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Abstract In this study, we propose a machine learning based approach to construct an empirical model of
thermospheric mass densities, based on theMultiLayer Perceptron and bi‐directional Long Short‐TermMemory
for ensemble learning model (MBiLE). The MBiLE model was trained by using only the thermospheric mass
density from Swarm C satellite at ∼450 km altitude. To assess the performance of the MBiLE model, the model
predictions were compared with observations from several satellites, namely, the Swarm C, the Challenging
Minisatellite Payload (CHAMP) and the Gravity Field and Steady‐State Ocean Circulation Explorer (GOCE)
satellites. The determination coefficients (R2) for the three satellites are 0.98, 0.99, and 0.98, respectively. The
MBiLE model predicts the thermospheric mass density well not only at Swarm C altitude but also at lower
altitudes. Earlier empirical models based on multivariate least‐square‐fitting approach failed to achieve this
good altitude generalization (e.g., Liu et al., 2013, https://doi.org/10.1002/jgra.50144; Xiong et al., 2018a,
https://doi.org/10.5194/angeo‐2018‐25). Further tests have been made by checking the MBiLE model
prediction deviations in relation to magnetic local time, day of year, solar flux level, and magnetic activities. No
obvious dependences are found for these parameters. Comparing with the NRLMSIS‐2.0 model, the MBiLE
model improves prediction accuracy by 91%, 66%, and 56% at the three satellites altitudes. The results indicate
that the MBiLE model has the ability to predict well the thermospheric mass density over a wide altitude range,
for example, from 224 to 528 km, offering potential for atmospheric research applications.

Plain Language Summary Accurate prediction of thermospheric mass density is of significant
importance for various space activities, for example, the safe operation of low Earth orbital satellites. To address
the challenge of predicting thermospheric mass density over a broader range of altitudes, we propose an
integrated model based on machine learning algorithms. By training the model solely with data from only the
Swarm C satellite, we achieve high‐quality predictions of thermospheric mass density covering a wider altitude
range. Remarkably, the model demonstrates robustness against other parameters and exhibits excellent stability.
In comparison with the latest version of NRLMISIS model, the prediction from our machine learning model has
improved the accuracy by about 91%, 66% and 56% when taking the satellite measurements from Swarm C,
CHAMP and GOCE as reference. These results highlight the efficacy and potential of our integrated learning
model in accurately predicting thermospheric mass density, thereby benefiting future atmospheric research and
enhancing space mission planning.

1. Introduction
The thermosphere is an important layer of the Earth's atmosphere, which extends from the top of the mesosphere
to about 800 km (Doornbos, 2012). Various approaches have been used to determine the thermospheric mass
density, including the observations of low Earth orbit (LEO) object trajectory variations (Lechtenberg
et al., 2013), airborne accelerometers measurements (Doornbos et al., 2010), ballistic coefficient estimates
(Bowman, 2002) and drag balancers (Santoni et al., 2010) etc. Even though, the thermospheric mass density
variations are far from being well understood, as numerous factors can influence the changes, including the solar
ultraviolet radiation, energetic particle precipitation from the magnetosphere and solar wind, Joule heating, as
well as the various wave and tidal drivers from the lower atmosphere (e.g., Billett et al., 2021; Doornbos, 2012;
Emmert et al., 2021; Lühr et al., 2004; Zhou et al., 2009). On the other side, predicting the density is crucial for a
safe operation of LEO satellites, as atmospheric drag can deorbit them during extreme space weather changes,
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resulting in collision hazards (e.g., Zhang et al., 2022). Therefore, studying, modeling and predicting the ther-
mospheric mass density is crucial for practical applications.

Different models have been developed in recent decades to calculate the thermospheric mass density. Due to a
lack of observations, earlier thermospheric mass density distribution was initially calculated theoretically. For
example, an expression for the mass density of the thermosphere was derived by Chapman and Cowling (1990),
by considering processes such as molecular collisions and dissociation in the atmosphere. They introduced the
Chapman model, which effectively described the density distribution in the atmosphere and thus laid the foun-
dation for subsequent studies. Though the theoretical models can simulate in principle the atmospheric evolution
processes and physical mechanisms, their output sometimes significantly differs from observations. Different
from the theoretical models, empirical models, based on parametric empirical equations and observation‐driven
parameter fitting, have also been developed to predict the thermospheric mass densities. The latter exhibit in
practical application usually better performance than the theoretic models. Mostly used empirical models include
the Mass Spectrometer Incoherent Scattering Radar Extension (MSISE) series (Emmert et al., 2022;
Hedin, 1983), the Drag Temperature Model (DTM) series (Bruinsma, 2015; Bruinsma & Boniface, 2021), the
Jacchia‐Bowman 2008 (JB2008) series (Bowman et al., 2008) and the high accuracy satellite drag model series
(Doornbos, 2012; Storz et al., 2005). While empirical models have been continuously improved by adding more
observational data and modifying the parameters, uncertainties still exist in their prediction when compared with
the observations, for example, the prediction errors are around 15% during geomagnetically quite periods and
even larger during magnetic storms (Sutton, 2018). Specific empirical models based on multi‐years observations
from the satellites have been developed so far, by using multivariate least‐square‐fitting to the thermospheric
density observations (e.g., Liu et al., 2013; Xiong et al., 2018a). However, these models work only for certain
altitude ranges covered by the satellite data set. Weng et al. (2017) constructed the escape layer temperature model
(ETM) by characterizing the global atmospheric temperature. The thermospheric density is further derived based
on the relation between temperature and density. The model can represent well the variation characteristics of the
thermospheric density, such as the seasonal variation and hemispheric asymmetry. It is worth to mention that the
seasonal variations, diurnal variations etc., have been studied in depth with the parameters of time (diurnal,
annual), P10.7 and geomagnetic activity separated by Müller et al. (2009). But the thermospheric density derived
from ETM works in general only well within a certain altitude range.

During the past few years, machine learning approaches have been successfully applied to space weather related
studies. For example, image completion of TECmaps (Chen et al., 2019), auroral image classification (Kvammen
et al., 2020), plasmasphere modeling (Zhelavskaya et al., 2021), and long‐term trends in ionospheric electron
density (Cai et al., 2019; Smirnov et al., 2023). Among them, there is a growing number of studies on predicting
the thermospheric mass density by using deep learning methods. Wang et al. (2014) applied an artificial neural
network method for the first time to investigate the intra‐annual variation of the global mean thermospheric
density at 400 km altitude over the period of 1996–2006. This pioneering study represents the initial utilization of
deep learning techniques for analyzing thermal layer mass density, marking a significant advancement in the
field. Subsequently, Weng et al. (2020) used artificial neural networks to predict long‐term trends in thermo-
spheric mass density by fusing the solar radiation flux, Kp and other indices, but the model only performed well
during low solar activity years. The long‐term trend in thermospheric mass density has no apparent solar flux
dependence. Additionally, Bonasera et al. (2021) improved the thermospheric mass density prediction method by
introducing an integrated learning approach to the thermospheric mass density uncertainty estimation, which can
better capture and quantify the thermospheric mass density uncertainty. However, the generalization of the
thermospheric mass density prediction model and the prediction effectiveness during magnetic storms need to be
further evaluated and discussed. Generalizability is an important metric to evaluate the merit of a model, indi-
cating its ability to predict new data. Hence, Wang et al. (2022) further proposed a model based on an ensemble
learning algorithm for long short‐term memory (LSTM) and noted that the model has certain generalization.
Obviously, the accuracy and generalization of the predicted thermospheric mass density remains an important
issue, it has great significance to ensure the safe operation of LEO satellites.

Of particular interests for us is that the utilization of observational data from one satellite to train a deep learning
model for accurately predicting a broader altitude range of thermospheric mass density, which can effectively
demonstrate the model's generalization capability to the maximum extent. In this study, we propose the MBiLE
model for predicting the thermospheric mass density and further illustrated the model's generality and the cor-
relation analysis of parameters. The results show a dramatic improvement in the fitting between predicted and
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observed values, even during geomagnetic storms. The MBiLE model was trained with observations from ESA's
satellite Swarm C, and the developed model shows also quite nice agreement with observations from satellites
flying at lower altitudes, for example, the Challenging Minisatellite Payload (CHAMP) and the Gravity Field and
Steady‐State Ocean Circulation Explorer (GOCE) satellites, demonstrating its reliable spatial generalization
capability. In addition, we have further compared the MBiLE model prediction with the estimations of
NRLMSIS‐2.0 (Emmert et al., 2021). Overall, this study offers valuable insights into satellite detection meth-
odologies and advancements in thermosphere modeling techniques.

2. Data Description
The Swarm mission, which was launched on 22 November 2013, consists of three satellites operated by the ESA.
During the first operational mission phase, starting on 17 April 2014, SwarmA and C flew side‐by‐side, separated
by 1.4° in longitude, at an altitude of about 460 km and an inclination of 87.3°. Swarm B is orbiting the Earth
about 50 km higher with an inclination of 88° (Lühr et al., 2016). Two types of thermospheric mass densities have
been provided as the Level‐1B products of Swarm. One utilizes the precise orbit determination (POD) of Swarm,
while the other used the atmospheric drag experienced on the satellite from the onboard accelerometers, to es-
timate the thermospheric densities. Compared to the density derived from the POD, the accelerometer provides
direct and more detailed information for inferring thermospheric density, enabling a better capture of the smaller‐
scale variations. Thus, in this study, only the neutral densities derived from the onboard accelerometer of Swarm
C are used in the deep learning to construct the MBiLE model.

The CHAMP satellite was launched into a near‐circular polar orbit on 15 July 2000, with an initial altitude of
456 km, and by the end of its mission on 19 September 2010, the orbit had decayed to approximately 250 km
(Xiong et al., 2018b). The GOCE satellite was launched also by ESA, on 17 March 2009, and it reentered the
Earth's atmosphere on 11 November 2013. During its mission period, GOCE flew mainly at an altitude range
between 225 and 295 km. For both satellites, reliable thermospheric mass density data were derived from the
onboard accelerometers, that play an important role in advancing our understanding of the thermosphere (e.g.,
Doornbos et al., 2009; Liu et al., 2010; Lühr et al., 2004). The thermospheric mass density data from the two
satellites can be downloaded from the website http://thermosphere.tudelft.nl/.

We want to note that the local time coverage of Swarm C and CHAMP slowly changed during their mission
period, which took about 133 and 131 days to cover the 24 hr, when considering both their ascending and
descending orbits. While the GOCE satellite, with a dawn‐dusk sun‐synchronous orbit, it covered mainly the 07
and 19 magnetic local time (MLT) at the low and middle latitudes, and only at polar region its orbit coverage
extended to other MLT hours.

In addition to the thermospheric mass density, a variety of geomagnetic and solar activity related indices have also
been used to develop the MBiLE model, which can be accessed at the website of OMNI (https://spdf.gsfc.nasa.
gov/pub/data/omni/low_res_omni/). In total, there are 62 parameters used as inputs, and the details are shown in
the Table A1 of the Appendix. Within this study, we focused more on the model construction method based on
machine learning. It is noted that the thermospheric mass density derived from the Swarm, CHAMP and GOCE
have a time resolution of 10 s, we therefore used indices with also a time resolution of 10 s.

3. Model Construction
The Swarm C thermospheric mass density data used for developing the model cover the period from 1
February 2014 to 30 September 2020, and the data were divided into three sets: training, validation, and
testing, following the common practice in machine learning with an 8:1:1 ratio. The training set consisted of
13,891,423 samples, including data from 1 February 2014 to 21 February 2019. Both the validation and test
sets consist of 1,736,427 samples containing data from 21 February 2019 to 24 October 2019, and from 24
October 2019 to 30 September 2020, respectively. The training set facilitated model learning, while the
validation set was used for hyperparameter tuning and performance evaluation during training. The testing set
served as an independent benchmark to assess the model's generalization performance on unseen data. This
data division strategy aimed to strike a balance between the adequacy of training data and reliable performance
evaluation, ensuring the robustness and credibility of the proposed model. Additionally, the trained model was
also used directly to predict the thermospheric mass density of the CHAMP satellite from 4 May 2001 to 4
September 2010, and the GOCE satellite from 1 November 2009 to 20 October 2013. The process is also
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known as testing the spatial generalizability of the model. It is commonly believed that the hallmark of a good
deep learning model is the ability to generalize it well also for other data, allowing the model to make better
predictions on conditions that has never been included in the training data. Therefore, to provide a more
intuitive representation of the model's performance, we showed the predicted thermospheric mass density for
each satellite in the analysis in Section 4.

There are three commonly used methods for model ensembling: bagging, boosting, and stacking. Among these
techniques, the stacking, also known as stacked generalization, is selected as the preferred approach for the model
construction in this study (Cagnini et al., 2023). Stacking is considered an extension of other ensemble methods
(Schwenker, 2013). It leverages the predictions from multiple models to make combined predictions, offering
improved performance. The fundamental idea behind model ensembles is that the various models, trained
independently, may excel for different reasons. Each model brings in a unique perspective to the data, contrib-
uting partial insights toward capturing the underlying truth. To ensure the effectiveness of the ensemble approach,
it is crucial to incorporate diverse estimators, utilizing different architectures to enhance model stability and
generalizability (Ganaie et al., 2022). Thus, by employing stacking and leveraging the diverse perspectives of
individual models, this study aims to enhance the predictive capabilities and overall performance of the ensemble
model.

Hochreiter and Schmidhuber (1997) proposed a new recursive network structure, the LSTM, consisting of the
input, output and forget gates. The input gate determines how much information about the state of the network at
the current moment needs to be saved to the internal state, while the forget gate determines howmuch information
about the past state can be discarded, and finally the output gate determines how much information about the
internal state at the current moment needs to be output to the external state. Compared to the LSTM, the bi‐
directional long short‐term memory (Bi‐LSTM) model acquires feature data at time t with both past and future
information, and this bi‐directional structure improves the long‐term dependence of learning and the accuracy of
the model (Graves & Schmidhuber, 2005). The Bi‐LSTMmodel contains a bi‐directional LSTM structure, where
the forward LSTM structure is applied to the input sequence and the reverse form of the input sequence is fed back
into the LSTM structure. The used model structure is shown in Figure 1. Assuming that the current moment is t,
the internal formulation of the Bi‐LSTM model is:

ht = f (uht− 1 + wxt) (1)

h′t = f (u′h′t− 1 + w′x′t ) (2)

ct = f (Uxt +Wct− 1) (3)

Figure 1. Structure of the bi‐directional long short‐term memory model.
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c′t = f (U′xt +W′c′t+1) (4)

yt = g(Vct + V′c′t ) (5)

where ht and h′t denote the network cells, ct and c′t denote the hidden layer outputs, xt and yt denote the model
inputs and outputs, respectively, u, u′, w, w′, U, U′, W, W′, V and V′ denotes the weighting coefficients. In this
experiment, we have abundant data regarding the features of physical parameters linked to the long‐term vari-
ations of thermospheric mass density, so the Bi‐LSTM model is chosen as one of the integrated models. Another
underlying model used in the integrated model proposed in this study is the Multilayer Perceptron (MLP). The
activation function used in the MLP is sigmoid, and a Dropout structure is added to prevent overfitting. The MLP
is a forward‐structured neural network that maps input vectors to output vectors, and can also be viewed as a
directed graph, consisting of multiple node layers, each fully connected to the next layer (Delashmit &
Manry, 2005). For these reasons, we have chosen to integrate theMLPmodel with the Bi‐LSTMmodel to propose
the MBiLE model for predicting thermospheric mass density.

The technical roadmap and MBiLE model architecture for this study are shown in Figure 2. The input to the
training is the 62 parameters at moments tn− 5 to tn− 1, and the output is the thermal layer mass density data at
moment tn. Normalization is an important step for many machine learning estimators during the data pre‐
processing phase, especially when dealing with the deep learning. At the same time, it is ideal for large
data scenarios, considering that the standard normalization is less susceptible to outliers and is more stable
when there are already enough samples (Montavon et al., 2012). Therefore, we pre‐processed the data using
standard normalization prior to training, fitting a data set consisting of a total of 62 parameters and also the
thermospheric mass density data from Swarm C. It is worth noting that the maximum and minimum features of
the validation and test sets should be normalized by using the results of the training set. When we employ a
base learner to learn and solve a problem, if the base learner learns a region of the featured space incorrectly,
the meta‐learner corrects this error appropriately by combining the learned behaviors of other base learners.
This represents the fundamental strategy of the stacking ensemble. The training set for the MLP model is
designated as Trbase, the validation set as Vabase, and the test set as Tebase. The training set for the Bi‐LSTM
model is denoted as Trmeta, the validation set as Vameta, and the test set as Temeta. The specific process of
modeling is as follows. First, MLP is used for training, and K‐fold cross‐validation (k = 10) is used to enhance
the evaluation of the training effect of the model during training. After obtaining the model generated during
training, it is saved as ModelMLP1,…,10, and the output values of the predictions made by the model during each
cross‐validation are saved in Prebase1,…,10. It should be noted that Prebase1,…,10 corresponds to the input data of
Trbase1,…,10. Subsequently, ModelMLP1,…,10 is used to predict Temeta data and its predictions are weighted to take
the mean value to obtain, which is seen to correspond to the input data. In addition, the Bi‐LSTM model was
used for the Trbase1,…,10 data to be trained 20 times, and the best model Modelbest is determined based on the

Figure 2. The technology guideline and MBiLE model structure of this research.
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magnitude of the root mean square error (RMSE) in the training results.
Finally, Modelbest is used to predict the data and the results are used as the
final prediction of the MBiLE model, which is denoted as Pre. In the ex-
periments, the number of MLP models is five and the number of Bi‐LSTM
models is two, the activation function used throughout is sigmoid, and the
Dropout is 0.2. The specific parameter settings are shown in Table 1. It is
important to highlight that our modeling utilizes the Tensorflow and Keras
frameworks, and the training of the models takes place on the super-
computing system at the Wuhan University Supercomputing Center. The
computing time required to train the model within this study is approxi-
mately 6.5 hr.

In general, RMSE and the coefficient of determination (R2) are commonly
used metrices for comparing and evaluating model results in machine learning
and statistical modeling. They have wide applications in assessing model
performance.

The RMSE metric quantifies the differences between model results and
observed data. It calculates the RMSE between the predicted values of the
model and the observed values, providing a measure of predictive accuracy. A
smaller RMSE value indicates higher precision in model predictions. The
RMSE is calculated as follows:

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N
i=1 (prei − obsi)

2

N

√

(6)

where obsi denotes the observed value, prei denotes the predicted value, and N denotes the total number of
samples.

The R2 metric measures the goodness of fit between model results and observed data, with values ranging from
0 to 1. A higher R2 value indicates a better fit of the model to the observed data, suggesting that the model can
explain the variability in the data. However, a lower R2 value may indicate underfitting or errors in the model.
Using pre and obs to denote the mean of the predicted and observed values, respectively, R2 is calculated as
follows:

R2 =

⎛

⎜
⎜
⎜
⎝

∑N
i=1 (prei − pre)(obsi − obs)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N
i=1(prei − pre)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N
i=1(obsi − obs)2

√

⎞

⎟
⎟
⎟
⎠

2

(7)

By considering both R2 and RMSE together, we can comprehensively assess the model's goodness of fit and
predictive accuracy, thus gaining a more comprehensive understanding of its performance. In order to better
analyze the influence of MLT, F10.7 (10.7 cm solar radio flux), DoY (Day of Year) and ap index on our MBiLE
model predictions, we introduced the error rate indicator with the following formula.

Error rate =
∑
N

i=1
(
obsi − prei

obsi )

N
(8)

Quantifying the extent of enhancement brought about by the MBiLE model in comparison to NRLMSIS‐2.0 is of
particular significance. This assessment can be effectively conducted using the Prediction Efficiency (PE) metric.
The formulation for this metric is as follows:

Table 1
The Values of the Parameters in MBiLE Model

Parameters Values

Num of MLP model 5

Activation sigmoid

Dropout 0.2

K‐fold 10

Batch_size 128

Loss RMSE

Optimizer Adamax

Epochs 20

Num of Bi‐LSTM model 2

Num of dense layers 1

Length of the input sequence 5

Length of the output sequence 1
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PE = 1 −
∑
N

i=1
(obsi − Mi)

∑
N

i=1
(obsi − Si)

(9)

where Mi denotes MBiLE model values, and Si represents baseline (NRLMSIS‐2.0) model outputs.

4. Results
4.1. Comparison ofMBiLEModel PredictionWithObservations From the SwarmC, CHAMP andGOCE
Satellites

In addition to the Swarm C data, we used also the trainedMBiLEmodel to predict the thermospheric mass density
of the CHAMP and GOCE satellites, to check if the model has a strong generalization capability. Figure 3 shows
the MBiLE model predictions of thermospheric mass density, separately for Swarm C, CHAMP and GOCE
satellites over their mission periods. In addition, the variations of solar flux index F10.7, the satellite orbital
altitude, as well as the thermospheric mass density difference, the model prediction minus satellite observations,
are also shown. In general, the MBiLE model predictions show very consistent variations to the satellite ob-
servations, and their difference are in general very small. In addition, there are also “spikes” with relatively larger
amplitude seen in the difference. After checking the geomagnetic indices, these “spikes” happened mainly during
geomagnetically disturbed periods. For example, a strong magnetic storm occurred from 6 to 7 September 2017,
and it resulted in significant disturbances of the Earth's atmosphere and ionosphere (e.g., Lei et al., 2018; Xiong
et al., 2019). As seen in Figure 3a, the differences between the MBiLE model predictions and Swarm C mea-
surements during this magnetic storm period are slightly more pronounced compared to the preceding and
subsequent periods, but still the maximum difference is less than 0.12 × 10− 11 kg/m3. Similar results, under-
estimation of storm effects, are found in the differences between the model predictions and observations by the
CHAMP satellite. Figure 4 shows in the top panel the variations of thermospheric mass density from the GOCE
satellite as well as model predictions during a strong magnetic storm on 17–18 March 2013, while in the bottom
two panel the corresponding variations of SYM‐H Kp indices are shown. The RMSE between the GOCE ob-
servations and MBiLE and NRLMSIS‐2.0 model predictions was 2.73 × 10− 12 kg/m3 and 1.47 × 10− 11 kg/m3,
respectively. The result revealed that our MBiLE model can reflect well the drastic fluctuations of thermospheric
mass density caused by geomagnetic storms.

Another feature we want to note is that the CHAMP satellite began to experience prominent orbital decay in 2010,
due to the strong increased influence of atmospheric drag at lower altitudes. The satellite's interaction with the
denser atmosphere caused a decrease of its orbital altitude, and with that CHAMP lost potential energy. Therefore,
over time, the CHAMP altitude decreased more rapidly until it reentered the atmosphere and burned up, marking
the mission end. By comparing the predicted results of the MBiLE model with the actually observed data during
CHAMP's orbital decay, the model's capability during this low‐orbit phase can be assessed. The MBiLE model
accurately predicts the increase in thermospheric mass density experienced by CHAMP during 2010. Obtained
results are shown in Figure 3b.

Similar to CHAMP, the GOCE satellite also underwent significant orbital decay prior to the end of its in‐orbit
operations, albeit due to distinct reasons. After 2011, the GOCE satellite gradually entered the period of the
solar activity peak, with the F10.7 index reaching a maximum of approximately 191.6 sfu. As solar activity
increased, the heating caused by solar EUV radiation lifted up the atmosphere, leading to an increase in ther-
mospheric mass density at satellite altitudes. This, in turn, increases the drag of the GOCE satellite, resulting in an
orbital decay. From Figure 3c, it can be seen that even during periods of strong solar activity, the MBiLE model is
still able to accurately predict the increasing trend of thermospheric mass density, and it reflects a strong cor-
relation between solar activity and thermospheric mass density in the predicted results.

To further evaluate the MBiLE model prediction, Figure 5 shows the variation of the thermospheric mass density
derived from the NRLMSIS‐2.0 model, as well as the difference between the NRLMSIS‐2.0 prediction minus
satellite observations. At first glance, the difference between the NRLMSIS‐2.0 model predictions and the
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Figure 3. The F10.7 index, orbital altitude, thermospheric mass density, and prediction difference over time. ∆ρ denotes the
difference, which is the prediction minus the observation.
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satellite observations are in general larger than the difference between our MBiLE model predictions and ob-
servations. In Figure 5a, substantial differences are noticeable between the calculated outcomes derived from
NRLMSIS‐2.0 and the satellite observations, particularly around the year 2015, where the maximum discrepancy
surpasses − 0.45 × 10− 11 kg/m3. Generally, the observations are larger. In Figure 5b, the maximum difference
between the NRLMSIS‐2.0 derived results and the satellite observations exceeds − 2 × 10− 11 kg/m3, with notably
higher discrepancies observed for GOCE in Figure 5c, surpassing ±8 × 10− 11 kg/m3. This indicates that the
NRLMSIS‐2.0 model's performance may need further improvement for accurately capturing the influences of
higher solar and geomagnetic activity, as well as the effect of the rapid satellite orbital decay. In comparison, the
MBiLE model predictions better captured these influences on the thermospheric mass density, demonstrating the
excellent generality of our model.

To further analyze the distribution of the prediction results and observations of the MBiLE model, as well as the
derived results from the empirical model NRLMSIS‐2.0, we screened the data for low magnetic activity, ap<12,
for comparative analysis. As shown in Figure 6a, the MBiLE model predictions follows much better the ob-
servations of Swarm C, compared to the NRLMSIS‐2.0 model predictions. In Figure 6b, when the thermospheric
mass density observed by CHAMP is below 3.5 × 10− 11 kg/m3, the scatter plot of predicted results from the
MBiLE model are concentrated near the diagonal line, while the inversion results of NRLMSIS‐2.0 remain
relatively scattered. Particularly in Figure 6c, when the observed values from GOCE are relatively small, the
inversion results of the thermospheric mass density using NRLMSIS‐2.0 are evidently dispersed. It is worth
noting that for relatively large observed values, both the MBiLE model and the empirical model NRLMSIS‐2.0
exhibit thermospheric mass density values that are smaller than the observations. For example, in Figure 6a, when
the observed thermospheric mass density of the Swarm C satellite is greater than 0.25 × 10− 11 kg/m3, the MBiLE
model results start to fall short. By referring to Figure 3a, it can be observed that the MBiLEmodel exhibits higher
prediction deviations around the year 2015 compared to other periods. This may be attributed to an insufficient
learning and training of the MBiLE model on the characteristics of thermospheric mass density during periods of
high magnetic and solar activity. In Figure 6b, when the observed thermospheric mass density of the CHAMP
satellite is greater than 3.5 × 10− 11 kg/m3, the scatter plot of theMBiLEmodel's prediction results starts to deviate
from the diagonal line. Combining this with Figure 3b, it can be noted that at 2010, the observed thermospheric
mass density exhibits a rapid increase due to the starting solar activity and the decay of the satellite's orbit. During

Figure 4. The top panel shows the comparison of thermospheric mass density observations from the GOCE satellite, as well
as NRLMSIS‐2.0 and MBiLE model predictions during the geomagnetic storm on 17–18 March 2013. The bottom two
panels show the corresponding variations of SYM‐H and Kp indices during this storm.
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Figure 5. Results of empirical model NRLMSIS‐2.0 for predicting the thermospheric mass density of Swarm C, Challenging
Minisatellite Payload and GOCE satellites are presented. The ∆ρ denotes the difference, which is the predictions minus the
observations.
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this period, the MBiLE model's prediction difference for the thermospheric
mass density of the CHAMP satellite is higher. Our model lacks training for
predicting accurately the thermospheric mass density during this specific
period.

Overall, Figure 6 reflects a higher degree of dispersion in the distribution of
thermospheric mass density obtained from the empirical model NRLMSIS‐
2.0, while our model's results are much more concentrated around the ob-
servations. Further, the performance of the model was analyzed in more detail
using R2, RMSE and prediction error standard deviation (PESD) metrics. All
performance evaluations of the model regarding the thermospheric mass
density from the Swarm C satellite are conducted only on test data set
spanning from 24 October 2019 to 30 September 2020. This approach pro-
vides a more realistic, objective, and rigorous evaluation of the model's
performance. For the sake of comparison, the R2 and RMSE metrics calcu-
lated for Swarm C with respect to the empirical model NRLMSIS‐2.0 are
based on the same range of data. Then, when ap<12, the MBiLE model
achieved R2 values of 0.99, 0.99, and 0.98 for predicting the thermospheric
mass densities of the Swarm C, CHAMP, and GOCE satellites, respectively.
In contrast, the inversion results of the empirical model NRLMSIS‐2.0
yielded R2 values of 0.83, 0.89, and 0.91 in comparison with the observed
data. A more comprehensive statistical analysis is presented in Table 2. This
shows the MBiLE model achieves an overall high R2 between the predictions
and observations with values of 0.98, 0.99, and 0.98 for the three satellites,
respectively, and these coefficients are higher than those obtained with
respect to the NRLMSIS‐2.0 empirical model, which are 0.61, 0.89, and 0.90,
respectively. Compared to the NRLMSIS‐2.0 model, the MBiLE model
shows a substantial decrease in RMSE by an order of magnitude for the
Swarm C and CHAMP satellites. And the RMSE for the GOCE satellite
decreased from 6.153 × 10− 12 to 2.727 × 10− 12 kg/m3. Overall, the prediction
accuracy for these three satellites have been improved by 91%, 66%, and 56%,
respectively. To provide a clearer demonstration of the superiority of the
MBiLE model, we have introduced the PESD (standard deviation of the
difference between observed and predicted values) metric. This metric
quantifies the average level of variation between the model's predicted values
and the actual observed values. In comparison to the NRLMSIS‐2.0 model,
the MBiLE model showcases a reduction in the PESD of the Swarm C sat-
ellite by an order of magnitude. Moreover, the PESD of the CHAMP satellite
decreases from 8.676 × 10− 13 to 2.650 × 10− 13 kg/m3, and the PESD of the
GOCE satellite decreases from 5.693 × 10− 12 to 1.207 × 10− 12 kg/m3. This
decline in the PESD values further underscores the enhanced performance of
the MBiLE model. The PE metric serves to quantify the advancements ach-
ieved by the MBiLE model in comparison to the NRLMSIS‐2.0. As indicated
in Table 2, the outcomes distinctly illustrate that the MBiLE model consis-
tently enhances the efficacy of the NRLMSIS‐2.0 model by an impressive
margin ranging from 78% to 93%. Particularly noteworthy is the remarkable

Figure 6.

Figure 6. Distribution of observations (light blue dots) and the prediction of our
MBiLE model (red dots) as well as the NRLMSIS‐2.0 (green dots) for the
thermospheric mass densities from the Swarm C, Challenging Minisatellite Payload
and GOCE satellites during geomagnetic quiet period (ap<12). The linear
regressions between observations and MBiLEmodel predicts, between observations
and NRLMSIS‐2.0 predicts, are provided in red and green, respectively, and their
correlation coefficients (R2) are also provided with corresponding colors.
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amelioration observed in predicting the thermosphere mass density of the
Swarm C satellite.

4.2. Parameter Dependences Analysis

After conducting a detailed comparative analysis of the observation results
from Swarm C, CHAMP, and GOCE satellites with the results from an
empirical model and the MBiLE model, we further examined the correlation
betweenMLT, F10.7, DoY, ap index, and the satellite observations, as well as
the error rates. It should be noted that the MBiLE model, driven by 62 feature
parameters, has been fully trained and tested, and its loss function value has
become very stable (as shown in Figure A1), indicating that the model has
reached its optimal state. Based on this, we conducted research on whether the
model's performance is affected by changes in MLT, F10.7, DoY, and ap
index. In order to minimize the influence of geomagnetic storms on the re-
sults, we first specifically analyzed the variations of satellite observations and

error rates with respect to MLT for cases where the ap index was less than 12 (calm period). Figure 7 shows that at
daytime, the thermospheric mass density from Swarm C and CHAMP satellites initially increases and then de-
creases, reaching peak values at 15:00 and 13:00 MLT, respectively. The bin size of the MLT in Figure 7 is 1 hr.
For Swarm C and CHAMP, the local time coverages of their orbits slowly change with time, therefore the data
from these two satellites provide a rather even distribution over MLT. However, due to the sun‐synchronous orbit
of GOCE, at low and middle latitudes it covers mainly the dawn (0700 MLT) and dusk (1900 MLT) sectors, and
only at high latitudes the GOCE covers the other MLT sectors. For a constant altitude, the neutral densities at low
and middle latitudes are generally higher than that at high latitudes, we therefore see the observations (blue line)
show larger values around dawn and dusk hours, which is biased by the orbital coverage but not the real diurnal
variation of the neutral density at GOCE altitude. The error rates of the thermospheric mass density predictions
from the MBiLE model for the three satellites show very small fluctuations with MLT and exhibit similar trends
as the observed values of the mass density. Overall, the relative error rate ranges from − 25% to 0, indicating a
rather small difference between the predicted and true values. This suggests the stability of the MBiLE model in
terms of its ability to reproduce accurately the diurnal variations.

We want to note that different from theoretic models, we could not totally separate the influences of these
different parameters on the satellite measured neutral density. In this study, we are interested more if our model
can work quite well under different conditions. From Figure 3, it is clear that there is a close relation between the
solar activity level and the thermospheric mass density, we further analyzed its effect (using F10.7 index) on
the observed values and error rates of the thermospheric mass density. First, from Figure 8, it can be observed that
the thermospheric mass density of Swarm C and CHAMP satellites is as expected larger on the dayside (10:00 to
14:00 MLT) than on the nightside (00:00 to 02:00 MLT and 22:00 to 24:00 MLT), while for the GOCE satellite,
the trend is opposite. Second, with an increase in the F10.7 index, the thermospheric mass density of Swarm C
satellite shows a gradual increase, while for CHAMP and GOCE satellites, the density tends to first increase and
then decrease, especially for the GOCE satellite, exhibiting distinct peaks. Overall, with an increase in the F10.7
index, the fluctuation of error rates in the predicted thermospheric mass density by the MBiLE model for the three
satellites is relatively small, ranging from − 30% to 10%. The error rates of Swarm C and CHAMP satellites on the
dayside are smaller than on the nightside, with error rates ranging from approximately − 10% to 10%. This may be
due to the fact that the thermosphere mass density is higher on the dayside than on the nightside. The error rates of
the GOCE satellite are slightly higher than those of Swarm C and CHAMP satellites, ranging from − 30% to − 5%,
and furthermore, the error rates of the GOCE satellite are lower on the nightside compared to the dayside.

We want to note that these curves shown here do not reflect true seasonal variations as they have not been
normalized to a common F10.7, MLT, or latitude distributions. We intent to check further whether our model
predictions have been biased by these parameters, due to the data coverage used for model construction. Figure 9
presents the characteristics of the thermospheric mass density and error rate with DoY. The thermospheric mass
density of the Swarm C satellite is somewhat higher in the first half of the year compared to the second half. The
error rates on the dayside range from − 17% to 3%, while on the nightside, they range from − 30% to 10%. Overall,
the error rates show relatively small fluctuations with respect to DoY, and they also exhibit a rather even dis-
tribution throughout the year, implying our model can well reflect the thermospheric density variations over

Table 2
The Overall RMSE, R2, PESD and PE Between the Thermospheric Mass
Density Predictions From the MBiLE/NRLMSIS‐2.0 Models With Respect to
the Satellite Observations

Swarm C CHAMP GOCE

RMSE NRLMSIS‐2.0 1.315 × 10− 13 1.003 × 10− 12 6.153 × 10− 12

MBiLE 1.195 × 10− 14 3.43 × 10− 13 2.727 × 10− 12

R2 NRLM2.0 0.61 0.89 0.90

MBiLE 0.98 0.99 0.98

PESD NRLM2.0 1.6453 × 10− 13 8.676 × 10− 13 5.693 × 10− 12

MBiLE 4.081 × 10− 14 2.650 × 10− 13 1.207 × 10− 12

PE 93% 89% 78%
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seasons. For the CHAMP satellite, the variation in error rates is similar to that of Swarm C satellite, but with a
smoother trend. As for the GOCE satellite, the thermospheric mass density is higher in summer and winter
compared to spring and autumn. Additionally, the error rates on the dayside are slightly higher than on the
nightside, with an overall range of approximately − 35%–0%.

Figure 10 shows the variation of thermospheric mass density and error rate with ap index for the Swarm C,
CHAMP, and GOCE satellites on the dayside and nightside. It can be observed that as the ap index increases, the
thermospheric mass density of Swarm C satellite initially increases and then decreases, while the error rates show
a relatively smooth change. For the CHAMP satellite, both the thermospheric mass density and error rates in-
crease with the increase in the ap index. The error rates exhibit a more noticeable variation during the daytime,
starting around 0% and gradually increasing to approximately − 50%, while the nighttime error rates show a
relatively gradual change. Similarly, the variations of thermospheric mass density and error rates of the GOCE
satellite with respect to the ap index are similar to those of the Swarm C satellite. The error rates of GOCE satellite
range from approximately − 20%–1%. For the Swarm, CHAMP, and GOCE satellites, there is a rather linear trend
of increasing thermosphere mass density with increasing ap index, which is also as expected. However, one
should keep in mind that when ap exceeds a certain value, the number of entries becomes very small, and the very
low entries for the high activity level may make the results less reliable.

To better visualize the ability of the MBiLE model to predict the thermospheric mass density at different orbital
altitudes and to further analyze the distribution of errors, we plotted the altitude profiles of the SwarmC, CHAMP,
and GOCE satellites on the dayside and nightside. These profiles are shown in Figure 11. Specifically, the altitude

Figure 7. Variation of thermospheric mass density observation and error rate with magnetic local time (MLT) for Swarm C,
Challenging Minisatellite Payload and GOCE satellites. The MLT has a bin size size of 1 hr.
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profiles from the Swarm C satellite show that the MBiLE model predictions and the observed values of the mean
thermospheric mass density in each altitude range are basically close to each other. In contrast, the results of the
empirical model, NRLMSIS‐2.0, differ from the observed values, and they exhibit significant variations and lack
stability. The altitude profiles of the CHAMP satellite shows that below 325 km and above 475 km, the prediction
results of the MBiLE model in general agree well with the observed values. Similarly, the error between the
empirical model results and the observed values are also small. Between 325 and 475 km, the difference between
the empirical model results and the observations is larger. The altitude profiles of the GOCE satellite shows that
the predictions of the MBiLE model are very similar to the observed values, while the empirical model also
achieves good results. Overall, the model results on the nightside are slightly worse than those on the dayside, as
the atmosphere at night is more disturbed, which may lead to instability of the night data itself.

The error bars on top of each curve in fact represent the standard deviation, or dispersion of the thermospheric
mass density within an altitude bin. A larger standard deviation indicates a more spread data distribution, while a
smaller value indicating more concentrated distribution. Due to the significant differences in the orders of
magnitude of the thermosphere mass density among the three satellites, we simply take the standard deviation of
the thermosphere mass density values without any logarithmic transformation, as shown in Figures 11 and 12.
This approach accurately depicts the true variations of the data, and facilitates a more reliable assessment and
interpretation of the dispersion and consistency of the thermosphere mass density data for different altitude levels
and satellite missions. The standard deviation of the MBiLE model results and observations is greater than that of
the empirical model NRLMSIS‐2.0 inversion results because the thermospheric mass density from the empirical
model varies smoother at the different altitudes. However, in detail the comparison of the empirical model results
with observations is very dispersed, as can be seen in Figure 6.

In order to show more clearly the distribution of thermospheric mass density with height on the dayside and
nightside during the calm period, we have combined the distribution of thermospheric mass density over the

Figure 8. Variation of thermospheric mass density observation and error rate with F10.7 for Swarm C, Challenging Minisatellite Payload and GOCE satellites under
dayside and nightside in the calm period.
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altitude range from 224 to 528 km in Figure 12. As observed, within the altitude ranges of approximately 430–
490 km and 250–295 km, there are two distinct curve branchs originating from the different satellites, Swarm C
and CHAMP. This feature arises due to the fact that the thermospheric mass density is influenced not only by the
satellite altitudes but also by the other various factors, such as solar activity, season, local time, geomagnetic
activity, as well as geographic latitude and longitude, etc. Though there is an overlap of height between Swarm C
and CHAMP, the above‐mentioned parameters, for example, solar flux, season, local time etc., are different.
Therefore, the neutral densities measured by the two satellites are different, even when they flew at the same
altitude. In particular, the distribution of the dayside in Figure 12 shows that the MBiLE model results and the
observations are in general agreement. However, at around 370 km, the MBiLE model predictions are slightly
smaller than the satellite observations, with similar deviations on the nightside, and slightly larger deviations on
the nightside than on the dayside. In general, the predictions of the MBiLE model show some deviations from
satellite observations in terms of their standard deviations at various heights in the height profile of the ther-
mospheric mass density during the calm period but the differences are not significant. The standard deviations of
the empirical model NRLMSIS‐2.0 are largely small, but differ significantly from the standard deviation of the
satellite observations. It should be noted that the standard deviation of thermospheric mass density increases with
decreasing altitude due to larger absolute values of mass density at lower altitudes. In particular, the standard
deviation of GOCE satellite is much larger than that of Swarm C and CHAMP satellites, as the thermospheric
mass density observed by GOCE satellite is higher by 1–2 orders of magnitude.

5. Discussions
5.1. Statistical Analysis

The thermosphere is an important part of the solar‐terrestrial space system, and the study of the thermosphere is of
great scientific significance for understanding the interactions in the whole solar‐terrestrial causal chain (e.g., Lei

Figure 9. Variation of thermospheric mass density observation and error rate with DoY for Swarm C, Challenging Minisatellite Payload and GOCE satellites under
dayside and nightside in the calm period.
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et al., 2023). The current inversion methods of thermospheric mass density include four main types, which are
theoretical model, empirical model, improved model, and artificial intelligence model. The theoretical model can
simulate the atmospheric dynamic processes, which are consistent with the considered physical mechanisms, but
the differences between the calculated values by such model and the real world can be large, so it is more suitable
for studying the underlying mechanisms. An empirical model is based on parametric equations combined with
physical laws for data fitting, which is more widely used, but the model prediction accuracy during the magnetic
storm periods needs to be improved. Some improved models emerged meanwhile, basically confined to data
within a certain orbital altitude, and they cannot achieve reliable prediction of thermospheric mass density across
different orbital altitudes. Among the artificial intelligence models, neural network models are dominant, which
play a crucial role in the prediction studies of the thermospheric mass density. Unlike traditional models (e.g.,
MSISE, JB2008, etc.), neural networks can construct parametric models to learn valuable features extracted from
a large number of observations and reproduce relevant features using multiple neural network layers. Ensemble
learning is a technique that combines multiple models to obtain more accurate and stable prediction results. In
ensemble learning, combining different models can compensate for the shortcomings of individual models,
thereby improving the overall performance. In this study, Bi‐LSTM model and MLP, two different models, are
combined to form a more powerful ensemble model MBiLE. This model not only captures contextual information
but also learns features sufficiently, possessing strong and rich feature representation capabilities, enabling the
ensemble model to better capture complex relationships in underlying data. Therefore, the ensemble model can
reduce the risk of overfitting and improve generalization performance. Additionally, by collecting prediction
results from the two models and processing them using the stacking algorithm, more accurate prediction results
can be obtained. By training the MBiLE model using thermospheric mass density data from the Swarm C satellite
at about 450 km, accurate predictions are made for different altitude ranges from 450 km down to 250 km. Such an
altitude generalization has not been achieved by using traditional multi‐variables least‐square fitting (e.g., Liu
et al., 2013; Xiong et al., 2018a). The machine learning approach learns the complex relationship of

Figure 10. Thermospheric mass density observations and error rate variation with ap for SwarmC, ChallengingMinisatellite Payload and GOCE satellites on the dayside
and nightside.
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thermospheric mass density on altitudes from observational data gathered by the Swarm C satellite, and such
predictive capabilities has been confirmed by comparing to the observation from CHAMP and GOCE satellites
flying at lower altitudes. It should be noted that the prediction results of the MBiLE model are somewhat low

Figure 11. Altitude profiles of the thermospheric mass density for Swarm C, Challenging Minisatellite Payload and GOCE satellites under dayside and nightside. Where
error bar denotes the standard deviation and its unit is 10− 11 kg/m3.
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compared to the true values, which may be due to the normalized pre‐processing of the data by the model before
training, compressing most of the variability in the original data to a small range, making the model become less
sensitive to changes in the data during training, thus leading to low prediction results (Behzad et al., 2009). It may
also be because our model structure is not yet reasonable enough to make more accurate predictions of the thermal
layer mass density.

Although theMBiLEmodel achieves good prediction results, there are still some errors, andwe therefore develop a
detailed error analysis of the model's prediction results in order to optimize themodel subsequently. In this study, a
comparisonwasmade between the prediction results of theMBiLEmodel and the inversion results of the empirical
model NRLMSIS‐2.0, as well as the observed values. The case representing the Swarm C satellite is shown in
Figures 3a and 5a. The MBiLE model exhibited an error range of − 0.156 × 10− 12 kg/m3 to 0.130 × 10− 12 kg/m3,
while the empiricalmodel showed an error range of − 0.247× 10− 12 kg/m3 to 0.572× 10− 12 kg/m3. The error rate of
theMBiLEmodel was reduced by 91%. Even during several geomagnetic storm periods, such as 28 October 2003,
and 4November 2003, the results of theMBiLEmodel showed relatively high reliability compared to the empirical
model NRLMSIS‐2.0. Furthermore, Figure 6 provides detailed scatter plots of the distribution comparing observed
mass densities with the prediction results from theMBiLEmodel, as well as from the empirical model NRLMSIS‐
2.0, demonstrating the reliability and strong generalization ability of the MBiLE model. The larger errors in the
inversion results of the empirical model can be attributed to the non‐uniformity and complexity of the thermo-
spheric mass density distribution. The study also investigated the variations of observed thermospheric mass
density and error rates with respect to the MLT, F10.7, DoY, and ap parameters.

Figure 7 illustrates the variations of observed thermospheric mass density and error rates with MLT. Overall, the
thermospheric mass density of Swarm C and CHAMP satellites exhibits an increasing and then decreasing trend,
while the GOCE satellite shows two peaks. It is noteworthy that the error rates do not vary significantly with the
increase of MLT; they only slightly decrease at the peaks of thermospheric mass density. This indicates that the
performance of the MBiLE model is minimally affected by MLT and demonstrates the model's stability. Sub-
sequently, Figure 8 demonstrates the variations of observed thermospheric mass density and error rates with
F10.7 index. Solar activity has a significant impact on thermospheric mass density, particularly during periods of
high solar activity. Variations in solar radiation and solar wind lead to heating and disturbances in the thermo-
sphere, thus affecting the distribution of thermospheric mass density. Therefore, during periods of high solar
activity, the thermospheric mass density typically increases, leading to augmented drag on satellites and sub-
sequent orbital decay, as exemplified in Figure 3 depicting alterations in the thermospheric mass density of the
CHAMP satellite post‐2010. Additionally, the fluctuation in error rates of the MBiLE model with F10.7 index is
relatively small, ranging from − 30% to 10%, which falls within an acceptable range. Clearly, even during periods

Figure 12. Altitude profile of the thermospheric mass density on the dayside and nightside during the calm period. Where error bar denotes the standard deviation and its
unit is 10− 11 kg/m3.
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of high solar activity, the prediction results of the MBiLE model exhibit a certain level of reliability. We further
examined the variations of observed thermospheric mass density and error rates with DoY and ap parameters.
Overall, the error rates show relatively small fluctuations with increasing DoY and exhibit a relatively uniform
distribution throughout the year. Moreover, as the ap index increases, there is a noticeable change in thermo-
spheric mass density, while the error rates for Swarm C and GOCE satellites demonstrate relatively stable var-
iations. For the CHAMP satellite, the error rates show some increase with the ap index, but the overall error rate
remains within − 30%, which is within an acceptable range. The above analysis indicates that the MBiLE model
exhibits good stability and reliability.

5.2. Altitude Coverage of MBiLE Model

Satellite orbital altitude is the most important factor affecting the thermospheric mass density, as it varies
exponentially with altitude. At higher orbital altitudes, such as for the Swarm C satellite (approximately 430–
528 km) and the CHAMP satellite (approximately 220–500 km), the thermospheric mass density is lower.
Consequently, these satellites are more influenced by atmospheric drag and require periodic adjustments to
maintain the correct orbital altitude. In contrast, at lower orbital altitudes, such as for the GOCE satellite
(approximately 224–300 km), the thermospheric mass density is relatively higher. In this study, the data from the
Swarm C satellite was used to train the deep learning model MBiLE, which was then used to predict the ther-
mospheric mass density for a broader range of satellites including CHAMP and GOCE. This was done to
demonstrate the model's generalization capability and stability.

We examined the altitude profiles of thermospheric mass density for the Swarm C, CHAMP, and GOCE satellites
separately during daytime and nighttime. A comparison was made between satellite observation data, the pre-
dicted results from the MBiLE model, and the inversion results from an empirical model. Figure 11 clearly shows
that the agreement between the predicted thermospheric mass density profiles by the MBiLE model and satellite
observations is slightly better in higher density regions, that is on the daytime side compared to the nighttime side,
but for GOCE on the nighttime side (see Figure 8). Overall, the inversion results from the empirical model
NRLMSIS‐2.0 also yielded good results at certain altitudes but not at all altitudes. For example, in the altitude
profiles of the Swarm C satellite, both on the daytime and nighttime sides, there were significant discrepancies
observed at altitudes below 450 km, within the range of 470–490 km, and between 500 and 520 km. In the altitude
profiles of the GOCE satellite the deviations are more pronounced on the nighttime side, particularly above
255 km. This indicates that the empirical model NRLMSIS‐2.0 has a reasonable level of inversion capability but
lacks stability. In order to eliminate the influence of geomagnetic storms on thermospheric mass density, we
further studied the altitude distribution of thermospheric mass density during quiet periods on the daytime and
nighttime sides, aiming to fully demonstrate the reliability of the MBiLE model in cross‐orbital altitude pre-
dictions. In Figure 12, within the range of 224–528 km, the predicted results of the MBiLE model showed better
agreement with the observed altitude profiles compared to the empirical model NRLMSIS‐2.0, particularly be-
tween 300 and 400 km. It should be noted that the length of the error bars represents the size of the standard
deviation, which indicates more the degree of data dispersion within an altitude bin. Throughout the entire altitude
range, the standard deviation of the empirical model NRLMSIS‐2.0 was essentially smaller than that of the
MBiLE model and satellite observation data. While this suggests that the inversion results from the empirical
model are smoother, but their mean values deviate partly significantly from the true distribution of satellite
observations. On the other hand, within the range of 224–528 km, the standard deviation of the MBiLE model is
comparable to that of the satellite observation data. These comparative analyses serve to support the demon-
stration of the robust generalization capability and stability of the MBiLE model.

The thermospheric mass density is closely related to the Earth's magnetic field, solar activity and other factors,
and the changes of these factors will lead to the increase of uncertainty in the distribution of the thermospheric
density, which causes the larger errors of the empirical model inversions. The MBiLE model, however, has better
performance in the prediction task of thermal layer mass density, mainly due to its ability to take advantage of the
Bi‐LSTM and MLP learners, which can consider information in both forward and back directions, thus making
better use of contextual information and improving the ability to model sequences, and improving the overall
model stability and generalization through the stacking algorithm. Furthermore, it is noteworthy that the physical
significance of machine learning lies in its ability to leverage complex multi‐parameter relationships, and finally
enable accurate estimations of the thermospheric mass density at a wilder altitude range.
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6. Summary
In this studywe combine the ensemble learning algorithms ofBi‐LSTMandMLP, and develop a reliable prediction
model, MBiLE, for predicting the Earth's thermospheric mass density. Though with only the neutral density
measurements from the Swarm C satellites at about 450 km to construct the model, the predictions of MBiLE can
well represent the density variations down to 250 km. The main findings of our work are summarized as:

1. The MBiLE model predicted thermospheric mass densities show overall good agreements with the obser-
vations from SwarmC, CHAMP and GOCE satellites. The correlation coefficient, R2, between predictions and
measurements are 0.98, 0.99 and 0.98, respectively, for the three satellites. This result also confirms that the
MBiLE model has good generalizability for representing the altitude variation of the thermospheric mass
density.

2. Further detailed analysis of the MLT, F10.7, DoY, and ap parameters shows that the error rate of the MBiLE
model predictions show almost no dependences on these parameters, which further confirms the reliability and
robustness of the MBiLE model.

3. The standard deviation of NRLMSIS‐2.0 is relatively small in the height profiles, but the difference of their
inversion results from observations are rather scattered. Compared to that, the prediction accuracy of the
MBiLE model to predict the thermospheric mass density observed by Swarm C, CHAMP and GOCE satellites
is improved by 91%, 66% and 56%, respectively. A comparison of results along the altitude profiles shows that
over a wider altitude range the MBiLE model can cover 224–528 km well, indicating that the MBiLE model
has a good generalization performance.

In this study, we only utilized data from the Swarm C satellite for modeling purposes, to demonstrate the
effectiveness of this approach in providing comprehensive altitude coverage. However, from the perspective of
modeling completeness, incorporating observations from multiple satellites, including three or more, would be
advantageous. In our future work, we plan to leverage a broader range of observational data to enhance the
accuracy of our model predictions. Another weak point of our study is that we used 62 parameters as input for
constructing our model. In fact, some of these parameters should be coupled. Therefore, performing a more
detailed “sensitivity check” on these parameters is essential to make the model more convenient to the users,
which is also the task for our next study.

Appendix A
Specific information about the input data is given in Table A1 and Figure A1 gives the change in loss values for
the training and test sets during the iteration process.

Table A1
The Detailed Information of the Input Data

Swarm C data 1 Satellite altitude

2 Geodetic longitude

3 Geodetic latitude

4 Local solar time

5 Argument of latitude

OMNI web data 6 Bartels rotation number

7 ID for IMF spacecraft

8 ID for SW plasma spacecraft

9 # of points in the IMF averages

10 # of points in the plasma averages

11 Field Magnitude Average |B|

12 Magnitude of Average Field Vector
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Table A1
Continued

13 Lat.Angle of Aver. Field Vector

14 Long.Angle of Aver.Field Vector

15 Bx GSE, GSM

16 By GSE

17 Bz GSE

18 By GSM

19 Bz GSM

20 sigma|B|

21 sigma B

22 sigma Bx

23 sigma By

24 sigma Bz

25 Proton temperature

26 Proton Density

27 Plasma (Flow) speed

28 Plasma Flow Long. Angle

29 Plasma Flow Lat. Angle

30 Na/Np

31 Flow Pressure

32 sigma T

33 sigma N

34 sigma V

35 sigma phi V

36 sigma theta V

37 sigma‐Na/Np

38 Electric field

39 Plasma beta

40 Alfven mach number

41 Kp

42 R

43 DST Index

44 AE‐index

45 Proton flux (>1 Mev)

46 Proton flux (>2 Mev)

47 Proton flux (>4 Mev)

48 Proton flux (>10 Mev)

49 Proton flux (>30 Mev)

50 Proton flux (>60 Mev)

51 Flag

52 ap‐index

53 F10.7_index

54 PC(N) index

55 AL‐index, from Kyoto

56 AU‐index, from Kyoto
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Data Availability Statement
The thermospheric mass density data derived from the accelerometer on board the Swarm C, CHAMP and GOCE
satellites are processed and provided by the TU Delft (Doornbos, 2012; March et al., 2021; Siemes et al., 2016).
The OMNI data can be downloaded from the Goddard Space Flight Center (Papitashvili & King, 2020). Detailed
description of the NRLMSIS‐2.0 model can be found and downloaded from https://ccmc.gsfc.nasa.gov/models/
NRLMSIS∼2.0/. The code for the model structure and the produced data set in this paper can be found at
(Pan, 2024).
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