
increased noise level in the data.

4.3. Machine Learning Regression Model and Uncertainty

The work presented here is the natural continuation of a research line that focuses
on the development of GPR-based hybrid models e.g., [29,35–38]. GPR allows for the
development of hybrid models with accurate predictions and valuable estimations of
uncertainty for each test spectrum. Following the results achieved in Tables 4 and 5, it can
be deduced that GPR achieves good performance along the considered metrics.

The training time for GPR hybrid models is a significant factor to consider. As the
training time grows cubically as a function of the training samples [89], it typically exceeds
the application time by several orders of magnitude. However, in the context of real-world
operational applications, where timely retrieval estimations are paramount, the prediction
time emerges as the more critical parameter. GPR hybrid models, despite their relatively
lengthy training process, excel in their application performance, thereby enabling them to
swiftly process new incoming spectra and rendering them highly suitable for routine global
mapping applications. This trade-off between training time and application efficiency
makes GPR hybrid models particularly well suited for scenarios demanding the rapid
retrieval of new spectra.

Another aspect of GPR that makes it a highly appealing MLRA for operational contexts
is its built-in uncertainty estimation. GPR not only provides an estimation but also generates
a corresponding normal distribution. This normal distribution is characterized by its
standard deviation, which serves as an uncertainty estimate for the mean retrieval value.
Uncertainty estimates are crucial for the effective interpretation of GPR model outputs,
as they enable per-pixel evaluation of the performance of the model [50]. Furthermore,
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uncertainty estimations are particularly valuable in operational contexts where models
cannot be validated for all locations. For instance, uncertainty information from (future)
Copernicus products is usually requested to support the application of the data and
products in various contexts, such as policy and climate modelling, e.g., [90]. Therefore, it
should be an obligatory part of the provided products.

Here, the uncertainty estimation provided in Figure 7 indicates that our models are
more proficient at estimating vegetation traits on spectra where vegetation density is high.
Notably, the LAI, CCC, and CWC uncertainties were larger on the left side of the axis. This
trend could be attributed to the increasing influence of soil in the spectra of pixels with
lower vegetation density. This behavior is supported by the FVC and FAPAR uncertainty
values, as these models were optimised and validated only against RTM-generated data
(i.e., with less influence of soil in the turbid medium model SCOPE), and their uncertainty
estimates appear to be less attributed to vegetation density.

4.4. Variable-Specific Mapping in PRISMA and EnMAP Sensors

Inspecting both the PRISMA- and EnMAP-based trait maps in Figures 8 and 9, it can
be concluded that TOA-based mapping is possible for both data sources. Particularly, the
FAPAR and FVC led to meaningful maps with strong similarity towards their BOA-based
counterparts. At the same time, it is also noteworthy that the PRISMA TOA-based LAI,
CCC, and CWC maps were not completely behaving as expected, with a general tendency
toward overestimation over nonvegetated surfaces. This can be attributed to various error
sources. First, the spectral resampling to CHIME resolution might derive higher errors due
to the coarser spectral resolution of PRISMA (∼15 nm) compared to EnMAP (6.5–10 nm).
Second, the GPR models were trained by adding bare soil spectra to the training dataset.
These soil spectra might not be suitable for the specific image acquisition by PRISMA. This
factor warrants consideration during the development of future models.

In the broader context, the efficiency of the models in processing full TOA images
within minutes underscores their feasibility for large-scale applications. The consistent
mapping results between the BOA and TOA scales, along with the low uncertainties,
emphasise the practical utility of these models for real-world applications such as precision
agriculture, land cover monitoring, and ecosystem assessment. Discussing the larger
implications of our findings, the consistent performance of the TOA-based models across
multiple hyperspectral sensors signifies their applicability and scalability. The trait mapping
results, particularly for the FAPAR and FVC, hold significance for monitoring vegetation
health and productivity. These findings contribute valuable information for environmental
monitoring, land management, and policy formulation.

It also deserves remarking that the cropland characteristics at the canopy level were
often inferred more accurately from space than leaf-level traits such as the LCC [91].
Our findings for the L1C and L2A scales clearly showed that tendency, which was also
supported by a few related studies examining Sentinel-2 data [66,92,93]. Xie et al. [66]
suggested that this can be caused by the compensating effects between the LAI and LCC,
which could account for the lower retrieval accuracy at the leaf level. The precision with
which leaf biochemicals may be retrieved from canopy reflectance may also be influenced
by the signal’s intensity or signal propagation, which is primarily determined by structural
characteristics like the LAI [94,95].

4.5. Limitations and Further Research Opportunities

Reviewing our research objectives, the developed hybrid GPR models successfully
addressed the challenge of canopy trait mapping from hyperspectral imagery at the TOA
level. However, a few limitations had to be addressed, and some warrant further ex-
ploration to enhance the accuracy and robustness of the retrieval models. For instance,
to overcome the lack of in situ observations for the FAPAR and FVC, we increased the
number of simulated samples from 500 (as for the LAI, CCC, and CWC) to 1000, thus
enhancing the generalisation capability and robustness of the models.
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A notable limitation of the study is that only canopy-level traits were mapped. Some
initial tests with leaf-level variables showed rather low performance. These findings align
with the results of previous studies, thus demonstrating that leaf-level variables are more
challenging to retrieve with sufficient accuracy using TOA-based data [35,36]. The superior
performance of our canopy-scale retrievals for the CCC and CWC can be attributed to
the role of LAI in leaf-to-canopy upscaling. The LAI represents the density of leaves and,
as such, the contrast between vegetated and nonvegetated fractions of the surface. Indeed,
the LAI is recognized as one of the strongest drivers of spectral variability across the entire
VNIR and SWIR spectral range [20].

To further improve model efficiency, follow-up research could investigate potential
improvements both in the employed algorithm and the optimization of the number of prin-
cipal components. Alternative machine learning approaches could be explored to enhance
the obtained results, such as employing large-scale formulations of GPR [46,96]. Multiout-
put regression models might also ensure physical correlations between the traits, thereby
enhancing the robustness of the models [97]. Other methods such as multifidelity [98] can
improve the efficiency of the retrieval while improving the accuracy of the output product.
Additionally, the use of more advanced three-dimensional RTMs, such as DART e.g., [99]
could be leveraged to generate more data and feed these large-scale approaches to construct
more accurate models. To further broaden the applicability and implementation on other
hyperspectral missions and in a range of geographical settings would significantly enhance
the generalisability of the models e.g., [100]. Additionally, incorporating additional trait
variables would provide a more comprehensive understanding of the vegetation dynamics
and their underlying mechanisms across the globe e.g., [101].

Another relevant aspect of research is applying the developed models to hyperspec-
tral time series data. These, however, are not yet available from current missions. This
would allow us to track the temporal evolution of vegetation traits in various ecosystems.
Additionally, expanding the scope of the study to include different crop types within
the study region, and their various phenological stages would further enhance its value.
Also, investing in the portability of the models would be beneficial to further advance
this work. In the upcoming era of big data, it is expected that these TOA-based hybrid
GPR models can be implemented into cloud computing platforms [102], thus opening the
processing chain to the broader community without the need to download TOA radiance
imagery. Finally, it is important to note that all the developments and models presented
here can be relatively easily reproduced. The satellite data used in the study are open
(upon registration), and the hybrid models can be replicated through the ALG tool and
ARTMO toolbox (both downloadable at http://artmotoolbox.com/ (accessed on 26 March
2024)). Likewise, the provided tools facilitate customization for any applicable sensor by
enabling the training of GPR models with resampled TOA spectral data tailored to the
desired spectral band configuration.

5. Conclusions

This study successfully demonstrated the feasibility of directly retrieving vegetation
traits from TOA radiance data using machine learning GPR models, thereby eliminating
the need for atmospheric correction. A hybrid modelling approach was employed com-
bining the vegetation radiative transfer model (SCOPE) with the atmospheric radiative
transfer model (libRadtran) to train GPR directly on TOA radiance simulations. This
enabled the retrieval of a comprehensive suite of vegetation canopy traits, including the
LAI, CCC, CWC, FAPAR, and FVC. The developed TOA- and BOA-based hybrid GPR
models exhibited promising performance in retrieving these traits, thereby achieving good
to optimal accuracies when compared to in situ data (R2 values ranging between 0.68 and
0.95). The TOA models demonstrated slightly superior LAI accuracies compared to the
BOA models, thus suggesting their potential for direct trait retrieval at the TOA level. To
subsequently evaluate the hybrid models’ applicability, they were applied to PRISMA and
EnMAP imagery, thus resulting in consistent landscape trait maps between the TOA and

http://artmotoolbox.com/
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BOA levels. This study lays the foundation for the further development and refinement of
physically based machine learning hybrid models, thereby paving the way for robust vege-
tation trait estimation directly at the TOA level. This advancement will streamline global
trait mapping applications, particularly within the context of the upcoming operational
mission CHIME.
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