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Abstract We conducted a statistical analysis of local phase space density (PSD) minima across a wide
energy range (∼20 keVs to ∼10 MeV), using observations from the Van Allen Probes and the Geostationary
Operational Environmental Satellite. We identified deepening minima in PSD profiles of multi‐MeV (∼5%
occurrence) and of “seed” electrons (up to 15% occurrence, corresponding to ∼70–100 s keV) and compared
their distribution with a 3D diffusion model using the Versatile Electron Radiation Belts (VERB) code. The
comparison of the observed and modeled distributions suggests that the PSDminima of seed electrons are likely
associated with hiss waves and the corresponding L‐shell dependent electron lifetimes. However, the observed
distribution was not fully reproduced by the model, potentially indicating other fast loss mechanisms of seed
electrons.

Plain Language Summary This study presents a comprehensive analysis of the behavior of
electrons within the Earth's radiation belts, specifically focusing on changes in the phase space density (PSD)
across various energy levels. By analyzing data from the Van Allen Probes and the GOES satellite over 4 years,
we observed notable reductions in PSD, particularly at very high‐energy electrons and somewhat lower energy
electrons, often referred to as “seed” electrons. These reductions or minima in PSD are important for
understanding the dynamics within the radiation belts. The study found that these minima can be explained by
interactions with certain types of waves in space, like electromagnetic ion cyclotron or hiss waves. Furthermore,
the PSD minima of the seed electrons likely depend on variations in the rate at which hiss waves can scatter
electrons at various distances.

1. Introduction
The analysis of phase space density (PSD) L‐shell (or L*) profiles constructed at fixed first and second adiabatic
invariants is crucial for the investigation of the radiation belt dynamics, as these profiles serve as key indicators of
the acceleration and loss mechanisms at play (e.g., Allison & Shprits, 2020; Boyd et al., 2018; Green &
Kivelson, 2004; Iles et al., 2006; Zhao et al., 2019). The acceleration due to the inward radial diffusion results in
radial monotonic PSD profiles (Baker et al., 2014; Chen et al., 2006; Olifer et al., 2021), while the local ac-
celeration events are accompanied by growing PSD peaks (Allison et al., 2021; Li et al., 2014; Reeves et al., 2013;
Thorne et al., 2013). The outward radial diffusion and magnetopause shadowing effect (e.g., Turner, Shprits,
et al., 2012) are effective loss mechanisms also identifiable in PSD profiles with a distinct negative gradient at the
outer boundary of the radiation belts (Shprits et al., 2006; Staples et al., 2022; Turner, Angelopoulos, et al., 2012;
Wu et al., 2020). Wave‐particle interactions can produce localized loss, such as precipitation into the atmosphere
(e.g., Millan & Thorne, 2007; Shprits et al., 2008). This precipitation can occur as a slow process, leading to a
gradual decrease in PSD, or as a fast localized interaction, resulting in deepening PSD minima (Shprits
et al., 2017).

One of the mechanisms leading to fast localized loss is electromagnetic ion cyclotron (EMIC) waves (Bingley
et al., 2019; Summers & Thorne, 2003; Usanova et al., 2014), which in conjunction with chorus and hiss waves
play a defining role in the dynamics of multi‐MeV radiation belt electrons (Bashir et al., 2021; Drozdov
et al., 2020). However, EMIC waves are ineffective in scattering of sub‐MeV electrons and require special
conditions such as: high background plasma density, high parallel to background magnetic field wave vector, and/
or high wave power at the proximity of the upper cutoff gyrofrequency (Denton et al., 2019; Ukhorskiy
et al., 2010). While the calculation of minimum resonant energy typically relies on cold plasma, EMIC waves
primarily contribute to the loss of >MeV electrons, even under hot plasma approximation (e.g., Bashir
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et al., 2022; Cao et al., 2017). Such wave‐particle interaction results in a distinct EMIC waves signature, char-
acterized by PSD minima, which has been observed in many studies (Blum et al., 2020; Bruno et al., 2022; Da
Silva et al., 2021; Drozdov et al., 2017; Kim et al., 2021; Ma et al., 2020; Shprits et al., 2016; Xiang et al., 2017;
Xiong et al., 2021). However, the PSD minima were also observed at energies that correspond to sub‐MeV
(Capannolo et al., 2019; Yan et al., 2023) suggesting that EMIC waves can also contribute to the loss of those
electrons (Hendry et al., 2019, 2021; Rodger et al., 2015). Nevertheless, it remains unclear how often PSDminima
are detected at low energies and what mechanisms are responsible for the rapid depletion of sub‐MeV electrons.

Drozdov et al. (2022) conducted a statistical study on the deepening PSD minima and reported that the depletion
of multi‐MeV electrons is in good agreement with the EMIC wave activity. However, the study was limited to
1 year of observations (1 October 2012–1 October 2013) and focused on analyzing PSDminima within the energy
range of μ ∈ [1,000, 5,500] MeV/G (corresponding to ∼MeV to multi‐MeV). This paper presents a follow‐up
study in which we investigate PSD deepening minima over an extended period, including 4 years of observa-
tions and an extended energy range, including “seed” electrons (∼20 keV–100 s keV).

2. Data
We used Van Allen Probes A and B's combined pitch‐angle resolved electron flux data product (Boyd et al., 2021)
based on the Energetic Particle, Composition and Thermal Plasma Suite (RBSP‐ECT) instrument (Spence
et al., 2013). This cross‐calibrated data set consists of three‐minute‐averaged flux spectra spanning a broad energy
range (from 15 eV to 20 MeV). In addition, we used flux measured by GOES‐15 satellite which is equipped with
the Energetic Proton, Electron, and Alpha particle Detector (EPEAD) and the Magnetospheric Electron Detector,
providing measurements from ∼30 keV electrons up to >2 MeV. We calculated adiabatic invariants and equa-
torial pitch angles using the T89 magnetic field model (Tsyganenko, 1989) with the International Geomagnetic
Reference Field internal magnetic field models. The measured flux was subsequently converted into PSD as
described in the following section.

3. Methodology
3.1. PSD Calculation

To convert from flux to PSD, we followed the methodology described by Drozdov et al. (2022). This process
involves binning using median values on each orbital pass on the grid of μ, K, and L*. However, whereas our
previous study (Drozdov et al., 2022) covered 1 year and range μ (1,000–5,500 MeV/G), here we expand the
temporal and spectral coverage to include 4 years (2013–2017) and given the broad energy range provided by
RBSP‐ECT data set we extended to cover three orders of magnitude of μ. Specifically, μ has a range of (10–
10,000 MeV/G) in 28 irregular bins: 10–100 MeV/G with the step of 10 MeV/G, 100–1,000 MeV/G with the step
of 100 MeV/G, and 1,000–10,000 MeV/G with the step of 1,000 MeV/G. Furthermore, to eliminate any noisy
outliers present within the PSD data, we applied a moving average local regression smoothing filter that assigns
lower weight to outliers with a first‐degree polynomial model (using Matlab function “smooth” with “rlowess”
method).

For reference, the binning in K and L* were the same as in Drozdov et al. (2022): 10 bins of K, 0.001–1 G1∕2 RE,
with variable step: K ∈ [10− 4 ,3 ⋅ 10− 4 ,7 ⋅ 10− 4 ,10− 3 …1] G1∕2 RE, and 21 bins of L*, 3.5–5.5, with the step of
0.1. The PSD profiles were extended to high L* using GOES measurements, which are close to Van Allen Probes
measurements thus eliminating the need for intercalibration (Baker et al., 2019). The profiles are interpolated
along L*, and normalized to perform the search of PSD minima.

3.2. PSD Minima Identification

We used the same minimum identification method as in Drozdov et al. (2022), briefly summarized here. First, we
identified local minima on a normalized PSD L* profile for each orbital pass, and each value of μ and K. Then we
discarded the minima that did not match the following criterias: (a) the ratio threshold (between local minimum
and the minimal nearest local maximum) is ≥1.2; (b) a minimum of two points below the threshold; (c) the PSD
value at the minimum is at least 10% lower than on the previous available orbital pass (within 9 hr) to ensure that
the minimum is likely a result of the loss.
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3.3. VERB Simulations

To compare the observed results with the modeling, we used the same long‐term simulation setup as in Drozdov
et al. (2022). We used the Versatile Electrons Radiation belts (VERB) code to solve the Fokker‐Planck equation
on a single grid of modified adiabatic invariants (Subbotin & Shprits, 2012). The simulation included activity‐
dependent Kp‐driven hiss and chorus (Spasojevic et al., 2015; Zhu et al., 2019) waves, Carpenter and Ander-
son (1992) plasmapause model, lightning‐generated whistler waves, and man‐made transmitters‐generate very
low frequency (VLF) waves based on Subbotin et al. (2011). To be consistent with Drozdov et al. (2017), the
EMIC waves were parameterized by solar wind dynamic pressure, and the initial and boundary conditions
(L* = 5.5) were driven by Van Allen Probe observations. These parameters were previously used in the VERB
code simulations and showed good agreement with observations (see Drozdov et al., 2020, 2021; Zhu
et al., 2019). The simulation time step was set at 1 hr. In addition to the above simulation, we performed a second
simulation without hiss waves, but using a constant decay rate of τ = 10 days inside the plasmapause (see Shprits
et al., 2005) representing a simplified loss due to hiss waves scattering without L* or energy dependence.

4. Results
4.1. Observed Distribution of PSD Minima

Panels a–c in Figure 1 show the total number of valid PSD profiles available between 1 January 2013 and 1
January 2017. Each column corresponds to the μ range of 10–100, 100–1,000, and 1,000–10,000 MeV/G,
respectively. Panels d–f show the occurrence of identified PSD minima, which is presented as a percentage of
available valid profiles (in panels a–c).

Figure 1f shows PSDminimum occurrence of multi‐MeV electrons (1,000–10,000MeV/G) which in quasi‐linear
theory have sufficient energy to interact with EMIC waves. Figure 1f indicates that 3%–5% of Van Allen Probe
passes through the radiation belts observed PSD minima. The shape of the distribution indicates the interaction of

Figure 1. (a–c) Number of valid phase space density (PSD) profiles. (d–f) Occurrence of PSD minima as a function of μ and K. The columns correspond to different μ
range: (a, d) μ ∈ [10, 100] MeV/G; (b, e) μ ∈ [100, 1,000] MeV/G; (c, f) μ ∈ [1,000, 10,000] MeV/G; (d–f) the different color bar ranges are selected to emphasize the
shape of the distributions.

Geophysical Research Letters 10.1029/2023GL108028

DROZDOV ET AL. 3 of 9

 19448007, 2024, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
108028 by H

elm
holtz-Z

entrum
 Potsdam

 G
FZ

, W
iley O

nline L
ibrary on [19/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



those multi‐MeV electrons with EMIC waves and confirms the conclusions of Drozdov et al. (2022) but based on
a larger data set spanning 4 years. Figure 1e mostly corresponds to the electrons with energy from several hundred
of keV up to a fewMeV, indicating that the formation of the PSD minima in this energy range is not common. An
interesting result is seen in Figure 1d, which represents seed electrons at lower energies (∼20–100 s keV) and
shows that PSD minima occurrence can reach up to 12%–15% (note, the color bar's upper value is higher than in
Figure 1f), spanning in a wide μ andK range. The distribution is maximized in the μ range of 20–60MeV/G and in
the K range of 0.03–0.3 G1/2RE (which corresponds to approximately 70–500 keV). Notably, noticeable PSD
minimum occurrence (up to 5%) is observed up to μ < 300MeV/G. Since the PSDminima were selected based on
the consideration of deepening minima, this distribution indicates the presence of a fast localized loss process (on
the timescale of a few hours). The observation of PSD minima is possible only when refilling the local PSD
depletion due to the radial transport being slower than the localized loss process. Hence, we observe two distinct
populations of electrons in the keV and multi‐MeV ranges where PSD minima are noticeably observed, which
suggests potentially different mechanisms of their formation. To better understand the processes responsible for
the formation of the observed PSD minima distribution, we performed a long‐term simulation using the VERB
code to compare with these observations.

4.2. Long‐Term Simulation Using VERB Code

Figure 2 shows the distribution of PSD minima obtained from long‐term simulations, following the same
methodology as for the processing of the observations. Figure 2 is presented in different color bar ranges to
emphasize the shape of the distributions. However, since long‐term simulations are computationally expensive,
the simulations were limited to the period of 1 year of 2013, which overlapped with the observed period.We chose
this year because it is representative of the 4‐year period in the variety of geomagnetic and solar driving con-
ditions. Note that we use simulations only to investigate the underlying processes that control the formation of

Figure 2. The distribution of phase space density minima as a function of μ and K is similar to Figure 1 but obtained from the Versatile Electron Radiation Belts code
modeling. (a–c) Simulation with all waves included. (d–f) Simulation with hiss waves replaced with a constant decay rate of τ = 10 days. The different color bar ranges
are selected to emphasize the shape of the distributions.
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PSD minima. A full reproduction of the 4‐year period requires an advanced simulation setup and will be a subject
of future study.

Figure 2 is similar to Figures 1d–1f except that it analyzes the VERB simulation PSD profiles instead of those
observed by the Van Allen Probes. The top row (panels a–c) illustrate the occurrence rate of PSD minima in the
VERB simulation with all waves included (including the Zhu et al., 2019 hiss wave model), and the bottom row
(panels d–f) show the occurrence rate in the VERB simulation substituting hiss waves inside the plasmasphere
with a simple τ = 10 days loss parameter for all μ/K. Notice that simulation (Figures 2b and 2c) indicates a
similar shape and maximum of PSD minima occurrence as in observations at μ > 500 MeV/G (Figures 1e and
1f). This result is expected as EMIC waves are included in the simulation. Note, that the loss of electrons is
additionally aided by corresponding hiss, chorus, and VLF waves (see Drozdov et al., 2020). However,
removing L* and energy dependency from the hiss scattering rates affects the PSD minima formation at multi‐
MeV electrons and correspondingly prevents PSD minima formation at lower energies (Figure 2d). Figure 2a
indicates the presence of the fast localized loss that leads to the formation of PSD minima at low energies
(μ < 60 MeV/G). However, the simulation did not fully reproduce the observed formation of PSD minima at μ
up to 300 MeV/G (Figure 1d). Although the simulated distribution shows clear PSD deepening minima below
K ∼ 0.3 G1/2RE and μ < 60 MeV/G, the observed distribution is maximized at μ ∼ 20–60 MeV/G and K ∼ 0.03–
0.3 G1/2RE.

Hence, the simulation partially accounted for the loss processes responsible for the formation of PSDminima, but
the comprehensive description of the observed phenomena is yet to be discovered. Nevertheless, the results of the
similar simulation with constant decay rates instead of hiss waves (Figures 2d–2f) revealed the absence of PSD
minima at μ < 300 MeV/G, preserving the general distribution of PSD minima at multi‐MeV energies (the shape
of distribution in Figures 2b and 2c is similar to the on Figures 2e and 2f). This indicates that the accurate
representation of the hiss waves and corresponding electron scattering rates is important in the formation of the
PSD minima at low energies.

5. Discussion
To understand the formation mechanism of PSD minima at low μ we compared the time‐dependent PSD profiles
obtained from observations (Figure 3a) and VERB simulation (Figure 3b) with all waves included. In panels a and
b, the crosses represent the L* location of a PSD minimum, if present. Purple crosses are highlighted for detail in
Figures 3c–3f. Figure 3a indicates sudden particle enhancements at low L shells (SPELLS) (Turner et al., 2017)
that occurred on 1 March 2013, which led to a formation of the enhanced PSD at L* ∼ 3.5 followed by a gradual
decay below the plasmapause location (red‐white line, based on the Carpenter and Anderson (1992) model).
Although, it may not seem obvious the local deepening PSD minima (crosses in Figure 3a) were formed after the
SPELLS, which are clearly visible in Figures 3c–3f representing examples of observed normalized PSD profiles
(corresponding purple crosses in Figure 3a). Examples of non‐normalized PSD profiles are illustrated in Figure
S1 in Supporting Information S1. The formed minima were located inside the plasmasphere where hiss waves are
likely to be responsible for the local loss of the electrons. The VERB code simulation in Figure 3b shows the
similar formation of SPELLS followed by the gradual decay of the electrons due to the hiss waves and corre-
sponding deepening minima in PSD (red crosses). However, due to the diffusive nature of the simulation, the
representation of PSD dynamics is more clear.

For reference, Figure 4 shows the L‐shell and energy dependence of electron lifetimes (shown at Kp = 4) due to
scattering by hiss waves (Zhu et al., 2019). The lifetimes are estimated based on the integral expression of the
lowest pitch‐angle diffusion timescale from Albert and Shprits (2009). Figure 3 demonstrates PSDminima during
this period occurred in the L* range of ∼3.8–4.2. According to Figure 4, at those L* hiss waves can provide the
fastest scattering of ∼100–150 keV electrons reaching the timescale of less than a day providing favorable
conditions for the local minima formation. Note, in this L* range the radial diffusion is in the timescale of days
based on Brautigam and Albert (2000) parameterization, which can be also seen in the simulation (Figure 3b).
Additionally, such energy dependence is aligned with the observed maximized distribution of PSD minima (μ
range of 20–60 MeV/G, Figure 1a). However, since lifetimes shown in Figure 4 are calculated based on the
average statistical model of the hiss waves and without accounting for the variation of geomagnetic activity, the
realistic electron energy at which fast scattering is possible can vary. Figure 4 also shows that the lifetime is
notably increasing with decreasing L‐shell. This leads to the scenario when sudden enhancement of low energy
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electrons at low L‐shell (L* < 3.5) can remain stable for some time (in a scale of days) while the electrons at higher
L‐shell, but inside the plasmasphere, experience sudden loss and a formation of the observed PSD minima.

Furthermore, Figure S2 in Supporting Information S1 shows the PSD minima
at μ ≤ 300 MeV/G are mainly located at − 0.5 of plasmapause's L* (Carpenter
and Anderson, 1992), which corresponds to the location of the peak in hiss
wave power (e.g., Malaspina et al., 2016). Conversely, PSD minima at
μ ≥ 500 MeV/G are mainly aligned with the plasmapause location.

However, the other fast localized scattering processes may be responsible for
the formation of the observed distribution of PSD minima. Convective
transport is an important part of seed electron dynamics. Proper modeling of
this population requires advanced simulation that includes convective trans-
port using 4‐D codes (e.g., Aseev et al., 2019; Haas et al., 2023; Shprits
et al., 2015), which can change the dynamics of PSDminima formation. Other
potentially important processes such as scattering by electron cyclotron
harmonic waves, electron holes, and time domain structures (e.g., Fukizawa
et al., 2022; Horne et al., 2003; Mozer et al., 2017; Shen et al., 2021; Vasko
et al., 2017). In addition, a further improvement to the simulation requires hiss
waves parameterization by plasmapause location (Malaspina et al., 2018,
2020; Saikin et al., 2022). Finally, the choice of the magnetic field model can
affect both observed and modeled distributions. However, sensitivity tests in
previous case studies (e.g., Shprits et al., 2017, 2018) indicated that the
magnetic field model did not play a significant role, at least in the case of
EMIC‐driven PSD minima formation. The inclusion of these factors will be
the subject of future studies.

Figure 3. Observed (a) and modeled (b) Phase Space Density (PSD) profiles during March 2013. The white‐red line indicates the location of the plasmapause (Carpenter
& Anderson, 1992). The crosses (red or purple) indicate the locations of PSD deepening minima. Panels (c–f) show examples of observed normalized PSD profiles
corresponding to the purple crosses in panel (a).

Figure 4. Electron lifetimes due to scattering by the hiss waves model (Zhu
et al., 2019) at Kp = 4. Different line colors correspond to different energies,
from 30 to 513 keV.
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6. Conclusions
In this study, we conducted a statistical analysis of the electron radiation belt, focusing on the deepening of PSD
minima across a broad range of first (μ) and second (K) adiabatic invariants. Using 4 years of Van Allen Probes
and Geostationary Operational Environmental Satellite (GOES) measurements, we verified that the distribution
of PSD deepening minima associated with multi‐MeV electrons (μ ranging from 1,000 to 10,000 MeV/G) is
consistent with losses due to interactions with EMIC wave activity, reaching the occurrence rate of 5%. This
finding is consistent with the results obtained over a shorter 1‐year period (Drozdov et al., 2022). Extended
analysis of PSD profiles revealed frequent deepening minima for μ values below 300 MeV/G, indicative of seed
electrons (tens to hundreds of keV). The occurrence of these PSDminima reaches up to 15% in the μ andK ranges,
corresponding to energies approximately between 70 and 500 keV. This novel finding will be further explored in
detail in future studies. Using VERB code modeling, we reproduced the presence of the PSD deepening minima at
μ < 60MeV/G.We demonstrated that this distribution is likely influenced by hiss waves within the plasmasphere.
Consequently, the distribution of seed electron PSD deepening minima may result from the variation in electron
scattering rates across different L‐shells. However, the observed distribution was not fully reproduced, potentially
indicating the presence of additional fast localized seed electron scattering mechanisms.

Data Availability Statement
We thank the Van Allen Probe ECT team for providing the data (https://rbsp‐ect.newmexicoconsortium.org/data_
pub/). The GOES measurements are available at the NOAA NGDC website (https://www.ncei.noaa.gov/data/
goes‐space‐environment‐monitor/access/full/). The authors used geomagnetic indices provided by OMNIWeb
(https://omniweb.gsfc.nasa.gov/). The data to reproduce the figures are available at UCLA dataverse repository
(Drozdov, 2023).
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